JPH01302799A - Superconducting magnetic shielding body - Google Patents

Superconducting magnetic shielding body

Info

Publication number
JPH01302799A
JPH01302799A JP63132448A JP13244888A JPH01302799A JP H01302799 A JPH01302799 A JP H01302799A JP 63132448 A JP63132448 A JP 63132448A JP 13244888 A JP13244888 A JP 13244888A JP H01302799 A JPH01302799 A JP H01302799A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
core material
magnetic field
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63132448A
Other languages
Japanese (ja)
Other versions
JPH0779200B2 (en
Inventor
Soichi Ogawa
倉一 小川
Takao Sugioka
孝雄 杉岡
Masaru Inoue
勝 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koatsu Gas Kogyo Co Ltd
Osaka Prefecture
Original Assignee
Koatsu Gas Kogyo Co Ltd
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koatsu Gas Kogyo Co Ltd, Osaka Prefecture filed Critical Koatsu Gas Kogyo Co Ltd
Priority to JP63132448A priority Critical patent/JPH0779200B2/en
Publication of JPH01302799A publication Critical patent/JPH01302799A/en
Publication of JPH0779200B2 publication Critical patent/JPH0779200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable sure and uniform magnetic shielding by constituting a superconducting thin film in an electrically closed ring state around the axial line of a core material, and performing thermocompression bonding of low melting point metal layers which are stuck on a thin film by vapor-deposition. CONSTITUTION:A belt-type superconducting thin film 2 is wound around a cylindrical type core material 1 whose both ends are opened. The thin film 2 is wound so as to overlap with each other with respect to the axial center direction of the core material 1. On the junction part 3 in the peripheral direction of the thin film 2, low melting point metal layers 31 are stuck facing with each other. Each of the metal layers 31 is subjected to thermocompression bonding, and unified in a body. When a magnetic shielding body is arranged in magnetic field, a shielding current is induced in the thin film 2 in the state of a closed ring, by the magnetic field parallel to the axial center of the core material 1, and the magnetic field is shielded according to the rule of the constant crossing-flux. As a result, current circulation is surely induced, and does not attenuate with time, so that the magnetic field is effectively shielded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導体によって磁界を遮蔽する超電導磁気シ
ールド体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a superconducting magnetic shield that shields a magnetic field using a superconductor.

(従来の技術) 従来、超電導を利用した磁気遮蔽体としては、磁界の強
さに応じて第1種超電導体及び第2種超電導体が用いら
れていた。第1種超電導体を用いた磁気遮蔽体は、超電
導の性質である完全反磁性(マイナス−効果)を利用す
るものであるが、その臨界磁界が低いため強い磁界を遮
蔽することは不可能である。ところが第2種超電導体を
用いた磁気遮蔽体は、超電導状態と常電導状態との混合
状態を利用するものであり、その臨界磁界は上部臨界磁
界と下部臨界磁界とに分かれ、上部臨界磁界が極めて高
いため強い磁界の遮蔽に利用することができる。従って
、近時この第2種超電導磁気遮蔽体が鋭意研究され一部
実用化されるに至っている。
(Prior Art) Conventionally, as magnetic shielding bodies using superconductivity, type 1 superconductors and type 2 superconductors have been used depending on the strength of the magnetic field. Magnetic shielding materials using type 1 superconductors utilize the perfect diamagnetism (negative effect), which is a property of superconductivity, but their low critical magnetic field makes it impossible to shield strong magnetic fields. be. However, magnetic shields using Type 2 superconductors utilize a mixed state of superconducting and normal conducting states, and their critical magnetic field is divided into an upper critical magnetic field and a lower critical magnetic field, and the upper critical magnetic field is Because it is extremely high, it can be used to shield strong magnetic fields. Therefore, recently, this type 2 superconducting magnetic shielding body has been intensively researched and some of them have been put into practical use.

上記第2種超電導体を用いた磁気遮蔽の応用例としては
、超電導シート或いはテープを筒状芯材の周囲に巻き付
けたもの、例えば特開昭56−40289号等に開示の
ものが上げられる。この磁気シールド体は、強磁界内に
配置され芯材の内部空間を外部磁界から遮断するよう、
或いは芯材内部にマグネットを配置してその外部への磁
界の漏洩を防止するよう用いられたりする。
Examples of applied magnetic shielding using the second type superconductor include those in which a superconducting sheet or tape is wound around a cylindrical core material, such as that disclosed in Japanese Patent Laid-Open No. 56-40289. This magnetic shield body is placed in a strong magnetic field and shields the internal space of the core material from external magnetic fields.
Alternatively, a magnet may be placed inside the core material to prevent leakage of the magnetic field to the outside.

(発明が解決しようとする課題) ところで、上記磁気シールド体は、超電導シート或いは
テープの相互の接合を介して芯材の内外を電磁的に遮断
せんとするものであるから、その接合部分の状態が磁気
遮蔽効果に大きく影響する。
(Problem to be Solved by the Invention) By the way, since the above-mentioned magnetic shield body is intended to electromagnetically isolate the inside and outside of the core material through the mutual bonding of superconducting sheets or tapes, the state of the bonded portion is greatly affects the magnetic shielding effect.

因みに、前記先行出願に係るものは、超電導テープを芯
材に巻き付けた後低融点金属に含浸して超電導テープ同
士を接合一体とするものであるが、テープ間の間隙に含
浸金属が完全にゆき亘らずまた含浸金属層の厚みが均一
とならない為、芯材の軸心に平行な磁界に対する遮蔽効
果が弱くしかも経時的に低下すると云う難点があった。
Incidentally, in the prior application, the superconducting tapes are wound around a core material and then impregnated with a low melting point metal to join the superconducting tapes together, but the impregnated metal does not completely fill the gaps between the tapes. Moreover, since the thickness of the impregnated metal layer is not uniform, there is a problem that the shielding effect against the magnetic field parallel to the axis of the core material is weak and deteriorates over time.

即ち、磁界に直交する面域でみると5低融点金属の欠落
部分がある為、超電導テープによる電気的閉環状態が形
成されず、従って鎖交磁束不変の原理が作用しにくく、
また低融点金属の厚みの差により電気抵抗の差が生じ、
厚いところではジュール発熱しこれが原因で上記電気的
閉環状態が経時的に崩れ易くなるからである。
In other words, since there is a missing part of the 5 low melting point metal in the area perpendicular to the magnetic field, an electrically closed ring state is not formed by the superconducting tape, and therefore the principle of constant magnetic flux linkage is difficult to operate.
In addition, differences in electrical resistance occur due to differences in the thickness of low melting point metals,
This is because Joule heat generation occurs in thick areas, which makes the electrically closed state more likely to collapse over time.

その他、超電導線材による網テープを筒状芯材に巻き付
け、ウッドメタルやハンダ等により相互に接合したもの
もあるが、この場合は接合箇所が多く、接合部分に生じ
る電気抵抗により磁界遮蔽効果が経時的に低下する 本発明者等は、上記磁気シールド体に於いて、磁界に平
行な部位と直交する部位とに対応する超電導薄膜相互の
接合手段の適正化について鋭意研究を重ねることにより
、磁気遮蔽効果が極めて優れ且つ安定した数種の超電導
磁気シールド体を完成するに至り、ここにこれらを提案
せんとするものである。
In addition, there is a method in which a mesh tape made of superconducting wire is wrapped around a cylindrical core material and joined together using wood metal or solder, but in this case, there are many joints, and the magnetic field shielding effect decreases over time due to the electrical resistance generated at the joints. The inventors of the present invention have conducted extensive research on optimizing the bonding means between the superconducting thin films corresponding to the portions parallel to the magnetic field and the portions orthogonal to the magnetic field in the magnetic shielding body. We have completed several types of superconducting magnetic shields that are extremely effective and stable, and we would like to propose them here.

(課題を解決するための手段) 請求項1に係る本発明の超電導磁気シールド体は、両端
開放の筒状芯材と、該芯材の周体に巻回された超電導薄
膜とより成り、該薄膜が上記芯材の軸線の廻りに関して
電気的に閉環状態とされ、少なくともこの閉環接合部分
が、蒸着により該薄膜に被着形成された低融点金属層同
士の熱圧着をして接合一体化されて成ることを要旨とす
る。
(Means for Solving the Problems) A superconducting magnetic shield of the present invention according to claim 1 is comprised of a cylindrical core material with both ends open, and a superconducting thin film wound around the core material. The thin film is brought into an electrically closed ring state around the axis of the core material, and at least this ring closed joint portion is bonded and integrated by thermocompression bonding of low melting point metal layers formed on the thin film by vapor deposition. The gist is to consist of:

亦、請求項2に係る超電導磁気シールド体は、両端開放
の筒状芯材と、該芯材の周体に巻回された超電導薄膜と
より成り、蒸着により被着形成された低融点金属層同士
の熱圧着を介して閉環された超電導薄膜テープ環帯が上
記芯材の両端部に套嵌されて成ることを要旨とし、更に
請求項3に係る超電導磁気シールド体は、上記超電導薄
膜テープ環帯に代え、超電導線材の閉環コイル状輪体が
芯材の両端部に套嵌されて成るものである。
In addition, the superconducting magnetic shield according to claim 2 comprises a cylindrical core member with both ends open, and a superconducting thin film wound around the core member, and a low melting point metal layer formed by vapor deposition. The superconducting magnetic shield according to claim 3 further comprises a superconducting thin film tape ring which is closed by thermocompression bonding and is fitted onto both ends of the core material. Instead of a band, a closed coil-shaped ring of superconducting wire is fitted around both ends of the core material.

請求項1乃至3の磁気シールド体に於いて、筒状芯材の
軸心に沿った磁界を有効に遮蔽する為には、鎖交磁束不
変の原理により該磁界に直交する面域が電気的に閉環し
ている必要があり、しかも接合部の電気抵抗ができるだ
け小さいことが肝要であるので、超電導薄膜若しくはテ
ープの接合部位にはできるだけ面積が大きく薄層に形成
された低融点金属層が介在される。
In the magnetic shielding body according to claims 1 to 3, in order to effectively shield the magnetic field along the axis of the cylindrical core material, the area perpendicular to the magnetic field is electrically Since it is important that the electrical resistance of the joint be as small as possible, a thin, low-melting point metal layer with as large an area as possible is interposed at the joint of the superconducting thin film or tape. be done.

しかし、筒状芯材の側部に直交状態で負荷される磁界に
対しては、超電導薄膜の反磁性を利用して遮蔽すること
になるから、電気的に閉環する必要がなく、従って上記
閉環接合部以外、例えば芯材側部の超電導薄膜同士の重
なり部分等の接合は、上記低融点金属の圧着による場合
の他に、市販の低温用接着剤(例えば、エポキシ系接着
剤)、粘着剤及び接着若しくは粘着テープ(両面テープ
等)のいずれかを採用することが出来る。但し、斯かる
接着方法を採用した場合でも、超電導薄膜同士の間隙は
500μm以下にすべきである。500μmを超えると
接着層を通じて磁界が漏洩することがあるからである。
However, the magnetic field applied orthogonally to the side of the cylindrical core material is shielded using the diamagnetic properties of the superconducting thin film, so there is no need to electrically close the ring. For joining other than the joints, such as the overlapping parts of superconducting thin films on the sides of the core material, in addition to the above-mentioned pressure bonding of low-melting point metals, commercially available low-temperature adhesives (e.g., epoxy adhesives), adhesives, etc. Either adhesive or adhesive tape (double-sided tape, etc.) can be used. However, even when such an adhesion method is adopted, the gap between the superconducting thin films should be 500 μm or less. This is because if the thickness exceeds 500 μm, the magnetic field may leak through the adhesive layer.

更に、請求項5に係る超電導磁気シールド体は、一端が
閉じられた筒状芯材の内及び/若しくは外表面に超電導
薄膜を隙間なく接着一体として成るものである。この場
合の超電導薄膜の接着一体化は、上記低融点金属の熱圧
着による場合、或いは接着剤による場合いずれも採用可
能である。これは、筒状芯材の一端が閉じられている為
、芯材の軸心に平行な磁界は、実質的にこの閉じられた
部分で反磁性によって遮蔽されることになる為、敢えて
電気的閉環状態を構成する必要がないからである。
Furthermore, a superconducting magnetic shield according to a fifth aspect of the present invention is one in which a superconducting thin film is integrally bonded to the inner and/or outer surface of a cylindrical core member with one end closed without any gaps. In this case, the superconducting thin film can be bonded and integrated by thermocompression bonding of the above-mentioned low melting point metal or by using an adhesive. This is because one end of the cylindrical core material is closed, so the magnetic field parallel to the axis of the core material is substantially shielded by diamagnetic properties in this closed part, so it is intentionally electrically This is because there is no need to form a closed ring state.

上記超電導薄膜及び線材の超電導材としては、ニオブ金
属、ニオブ系化合物、ニオブ系合金、バナジウム系化合
物及びバナジウム系合金等が採用され、具体的にはNb
、Nb−Ti合金、Nb−Zr合金、NbN、NbC,
NbN−TiN(混晶体)、Nb−3n、Nb=A’Q
、Nb−Ga、Nb1Ge、Nb、(AQGe)及びV
、Ga等が挙げられる。その他セラミックス系超電導材
料(例えば、Ba−Y−Cu−○系化合物、L a −
S r −Cu−O系化合物、B1−3r−Ca−Cu
−○系化合物、TQ−Ba−Ca−Cu−0系化合物)
やシェブレル超電導材料(例えば、PbMo、S6)等
も採用される。更に、特願昭第60−024254号、
特願昭第62−068499号及び特願昭第63−02
8184号により開示された超電導磁気遮蔽体も採用可
能である。
As the superconducting material for the above-mentioned superconducting thin film and wire, niobium metal, niobium-based compounds, niobium-based alloys, vanadium-based compounds, vanadium-based alloys, etc. are adopted, and specifically, Nb
, Nb-Ti alloy, Nb-Zr alloy, NbN, NbC,
NbN-TiN (mixed crystal), Nb-3n, Nb=A'Q
, Nb-Ga, Nb1Ge, Nb, (AQGe) and V
, Ga, etc. Other ceramic superconducting materials (e.g., Ba-Y-Cu-○ compounds, La-
S r -Cu-O type compound, B1-3r-Ca-Cu
-○ type compound, TQ-Ba-Ca-Cu-0 type compound)
or Chevrel superconducting materials (for example, PbMo, S6), etc. are also employed. Furthermore, Japanese Patent Application No. 60-024254,
Japanese Patent Application No. 62-068499 and Japanese Patent Application No. 63-02
The superconducting magnetic shield disclosed by No. 8184 can also be employed.

亦、上記低融点金属として、液体He温度で超電導性を
示すウッドメタル、ビスマス釦、インジウム錫及び鉛の
合金等を用いると、超電導薄膜同士の接合部の電気抵抗
がゼロ(単層膜の時)或いは非常に小さく(積層膿の時
)なり、極めて良好な電気的閉環状態が得られる。該低
融点金属は、少なくとも超電導薄膜の閉環接合対応部位
に真空蒸着により被着形成され、合体状態で加熱加圧す
ると相互に、融着一体化される。この場合、超電導薄膜
とのぬれ性を考慮して、予め超電導薄膜に真空蒸着若し
くはスパッタ法により銅のコーテイング膜を形成し、こ
の上に低融点金属層を被着形成することも可能である。
In addition, if wood metal, bismuth button, an alloy of indium tin and lead, etc., which exhibit superconductivity at the liquid He temperature are used as the low melting point metal, the electrical resistance at the junction between superconducting thin films will be zero (in the case of a single layer film). ) or become very small (in the case of laminated pus), and an extremely good electrically closed state can be obtained. The low melting point metal is formed by vacuum deposition on at least a portion of the superconducting thin film corresponding to ring-closing bonding, and is fused and integrated with each other by heating and pressurizing the combined state. In this case, in consideration of wettability with the superconducting thin film, it is also possible to form a copper coating film on the superconducting thin film in advance by vacuum evaporation or sputtering, and then deposit a low melting point metal layer thereon.

(作用) 本発明超電導磁気シールド体の作用について述べる。請
求項1に係るシールド体を磁界の中に配置すると、低融
点金属層の相互圧着接合によって形成された閉環ループ
には芯材の軸線に平行な磁界の作用を受けて遮W1電流
が流れ、この遮蔽電流に基づき該磁界の透過が遮断され
る(鎖交磁束不変の原理)。そして、低融点金属層は真
空蒸着により被着形成されたものであるから、その厚み
等は均一であり、従って上記遮蔽効果は安定且つ長期に
亘って維持される。亦、芯材の周体に直交する方向より
負荷される磁界に対しては、該芯材の周体に巻回された
超電導薄膜の反磁力が作用し、これにより該磁界が遮断
される。
(Function) The function of the superconducting magnetic shield of the present invention will be described. When the shield according to claim 1 is placed in a magnetic field, a blocked current W1 flows through the closed loop formed by the mutual pressure bonding of the low melting point metal layers under the action of the magnetic field parallel to the axis of the core material. Based on this shielding current, transmission of the magnetic field is blocked (principle of constant magnetic flux linkage). Since the low melting point metal layer is formed by vacuum deposition, its thickness etc. are uniform, and therefore the above-mentioned shielding effect is stable and maintained over a long period of time. In addition, the diamagnetic force of the superconducting thin film wound around the circumference of the core acts on a magnetic field applied in a direction perpendicular to the circumference of the core, thereby blocking the magnetic field.

請求項2の磁気シールド体の場合、上記同様磁界の中に
置かれた時、芯材の両端部1こ套嵌された超電導薄膜環
帯に遮蔽電流が流れ、上記同様芯材の軸心に平行な磁界
は遮断される。また、芯材周体の直交方向より負荷され
た磁界も上記同様該周体に巻回された超電導薄膜の反磁
作用により遮断される。
In the case of the magnetic shielding body of claim 2, when placed in a magnetic field as described above, a shielding current flows through the superconducting thin film rings fitted around both ends of the core material, and as described above, a shielding current flows through the superconducting thin film ring band fitted around both ends of the core material. Parallel magnetic fields are blocked. Furthermore, the magnetic field applied from the direction orthogonal to the core circumferential body is also blocked by the demagnetizing action of the superconducting thin film wound around the core circumferential body, as described above.

請求項3の磁気シールド体の場合、芯材両端に超電導線
材による閉環コイル状軸体が套嵌されているから、芯材
の軸線に平行な磁界によって該輸体に遮蔽電流が流れ該
磁界が遮断され、芯材の周体に負荷された磁界も上記同
様に遮断される。
In the case of the magnetic shielding body according to claim 3, since the closed ring coil-shaped shaft body made of superconducting wire is fitted on both ends of the core material, a shielding current flows in the transducer due to the magnetic field parallel to the axis of the core material, and the magnetic field is The magnetic field applied to the peripheral body of the core material is also blocked in the same manner as described above.

上記請求項1乃至3に係る磁気シールド体の場合、閉環
接合部以外の超電導薄膜の接合部分、即ち該薄膜同士の
重なり部分等を、接着剤や接着テープ等によって密に接
合しておけば、超電導薄膜の巻回状態が維持され且つこ
れによって芯材の周体に直交する磁界の遮蔽が低下され
ることはない。
In the case of the magnetic shielding body according to the above claims 1 to 3, if the bonded portions of the superconducting thin films other than the ring-closed bonded portions, that is, the overlapping portions of the thin films, etc., are tightly bonded with an adhesive, adhesive tape, etc., The wound state of the superconducting thin film is maintained and the shielding of the magnetic field perpendicular to the circumference of the core material is not reduced thereby.

従って、超電導薄膜の巻回組立が簡易且つ安価になされ
る。
Therefore, winding and assembling the superconducting thin film can be done easily and inexpensively.

請求項5に係る磁気シールド体に於いては、芯材の軸心
に平行な磁界は、その底部の閉じられた部分に対して直
接作用する。従って、この閉じられた部分に隙間なく接
着一体とされた超電導薄膜の反磁力により磁界が遮断さ
れる。亦、芯材の側周部に直交状態で作用する磁界も、
該側周部に接着一体とされた超電導薄膜の反磁効果によ
り遮断され、全体が超電導i’allの反磁性のみによ
って磁気遮蔽効果を保有することになる。従って、該薄
膜同士を電気的に接合させる必要がなく、接着剤や両面
テープ等の安価な接合手段が採用可能となる。
In the magnetic shield according to claim 5, the magnetic field parallel to the axis of the core material directly acts on the closed bottom portion thereof. Therefore, the magnetic field is blocked by the diamagnetic force of the superconducting thin film that is integrally bonded to this closed portion without any gaps. In addition, the magnetic field that acts perpendicularly to the side circumference of the core material is
It is shielded by the diamagnetic effect of the superconducting thin film integrally bonded to the side circumferential portion, and the entire structure has a magnetic shielding effect only due to the diamagnetic property of the superconducting i'all. Therefore, it is not necessary to electrically bond the thin films to each other, and inexpensive bonding means such as adhesives or double-sided tapes can be used.

(実施例) 次に本発明の実施例を添付図面により更に詳細に説明す
る。ここに、第1図は本発明の請求項1に係る磁気シー
ルド体の例を示す斜視図、第2図は第1図の■−■線断
面図、第3図は他の変更例の第2図と同様図、第4図(
イ)は同化の変更例を(ロ)はその超電導薄膜の展開図
を示し、第5図は同請求項2に係る磁気シールド体の例
を示す斜視図、第6図は同請求項3に係る磁気シールド
体の例を示す斜視図、第7図は同請求項5に係る磁気シ
ールド体の例を示す斜視図、第8図は接合部の種々の態
様を示す概略説明図である。
(Example) Next, an example of the present invention will be described in more detail with reference to the accompanying drawings. Here, FIG. 1 is a perspective view showing an example of the magnetic shielding body according to claim 1 of the present invention, FIG. 2 is a sectional view taken along the line ■-■ of FIG. 1, and FIG. Similar figure to Figure 2, Figure 4 (
(a) shows a modified example of assimilation, (b) shows a developed view of the superconducting thin film, FIG. 5 is a perspective view showing an example of the magnetic shielding body according to claim 2, and FIG. FIG. 7 is a perspective view showing an example of the magnetic shield according to the fifth aspect of the present invention, and FIG. 8 is a schematic explanatory view showing various aspects of the joint portion.

(1)第1図は、アルミニウム、銅若しくはステンレス
スチールより成る両端開放の円筒状芯材1の同体に帯状
超電導薄膜2・・・を環状に巻回し、該薄膜2・・・を
芯材1の軸心方向に関して互いに重なり合うよう連設し
た超電導磁気シールド体を示す。
(1) Fig. 1 shows a cylindrical core material 1 made of aluminum, copper, or stainless steel with both ends open, and a belt-shaped superconducting thin film 2... wound around the core material 1. This figure shows superconducting magnetic shields arranged so as to overlap each other in the axial direction.

該薄膜2の周方向の接合部分3には、真空蒸着による厚
さ3〜5μmの低融点金属層31.31が互いに対面状
態で被着形成され、この低融点金属層31.31同士を
熱圧着一体(第2図参照)とすることにより、各超電導
薄膜2・・・が芯材1の軸心の廻りに関して電気的に閉
環状態とされている。
On the circumferential joint portion 3 of the thin film 2, low melting point metal layers 31.31 with a thickness of 3 to 5 μm are formed by vacuum evaporation in a state facing each other, and the low melting point metal layers 31.31 are heated to By integrally crimping (see FIG. 2), each superconducting thin film 2 is electrically closed around the axis of the core material 1.

また、芯材1の細心に沿った薄膜2・・・同士の重なり
部分4・・・は低温用接着剤により接合一体とされ、こ
れにより芯材1の外周面は超電導薄膜2・・・によって
完全に被装される。上記閉環接合部分3・・・は、図の
如く周方向にずれるよう、また薄膜2・・・を芯材1の
遠心方向に関して多層に巻回する場合、この重なり部分
4・・・は芯材1の軸心方向に互いにずれるよう、配置
することがより有効な磁気遮蔽を行なう上で望ましい。
In addition, the overlapping portions 4 of the thin films 2 along the fine lines of the core material 1 are joined together with a low-temperature adhesive, so that the outer peripheral surface of the core material 1 is covered by the superconducting thin films 2 Completely covered. The ring-closing joint portions 3... are arranged so that they are shifted in the circumferential direction as shown in the figure, and when the thin film 2... is wound in multiple layers in the centrifugal direction of the core material 1, the overlapping portions 4... For more effective magnetic shielding, it is desirable to arrange the magnets so that they are shifted from each other in the direction of the axis of the magnet.

斯くして、上記構成の磁気シールド体を磁界内に配置す
ると、芯材1の軸心に平行な磁界により閉環状態の超電
導薄膜2・・・に遮蔽電流が誘起され、この鎖交磁束不
変の原理により該磁界が遮蔽される。この時閉環接合部
分3に介在された低融点金属層31.31は、電気の良
導体でありしかも均一厚みに被着形成されたものである
から、電流の回流が確実に誘起され且つ経時的に減衰す
ることもなく、上記磁界の遮蔽が有効になされる。また
、芯材1の周体に直交する磁界も、該芯材1の周体に密
に巻回一体とされた超電導薄膜2・・・の反磁作用によ
り遮蔽される。
Thus, when the magnetic shield having the above configuration is placed in a magnetic field, a shielding current is induced in the superconducting thin film 2 in the closed ring state by the magnetic field parallel to the axis of the core material 1, and this flux linkage remains unchanged. The principle is that the magnetic field is shielded. At this time, the low-melting point metal layer 31.31 interposed in the ring-closed joint portion 3 is a good conductor of electricity and is formed to have a uniform thickness, so that circulation of current is reliably induced and The magnetic field is effectively shielded without attenuation. Further, the magnetic field perpendicular to the circumferential body of the core material 1 is also shielded by the demagnetizing effect of the superconducting thin film 2 that is tightly wound and integrated with the circumferential body of the core material 1.

第3図は、超電導薄膜2と低融点金属層31との間に銅
による中間層32を介在させた例を示すものである。こ
の中間層32は、超電導薄膜2に真空蒸着又はスパッタ
法により形成され、超電導薄膜2と低融点金属層31と
をより強固に一体とすべく機能するもので望ましく採用
される。
FIG. 3 shows an example in which an intermediate layer 32 made of copper is interposed between the superconducting thin film 2 and the low melting point metal layer 31. This intermediate layer 32 is formed on the superconducting thin film 2 by vacuum evaporation or sputtering, and is preferably employed because it functions to more firmly integrate the superconducting thin film 2 and the low melting point metal layer 31.

〔2〕第4図は、上記同様の全屈製円筒状芯材1の周体
に、該芯材1の長さに等しい幅のシート状超電導薄膜2
を巻回したものである。該薄膜2は、第4図(ロ)に示
す如く巻始め部分の幅方向端部に接合片21.21を突
出具備し、第4図(イ)に示す如く芯材1の周体に巻回
した後既巻回薄膜2の表面にこの接合片21.21が折
り返され接合−体とされる。本実施例の場合、薄膜2の
表面の全面に前記と同様の低融点金属層が被着形成され
[2] FIG. 4 shows a sheet-like superconducting thin film 2 having a width equal to the length of the core material 1 around a fully bent cylindrical core material 1 similar to the above.
It is wound. The thin film 2 has joint pieces 21 and 21 protruding from the widthwise ends of the winding start portion as shown in FIG. 4(B), and is wound around the core material 1 as shown in FIG. 4(A). After turning, the bonded pieces 21 and 21 are folded back onto the surface of the already wound thin film 2 to form a bonded body. In the case of this embodiment, a low melting point metal layer similar to that described above is formed over the entire surface of the thin film 2.

上記折り返された接合片21.21を加熱加圧すること
により該低融点金属層同士が熱圧着され、これにより実
質的に超電導薄膜2の電気的閉環状態が得られる。また
、該超電導薄膜2の巻終り部分は、前記同様低温接着剤
や両面テープ等により既巻回薄膜2の表面に接着一体と
される。この巻終り部分の接合一体化は、薄膜2の両面
に低融点金属層が被着形成されている場合、該低融点金
属層同士の熱圧着により行なうことも可能であり、これ
によっても電気的閉環状態の接合がなし得る。
By heating and pressurizing the folded bonding pieces 21, 21, the low melting point metal layers are bonded together by thermocompression, thereby substantially achieving an electrically closed state of the superconducting thin film 2. Further, the end portion of the superconducting thin film 2 is integrally adhered to the surface of the already wound thin film 2 using a low-temperature adhesive, double-sided tape, or the like as described above. If low melting point metal layers are formed on both sides of the thin film 2, this joining and integration of the end portions of the winding can also be carried out by thermocompression bonding of the low melting point metal layers. A bond in a closed ring state can be formed.

このようにして構成された磁気シールド体は、上記〔1
〕の場合と同様の磁気遮蔽効果を奏することはその説明
で容易に理解されるところであり、従ってここではその
詳細な説明を割愛する。
The magnetic shield body configured in this way is the above-mentioned [1
] It can be easily understood from the explanation that the same magnetic shielding effect as in the case of 1. ) is obtained, and therefore a detailed explanation thereof will be omitted here.

〔3〕第5図は、上記同様の芯材1の周体にテープ状超
電導薄膜2を螺旋状に隙間なく巻回し、この螺旋状巻回
に伴う薄膜同士の重なり部分を低温用接着剤或いは両面
テープ等により接合一体とすると共に、芯材1の両端部
に低融点金属層同士の加熱圧着により閉環状とした上記
同様の超電導薄膜テープ環帯2a、2aを套嵌一体とし
たものである。この実施例に於いては、超電導薄膜テー
プ環帯2a、2aにより電気的閉環状態が形成されるか
ら、上記同様芯材1の軸心に平行な磁界はこれにより遮
蔽され、また芯材1の周体に直交する磁界は該芯材1の
周体に螺旋状に巻回されたテープ状超電導薄膜2により
遮蔽される。
[3] In FIG. 5, a tape-shaped superconducting thin film 2 is wound spirally around the core material 1 similar to the above without any gaps, and the overlapping portions of the thin films accompanying this spiral winding are coated with a low-temperature adhesive or They are joined together with double-sided tape or the like, and superconducting thin film tape rings 2a, 2a similar to those described above, which are formed into a closed ring shape by heat-pressing low melting point metal layers, are integrally fitted onto both ends of the core material 1. . In this embodiment, an electrically closed ring state is formed by the superconducting thin film tape ring bands 2a, 2a, so the magnetic field parallel to the axis of the core material 1 is shielded by this as well as the above, and the magnetic field of the core material 1 is also shielded. A magnetic field perpendicular to the circumferential body is shielded by a tape-shaped superconducting thin film 2 spirally wound around the circumferential body of the core material 1 .

〔4〕第6図は、上記超電導薄膜テープ2a、2aに代
え、超電導線材による閉環コイル状軸体2b、2bを芯
材1の両端に套嵌一体としたものである。各軸体2b、
2bの両端も電気的閉環状態が形成されるよう低融点金
属の溶融固着により接合一体とされ、これにより上記同
様鎖交磁束不変の原理が発現され、上記同様の磁気遮蔽
効果が奏せられる。その他の磁気遮蔽効果も上記と同様
であるのでその詳細な説明を割愛する。
[4] In FIG. 6, in place of the superconducting thin film tapes 2a, 2a, closed coil-shaped shaft bodies 2b, 2b made of superconducting wire are integrally fitted onto both ends of the core material 1. Each shaft body 2b,
Both ends of 2b are also integrally joined by melting and fixing of a low melting point metal so as to form an electrically closed ring state, thereby realizing the same principle of constant magnetic flux linkage as described above, and producing the same magnetic shielding effect as described above. Other magnetic shielding effects are the same as those described above, so detailed explanations thereof will be omitted.

〔5〕第7図は、一端が閉じれた金属製円筒状芯材1′
の外表面全面に超電導薄膜片2c・・・を上記同様の低
温用接着剤等により隙間なく貼着して成る磁気シールド
体を示す。この場合、芯材1の軸心に平行に負荷される
磁界は、芯材1の底部閉塞部分を透過しようとするが、
該閉塞部分には超電導薄膜片2c・・・が隙間なく貼着
されているから、この反磁効果により磁界が遮蔽される
。また、芯材1の側周面に直交状態で作用する磁界は、
同様に隙間なく貼着された超電導薄膜片2c・・・によ
り遮蔽される。本実施例の場合、超電導薄膜片2c・・
・の反磁効果のみによって磁界の遮蔽が可能とされるの
で、上記実施例の如き電気的閉環状態の接合は敢えて必
要ではない。しかし、前記実施例の如き低融点金属層同
士の熱圧着接合を併用することはもとより可能である。
[5] Figure 7 shows a metal cylindrical core member 1' with one end closed.
A magnetic shield body is shown in which superconducting thin film pieces 2c are adhered to the entire outer surface of the body with the same low-temperature adhesive as described above without any gaps. In this case, the magnetic field applied parallel to the axis of the core material 1 attempts to pass through the bottom closed portion of the core material 1;
Since the superconducting thin film pieces 2c are adhered to the closed portion without any gaps, the magnetic field is shielded by this demagnetizing effect. In addition, the magnetic field that acts perpendicularly to the side peripheral surface of the core material 1 is
Similarly, it is shielded by the superconducting thin film pieces 2c . . . which are adhered without any gaps. In the case of this embodiment, the superconducting thin film piece 2c...
Since the magnetic field can be shielded only by the diamagnetic effect of ., it is not necessary to join in an electrically closed state as in the above embodiment. However, it is of course possible to use thermocompression bonding between low melting point metal layers as in the above embodiment.

〔6〕第8図は、上記に採用される接合部分の種々の形
態を示すものである。第8図(イ)は超電導薄膜2の端
部を単に重ね合せただけであるが、同(ロ)及び(ハ)
は薄膜2の端部を所謂はぜ折或いは折畳み状に折曲して
接合する状態を示す。第8図(イ)の場合、磁界により
接合部分を剥離するような力が作用する為、接合部分の
接着強度を大とする必要がある。しかし、第8図(ロ)
の場合は超電導薄膜2の端部同士が噛み合うよう連結さ
れるので、磁界による強い剥離作用によっても充分に酎
えることが出来る。亦、第8図(イ)及び(ハ)の方法
で低融点金属層の熱圧着により閉環接合をする場合、薄
膜2の対応面に低融点金属層を別途被着形成するか、薄
膜2の両面全面に形成する必要があるが、第8図(ロ)
の場合は片面にのみ形成すれば良いことになる。第8図
(ハ)の場合、接合部両側面より挟んで固定することが
望ましい。
[6] FIG. 8 shows various forms of the joint portions employed above. Figure 8 (a) shows the ends of the superconducting thin film 2 simply overlapped, but the same (b) and (c)
2 shows a state in which the ends of the thin film 2 are bent and joined in a so-called seam fold or folded shape. In the case of FIG. 8(a), the magnetic field exerts a force that causes the bonded portion to separate, so it is necessary to increase the adhesive strength of the bonded portion. However, Figure 8 (b)
In this case, the ends of the superconducting thin film 2 are connected so as to mesh with each other, so that sufficient separation can be achieved even by the strong peeling action of the magnetic field. In addition, when performing ring-closing bonding by thermocompression bonding of a low melting point metal layer using the method shown in FIGS. It is necessary to form the entire surface on both sides, but as shown in Figure 8 (b)
In this case, it is only necessary to form it on one side. In the case of FIG. 8(c), it is desirable to secure the joint by sandwiching it from both sides.

〔7〕次に、第8図(イ)乃至(ハ)の接合形態による
磁気遮蔽効果について比較試験したのでその結果を述べ
る。
[7] Next, a comparative test was conducted on the magnetic shielding effect of the bonding forms shown in FIGS. 8(a) to 8(c), and the results will be described.

先ず、厚さ2μmのNbTi薄膜シートを直径45m+
の円板状に加工し、更に直径方向でこれを切断して前記
の各種接合方法と第8図(イ)乃至(ハ)の接合形態を
組み合わせて切断片同士を接合した。接合部の重ね代は
第8図(イ)及び(ハ)の場合10mm、第8図(ロ)
の場合5mである。亦、接着剤層及び粘着テープ層の厚
みは夫々0.1nm及び0.2mmである。この接合部
分の中央部に一定の磁界を直交状態で作用させ、接合部
を有しない上記薄膜シートの場合を100としてその磁
気遮蔽効果を算出した。その結果を第1表に示す。
First, a NbTi thin film sheet with a thickness of 2 μm was made into a sheet with a diameter of 45 m+.
This was processed into a disc shape, which was further cut in the diametrical direction, and the cut pieces were joined together by combining the various joining methods described above and the joining forms shown in FIGS. 8(a) to 8(c). The overlapping allowance at the joint is 10 mm in Figure 8 (A) and (C), Figure 8 (B)
In the case of , it is 5m. Additionally, the thicknesses of the adhesive layer and the adhesive tape layer are 0.1 nm and 0.2 mm, respectively. A constant magnetic field was applied perpendicularly to the center of the bonded portion, and the magnetic shielding effect was calculated, with the case of the thin film sheet having no bonded portion being set as 100. The results are shown in Table 1.

第1表 尚、B1−Pb、ウッドメタル、In−3n−pb及び
Inは、超電導薄膜の対応接合部に真空蒸着により厚さ
5μmで被着形成し、これらを加熱加圧により相互に熱
圧着一体とした。
Table 1: B1-Pb, wood metal, In-3n-pb, and In are deposited on the corresponding joints of the superconducting thin film to a thickness of 5 μm by vacuum evaporation, and then bonded together by heat and pressure. integrated.

第1表から、第8図(イ)の接合形態では、整合材料が
In、低温用接着剤及び両面テープの場合、若干磁気遮
蔽効果が劣るが、その他の場合は接合を有しないものと
同等であることが理解される。
From Table 1, it can be seen that in the bonding form shown in Figure 8 (a), the magnetic shielding effect is slightly inferior when the matching material is In, low-temperature adhesive, and double-sided tape, but in other cases it is equivalent to a bond without bonding. It is understood that

〔8〕次に第1図、第4図(イ)乃至第7図に示すシー
ルド体を作成しその磁気遮蔽量を測定したので、その試
験結果について述べる。
[8] Next, the shield bodies shown in FIGS. 1, 4 (a) to 7 were created and the amount of magnetic shielding was measured, and the test results will be described.

厚さ○、Q49mm、直径25.4wQ及び長さ20O
1Inで、両端開放のアルミニウム製の円筒状芯材を4
本と、同形状で一端が閉塞された芯材を1本準備した。
Thickness ○, Q49mm, diameter 25.4wQ and length 20O
4 1In aluminum cylindrical cores with open ends
A core material having the same shape as the book and having one end closed was prepared.

(a)厚さ2μm、幅301mの帯状NbTi薄膜の両
端部にB1−Pbを30mに亘って真空蒸着により厚さ
5μmで被着形成し、これを両端開放の上記円筒状芯材
の周体に第1図の如く巻回して該B1−Pb層同士を加
熱圧着すると共に、薄膜同士の重なり部分(重なり幅1
oin)を低温用接着剤にて接合一体とした。
(a) B1-Pb was deposited on both ends of a strip-shaped NbTi thin film with a thickness of 2 μm and a width of 301 m to a thickness of 5 μm by vacuum evaporation over 30 m, and this was applied to the circumference of the above-mentioned cylindrical core material with both ends open. As shown in Figure 1, the B1-Pb layers are heated and pressed together, and the overlapped portions of the thin films (overlap width 1
oin) were integrally joined using a low-temperature adhesive.

(b)厚さ2μm5幅200 +nnで、表面に厚さ5
μmのB1−Pbの真空蒸着膜を被着形成したNbTi
薄膜シートを第4図(ロ)の如く裁断加工し、これを第
4図(イ)の如く芯材の周体に巻回してその巻終り端部
を低温用接着剤で接着一体とする(幅200mm)と共
に、巻始め部の突出接合片(10X30nwn)を折返
し、これを加熱圧着により既巻同部に熱圧着した。
(b) Thickness 2μm5 width 200+nn, thickness 5mm on the surface
NbTi coated with micron B1-Pb vacuum-deposited film
Cut the thin film sheet as shown in Figure 4 (b), wrap it around the core material as shown in Figure 4 (a), and glue the end of the winding together with a low-temperature adhesive ( The protruding joint piece (10 x 30 nwn) at the beginning of the winding was folded back with a width of 200 mm), and this was thermocompression-bonded to the same part of the already-wound part.

(c)厚さ2μm、幅30mmのNbTi薄膜テープを
、第5図若しくは第6図の如く両端開放芯材の表面に螺
旋状に巻回し、その重なり部分(重なり幅10mm)を
低温用接着剤にて接合一体とした。
(c) A NbTi thin film tape with a thickness of 2 μm and a width of 30 mm is spirally wound around the surface of the core material with both ends open as shown in Figure 5 or Figure 6, and the overlapping part (overlap width of 10 mm) is wrapped with a low-temperature adhesive. It was joined as one piece.

上記N b T i薄膜テープの切断短片の両端に幅3
0ffl111に亘る厚さ5μmのB1−Pb真空蒸着
膜を被着形成し、これを芯材の両端部に巻回し加熱加圧
によるB1−Pb膜同士の熱圧着をして第5図の如く套
嵌固定した。
A width of 3 on both ends of the cut strip of the above N b Ti thin film tape.
A B1-Pb vacuum-deposited film with a thickness of 5 μm covering 0ffl111 is formed and wound around both ends of the core material, and the B1-Pb films are thermocompression bonded to each other by heating and pressurizing to form a mantle as shown in Fig. 5. Fitted and fixed.

(d)上記同様のNbN−TiN1i膜テープを芯材に
螺旋状に巻回し、その重なり部分を同様に接着固定した
。また、線径2mのNbTi線材をこの芯材の両端部に
数千回(中心磁界が環境磁界の強さ以上になるよう)巻
き付け、その端部をBi−pbにより溶着固定した。
(d) The NbN-TiN1i film tape similar to the above was wound spirally around the core material, and the overlapping portion was similarly adhesively fixed. Further, a NbTi wire with a wire diameter of 2 m was wound around both ends of this core material several thousand times (so that the central magnetic field was greater than the strength of the environmental magnetic field), and the ends were welded and fixed with Bi-PB.

(e)厚さ2pm、20×20111111の方形Nb
Tia膜片を一端閉塞の上記芯材の外面に低温用接着剤
によりその重なり幅が5I1w11以下となるよう隙間
なく貼着一体とした(第7図参照)。
(e) Rectangular Nb of 20×20111111 with a thickness of 2 pm
The Tia membrane piece was integrally attached to the outer surface of the core material with one end closed using a low-temperature adhesive so that the overlapping width was 5I1w11 or less without any gaps (see FIG. 7).

上記(a)乃至(e)のシールド体を、400ガウスの
磁界内にその細心と磁界とが平行となるよう配置し、シ
ールド体中心部の磁界の強さを測定した。尚、接合形態
はいずれも第8図(イ)を採用した。その結果、(a)
乃至(e)のシールド体の中心部の磁界の強さはいずれ
もゼロであった。
The shield bodies (a) to (e) above were placed in a magnetic field of 400 Gauss so that the magnetic field was parallel to the magnetic field, and the strength of the magnetic field at the center of the shield body was measured. In addition, the bonding form shown in FIG. 8(a) was adopted in all cases. As a result, (a)
The strength of the magnetic field at the center of the shield body in (e) was all zero.

尚、超電導薄膜による磁気遮蔽層を多層にすれば、更に
磁気遮蔽効果が増大する。亦、磁気遮蔽効果は24時間
後も何等低下せず、この様な操作を10回以上繰り返し
ても性能の劣化は認められなかった。
Incidentally, if the magnetic shielding layer made of superconducting thin film is multilayered, the magnetic shielding effect will be further increased. Furthermore, the magnetic shielding effect did not deteriorate at all even after 24 hours, and no deterioration in performance was observed even when such operations were repeated 10 times or more.

そして、上記のように磁気遮蔽効果の優れた積層膜を用
いると、より性能の優れたシールド体を形成することが
できる。更に、高磁場の遮蔽においても、多層化の暦数
を小さくすることができるため、シールド体作成が非常
に容易となる。
By using a laminated film having an excellent magnetic shielding effect as described above, it is possible to form a shield body with even better performance. Furthermore, even when shielding a high magnetic field, the number of layers required can be reduced, making it extremely easy to create a shield body.

(発明の効果) 取上の如く5本発明の超電導磁気シールド体は、超電導
薄膜の2種の磁気遮′t1機能、即ち鎖交磁束不変の原
理及び反磁性の夫々に応じた適正な接合手段を採用し、
これにより接着剤や両面テープ等の如〈従来考えられな
かった接合手段の採用が可能とされ、非蒸着による低融
点金属層同士の電気的閉環接合の場合は、磁気遮蔽が確
実且つ均一でしかも長期に亘り維持される。従って、研
究用に超電導マグネットの漏洩磁界をシールドしたり高
磁場中に遮蔽空間を形成させる場合、MRI、超電導磁
気浮上列車、超電導電磁推進船、超電導エネルギー貯蔵
、超電導発電機及びMHD発電装置等への応用に有効で
あり、その価値は極めて大である。
(Effects of the Invention) As mentioned above, the superconducting magnetic shield of the present invention has two types of magnetic shielding functions of the superconducting thin film, namely, the principle of constant flux linkage and the appropriate bonding means according to each of the diamagnetic properties. adopted,
This makes it possible to use bonding methods that were previously unimaginable, such as adhesives and double-sided tape, and in the case of electrical ring-closing bonding between low-melting point metal layers without vapor deposition, magnetic shielding is reliable and uniform. Maintained over a long period of time. Therefore, when shielding leakage magnetic fields from superconducting magnets for research purposes or creating shielded spaces in high magnetic fields, applications such as MRI, superconducting magnetic levitation trains, superconducting electromagnetic propulsion vessels, superconducting energy storage, superconducting generators, and MHD power generation devices, etc. It is effective for applications, and its value is extremely great.

【図面の簡単な説明】 第1図は本発明の請求項1に係る磁気シールド体の例を
示す斜視図、第2図は第1図の■−■線断面図、第3図
は他の変更例の第2図と同様図、第4図(イ)は同地の
変更例を(ロ)はその超電導薄膜の展開図を示し、第5
図は同請求項2に係る磁気シールド体の例を示す斜視図
、第6図は同請求項3に係る磁気シールド体の例を示す
斜視図、第7図は同請求項5に係る磁気シールド体の例
を示す斜視図、第8図は接合部の種々の態様を示す概略
説明図である。 (符号の説明) 1・・・芯材、 2・・超電導薄膜、 3・・・閉環接
合部分、 31・・・低融点金属層。 −以上−
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a perspective view showing an example of a magnetic shielding body according to claim 1 of the present invention, FIG. 2 is a sectional view taken along the line ■-■ of FIG. 1, and FIG. Figure 4 (a) is the same figure as Figure 2 of the modified example, Figure 4 (a) shows the modified example of the same location, and (b) shows the developed view of the superconducting thin film.
FIG. 6 is a perspective view showing an example of a magnetic shield according to claim 2, FIG. 6 is a perspective view showing an example of a magnetic shield according to claim 3, and FIG. 7 is a magnetic shield according to claim 5. FIG. 8 is a perspective view showing an example of the body, and FIG. 8 is a schematic explanatory view showing various aspects of the joint. (Explanation of symbols) 1...Core material, 2...Superconducting thin film, 3...Closed ring joint portion, 31...Low melting point metal layer. -And more-

Claims (1)

【特許請求の範囲】 1、両端開放の筒状芯材と、該芯材の周体に巻回された
超電導薄膜とより成り、該薄膜が上記芯材の軸線の廻り
に関して電気的に閉環状態とされ、少なくともこの閉環
接合部分が、蒸着により該薄膜に被着形成された低融点
金属層同士の熱圧着をして接合一体化されて成ることを
特徴とする超電導磁気シールド体。 2、両端開放の筒状芯材と、該芯材の周体に巻回された
超電導薄膜とより成り、蒸着により被着形成された低融
点金属層同士の熱圧着を介して閉環された超電導薄膜テ
ープ環帯が上記芯材の両端部に套嵌されて成る超電導磁
気シールド体。 3、請求項2記載の超電導薄膜テープ環帯に代え、超電
導線材の閉環コイル状輪体が芯材の両端部に套嵌されて
成る超電導磁気シールド体。 4、上記閉環接合部以外の超電導薄膜同士の接合が、低
温用接着剤、粘着剤及び接着若しくは粘着テープのいず
れかによりなされた請求項1、2又は3記載の超電導磁
気シールド体。 5、一端が閉じられた筒状芯材の内及び/若しくは外表
面に超電導薄膜を隙間なく接着一体として成る超電導磁
気シールド体。 6、上記超電導薄膜の接着一体化が、蒸着により被着形
成された低融点金属層同士の熱圧着を介してなされた請
求項5記載の超電導磁気シールド体。 7、上記超電導薄膜の接着一体化が、低温用接着剤、粘
着剤及び接着若しくは粘着テープのいずれかによりなさ
れた請求項5記載の超電導磁気シールド体。 8、上記芯材が、アルミニウム、銅及びステンレスより
選ばれたいずれかの金属より成る請求項1、2、3又は
5記載の超電導磁気シールド体。
[Claims] 1. Consisting of a cylindrical core member with both ends open and a superconducting thin film wound around the core member, the thin film being electrically closed around the axis of the core member. A superconducting magnetic shield body characterized in that at least this ring-closed joint portion is formed by thermocompression bonding of low-melting point metal layers formed on the thin film by vapor deposition and joined together. 2. A superconductor consisting of a cylindrical core material with both ends open and a superconducting thin film wound around the core material, which is ring-closed through thermocompression bonding of low melting point metal layers formed by vapor deposition. A superconducting magnetic shielding body comprising thin film tape rings fitted on both ends of the core material. 3. A superconducting magnetic shielding body comprising a closed coiled ring of a superconducting wire material instead of the superconducting thin film tape ring according to claim 2, which is fitted onto both ends of a core material. 4. The superconducting magnetic shielding body according to claim 1, 2 or 3, wherein the superconducting thin films other than the ring-closed joint are bonded to each other by any one of a low-temperature adhesive, an adhesive, an adhesive, or an adhesive tape. 5. A superconducting magnetic shield made by integrally bonding a superconducting thin film to the inner and/or outer surface of a cylindrical core member with one end closed. 6. The superconducting magnetic shield according to claim 5, wherein the superconducting thin film is bonded and integrated through thermocompression bonding of low melting point metal layers formed by vapor deposition. 7. The superconducting magnetic shield according to claim 5, wherein the superconducting thin film is bonded and integrated using a low-temperature adhesive, an adhesive, an adhesive, or an adhesive tape. 8. The superconducting magnetic shield according to claim 1, 2, 3, or 5, wherein the core material is made of any metal selected from aluminum, copper, and stainless steel.
JP63132448A 1988-05-30 1988-05-30 Superconducting magnetic shield Expired - Fee Related JPH0779200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132448A JPH0779200B2 (en) 1988-05-30 1988-05-30 Superconducting magnetic shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132448A JPH0779200B2 (en) 1988-05-30 1988-05-30 Superconducting magnetic shield

Publications (2)

Publication Number Publication Date
JPH01302799A true JPH01302799A (en) 1989-12-06
JPH0779200B2 JPH0779200B2 (en) 1995-08-23

Family

ID=15081598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132448A Expired - Fee Related JPH0779200B2 (en) 1988-05-30 1988-05-30 Superconducting magnetic shield

Country Status (1)

Country Link
JP (1) JPH0779200B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485995A (en) * 1990-07-27 1992-03-18 Nissei Plastics Ind Co Method and apparatus for manufacturing electromagnetic shielding material
JP2006336289A (en) * 2005-06-01 2006-12-14 Tokimec Inc Joint structure of electromagnetic wave shielding member
JP2007273606A (en) * 2006-03-30 2007-10-18 Nippon Chemicon Corp Electronic component packaged with laminating film
JP2009055051A (en) * 2008-10-06 2009-03-12 Nippon Steel Corp Superconducting member, and superconducting magnetic levitation device
JP2014157940A (en) * 2013-02-15 2014-08-28 Sumitomo Heavy Ind Ltd Superconductive magnetic shield equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640289A (en) * 1979-09-11 1981-04-16 Shinku Yakin Kk Superconductive shielding assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640289A (en) * 1979-09-11 1981-04-16 Shinku Yakin Kk Superconductive shielding assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485995A (en) * 1990-07-27 1992-03-18 Nissei Plastics Ind Co Method and apparatus for manufacturing electromagnetic shielding material
JP2006336289A (en) * 2005-06-01 2006-12-14 Tokimec Inc Joint structure of electromagnetic wave shielding member
JP4585918B2 (en) * 2005-06-01 2010-11-24 東京計器株式会社 Electromagnetic shielding member joining structure
JP2007273606A (en) * 2006-03-30 2007-10-18 Nippon Chemicon Corp Electronic component packaged with laminating film
JP2009055051A (en) * 2008-10-06 2009-03-12 Nippon Steel Corp Superconducting member, and superconducting magnetic levitation device
JP2014157940A (en) * 2013-02-15 2014-08-28 Sumitomo Heavy Ind Ltd Superconductive magnetic shield equipment

Also Published As

Publication number Publication date
JPH0779200B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
KR910003292B1 (en) Planar inductor
JP4845040B2 (en) Thin film superconducting wire connection method and connection structure thereof
JP5123604B2 (en) Superconducting coil
JP6853267B2 (en) 2nd generation superconducting filaments and cables
JP6490851B2 (en) Superconducting coil and superconducting coil device
JP6040515B2 (en) Superconducting coil manufacturing method
JPH01302799A (en) Superconducting magnetic shielding body
JP3199888B2 (en) Superconducting magnetic shield formed from belt-shaped superconducting sheet
JPH0239105B2 (en)
JPH10173385A (en) Member and method for electromagnetically shielding electric wires, or the like
JPH0983026A (en) Magnetic sensor
JPH04342179A (en) Superconducting magnetic shield
JP3328350B2 (en) Superconducting magnetic shield to prevent external magnetic leakage
US6653923B2 (en) Inductor manufacture and method
JPH08107012A (en) Superconductive coil
US4236297A (en) Method of manufacturing a superconductor
JP2020025014A (en) High-temperature superconducting coil and superconducting magnet device
JP2011233294A (en) Insulation coating superconducting wire and method of manufacturing the same
JP7471534B1 (en) High-temperature superconducting wire and coil
JP7404187B2 (en) Superconducting coils and superconducting coil devices
JP4438930B2 (en) Film capacitor and manufacturing method thereof
JPH04188706A (en) Superconducting coil
JPH08330126A (en) Superconducting magnet device
JP2014165430A (en) Manufacturing method of superconducting coil
JPH10261530A (en) Electromagnetic shielding coil and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees