JPH01301684A - Production of organometallic compound - Google Patents

Production of organometallic compound

Info

Publication number
JPH01301684A
JPH01301684A JP63130180A JP13018088A JPH01301684A JP H01301684 A JPH01301684 A JP H01301684A JP 63130180 A JP63130180 A JP 63130180A JP 13018088 A JP13018088 A JP 13018088A JP H01301684 A JPH01301684 A JP H01301684A
Authority
JP
Japan
Prior art keywords
gallium
indium
compound
magnesium alloy
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63130180A
Other languages
Japanese (ja)
Inventor
Toru Imori
徹 伊森
Koichi Nakamura
中村 紘一
Takayuki Ninomiya
二宮 貴之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP63130180A priority Critical patent/JPH01301684A/en
Publication of JPH01301684A publication Critical patent/JPH01301684A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title compound useful as a raw material for compound semiconductors in electronic industry, raw material for organic syntheses, etc., by directly blending a gallium-magnesium alloy, etc., with an alkyl halide and reacting the mixture with a specific amount of an ether compound. CONSTITUTION:A gallium-magnesium alloy or indium-magnesium alloy is directly mixed with an alkyl halide (e.g. monohalogen compound of lower alkyl such as ethyl, propyl or butyl and halogen such as bromine, chlorine or iodine) in the ratio of preferably 1mol of the former of the alloy (calculated as Ga or In) and 3mol of the latter. The mixture is reacted with <=0.5 equivalent, preferably 0.01-0.5 equivalent based on 1 equivalent magnesium of ether compound (preferably diethyl ether) at 0-150 deg.C for 10 minutes-2 hours to give the aimed compound.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、アルキルガリウム又はインジウム等の有機金
属化合物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing organometallic compounds such as alkyl gallium or indium.

高純度の上記有機金属化合物は、電子工業における化合
物半導体の原料、有機合成での出発原料や触媒等に用い
られている。
The above-mentioned highly pure organometallic compounds are used as raw materials for compound semiconductors in the electronics industry, starting materials and catalysts in organic synthesis, and the like.

[従来の技術] アルキルガリウム又はインジウム等の有機金属化合物は
、 ■金属ガリウム又はインジウムとアルキル水銀との反応
、 ■ハロゲン化ガリウム又はインジウムとアルキル亜鉛と
の反応、 ■ハロゲン化ガリウム又はインジウt1とアルキルアル
ミニウムとの反応、 ■ハロゲン化ガリウム又はインジウムとグリニヤール試
薬との反応、 ■ガリウム又はインジウム−マグネシウム合金とハロゲ
ン化アルキルとの反応、 等の方法で合成されている。
[Prior Art] Organometallic compounds such as alkyl gallium or indium are produced by: ■ Reaction of metal gallium or indium with alkyl mercury; ■ Reaction of gallium halide or indium with alkyl zinc; ■ Reaction of gallium halide or indium t1 with alkyl mercury. It is synthesized by the following methods: reaction with aluminum; (1) reaction of gallium or indium halide with a Grignard reagent; (2) reaction of gallium or indium-magnesium alloy with alkyl halide.

このうち、グリニヤール反応による方法(■、■)は、
グリニヤール試薬或いはガリウム又はインジウム−マグ
ネシウム合金の細片をエーテルに浸し、これにハロゲン
化アルキルのエーテル溶液を攪拌しながら滴下し、次い
で加熱して反応させるものであった(例えば、新実験化
学講座、1又 p324.1976 丸首発行)。
Among these, the Grignard reaction method (■, ■) is
A Grignard reagent or a strip of gallium or indium-magnesium alloy was soaked in ether, and an ether solution of an alkyl halide was added dropwise to it with stirring, followed by heating and reaction (for example, in New Experimental Chemistry Course, 1mata p324.1976 round neck publication).

しかし、反応の際に、大量のエーテル系溶媒を用いると
、合成された有機金属化合物に溶媒であるエーテル化合
物が配位してエーテラートを形成し、単なる蒸留操作で
は、これを解離させることは困難であった。
However, when a large amount of ether solvent is used during the reaction, the ether compound (solvent) coordinates with the synthesized organometallic compound to form an etherate, which is difficult to dissociate by simple distillation. Met.

特に、最近、これらの有機金属化合物は1M○CV D
 (Metalorganjc Chemjcal V
aper Deposition)をはじめとした化合
物半導体の原料或いはドーパントとして用いられること
が多くなってきた。しかし、上記エーテル化合物が配位
したエーテラートを含む有機金属化合物をこのような用
途に用いると、結晶成長過程に酸素を同伴することにな
り、製造された半導体の電気特性を低下させる原因とな
っていた。
In particular, these organometallic compounds have recently been
(Metalorganjc Chemjcal V
It has been increasingly used as a raw material or dopant for compound semiconductors, including aper deposition. However, when an organometallic compound containing an etherate coordinated with the above-mentioned ether compound is used for such purposes, oxygen is entrained in the crystal growth process, which causes a decrease in the electrical properties of the manufactured semiconductor. Ta.

このためこの種の用途に用いられる有機金属化合物は、
もっばらエーテル系溶媒を用いないで済む、上記グリニ
ヤール反応によらない方法(■、■、■)が採用されて
いる。
For this reason, organometallic compounds used for this type of application are
Methods that do not require the use of ether solvents and do not rely on the Grignard reaction (■, ■, ■) have been adopted.

[発明が解決しようとする問題点] しかしながら、上記方法は、反応速度が遅く、また収率
が悪く、またアルキル水銀や亜鉛やアルミニウムが不純
物として含まれ、この除去のため複雑な操作を要すると
いう問題点がある。
[Problems to be solved by the invention] However, the above method has a slow reaction rate, poor yield, and contains alkylmercury, zinc, and aluminum as impurities, and requires complicated operations to remove them. There is a problem.

本発明者は、かかる問題を解決すべく鋭意研究を進めた
結果、ガリウム−マグネシウム合金又はインジウム−マ
グネシウム合金とハロゲン化アルキルとを反応させてア
ルキルガリウム又はアルキルインジウムを合成する反応
においては、先ず、ガリウム又はインジウム−マグネシ
ウム合金中のマグネシウムがエーテル溶媒の介在下にハ
ロゲン化アルキルと反応してグリニヤール試薬となると
考えられるが、このエーテル溶媒は触媒的に作用し、過
剰のエーテル溶媒は必要でないことを見い出した。
As a result of intensive research to solve this problem, the inventors of the present invention found that in the reaction of reacting a gallium-magnesium alloy or an indium-magnesium alloy with an alkyl halide to synthesize alkyl gallium or alkylindium, first, It is believed that magnesium in gallium or indium-magnesium alloys reacts with alkyl halides in the presence of an ether solvent to form the Grignard reagent, but this ether solvent acts catalytically and no excess ether solvent is necessary. I found it.

本発明は、かかる知見に基づきなされたもので、本発明
の目的は、少量のエーテル化合物を溶媒として使用し、
効率良く、また高い収率で、エーテラートの含有量の極
めて少ない高純度のアルキルガリウム又はアリキルイン
ジウムを製造する方法を提供することにある。
The present invention was made based on this knowledge, and an object of the present invention is to use a small amount of an ether compound as a solvent,
The object of the present invention is to provide a method for producing highly purified alkyl gallium or alkyl indium with extremely low etherate content efficiently and in high yield.

[問題点を解決するための手段] 本発明は、ガリウム−マグネシウム合金又はインジウム
−マグネシウム合金とハロゲン化アルキルとを反応させ
てアルキルガリウム又はアルキルインジウムを製造する
方法において、前記ガリウム−マグネシウム合金又はイ
ンジウム−マグネシウム合金とハロゲン化アルキルとを
直接混合し、当該混合物中にマグネシウム1当量に対し
、エーテル化合物を0.5当量以下添加して反応させる
ことからなるものである。
[Means for Solving the Problems] The present invention provides a method for producing alkylgallium or alkylindium by reacting a gallium-magnesium alloy or an indium-magnesium alloy with an alkyl halide, in which the gallium-magnesium alloy or indium - A magnesium alloy and an alkyl halide are directly mixed, and an ether compound is added in an amount of 0.5 equivalent or less per equivalent of magnesium to the mixture and reacted.

上記ガリウム又はインジウム−マグネシウム合金は、ガ
リウム又はインジウム/マグネシウムの原子比が2〜1
0の割合の合金を用いることが、これらの金属とハロゲ
ン化アルキルとの反応を効率良く進める上で好ましい。
The gallium or indium-magnesium alloy has an atomic ratio of gallium or indium/magnesium of 2 to 1.
It is preferable to use an alloy with a ratio of 0 in order to efficiently proceed with the reaction between these metals and the alkyl halide.

この合金は、純度の高いガリウム又はインジウムとマグ
ネシウムとを溶融混合することによりえられる。こメミ
場合のガリウム又はインジウムとしては、ス−4= リーナインの市販のこれらの金属を真空蒸発精製及び真
空蒸留精製を行ったシックスナインの純度を有するのも
のを用いると好ましい。またマグネシウムとしては、市
販されているスリーナイン以上のもの、またはそれらを
さらに蒸留等の操作で不純物濃度を低減させたもの髪用
いることができる。
This alloy is obtained by melt-mixing highly pure gallium or indium and magnesium. As the gallium or indium in this case, it is preferable to use a commercially available metal having a purity of six nines, which is obtained by vacuum evaporation purification and vacuum distillation purification of these commercially available metals. As the magnesium, commercially available three-nine or higher magnesium, or those obtained by further reducing the impurity concentration by distillation or the like, can be used.

また、本発明で用いられるハロゲン化アルキルとしては
、エチル、プロピル、イソプロピル、ブチル、イソブチ
ル等の低級アルキル基と臭素。
Furthermore, the halogenated alkyl groups used in the present invention include lower alkyl groups such as ethyl, propyl, isopropyl, butyl, and isobutyl, and bromine.

塩素、沃素等のハロゲンとのモノハロゲン化合物を例示
しうる。
Examples include monohalogen compounds with halogens such as chlorine and iodine.

これらの合金とハロゲン化アルキルの量は、量論比、す
なわちハロゲン化アルキル3当量に対し合金はガリウム
又はインジウムとしてコーモルとするのが良いが、この
量は、この3:1の比を中心に、1:3〜10:1の範
囲で適宜変更しても、特に、支障はない。
The amounts of these alloys and alkyl halides are preferably in a stoichiometric ratio, that is, the alloy is comol as gallium or indium for 3 equivalents of alkyl halides. , 1:3 to 10:1 without any particular problem.

本発明においては、先ず反応容器に上記合金を投入し、
次いで上記ハロゲン化アルキルを入れ、攪拌加熱しなが
らエーテル化合物を添加する。この添加は、滴下方式が
好ましい。
In the present invention, first, the above alloy is charged into a reaction vessel,
Next, the above alkyl halide is added, and the ether compound is added while stirring and heating. This addition is preferably done by dropping.

また、添加するエーテル化合物の量は、上記合金中のマ
グネシウムの少なくとも0.5当量以下とする。より好
ましくは、0.01〜0.5当量の範囲で適宜選定する
と良い。
Further, the amount of the ether compound added is at least 0.5 equivalent of magnesium in the above alloy. More preferably, the amount is appropriately selected within the range of 0.01 to 0.5 equivalents.

反応温度は、0−150℃とするのが好ましく、特には
、ジエチルエーテルを用いる場合、その還流下に行なう
と良い。
The reaction temperature is preferably 0 to 150°C, and particularly when diethyl ether is used, it is preferably carried out under reflux.

エーテル化合物としては、ジエチルエーテルが好ましい
が、ジイソプロピルエーテル、ジローブチルエーテル、
アニソール、フエネトール等のエーテルを用いることも
できる。
As the ether compound, diethyl ether is preferred, but diisopropyl ether, dibutyl ether,
Ethers such as anisole and phenethole can also be used.

反応は、常圧下、必要ならば加圧下或いは減圧下で、1
0分〜2時間行われる。
The reaction is carried out under normal pressure, if necessary under increased pressure or under reduced pressure, for 1 hour.
It lasts from 0 minutes to 2 hours.

反応終了後に、蒸留により、アルキルガリウム又はイン
ジウムを留出させて回収するが、この化合物は分解温度
が比較的低いため、真空蒸留とすることが好ましい。こ
の蒸留条件は、アルキル基の種類、すなわち、化合物の
沸点と分解温度を勘案して適宜選定される。この蒸留に
おいて、高純度のアルキルガリウム又はインジウムを得
ることができる。
After the reaction is completed, the alkyl gallium or indium is distilled out and recovered. Since this compound has a relatively low decomposition temperature, vacuum distillation is preferably used. The distillation conditions are appropriately selected in consideration of the type of alkyl group, that is, the boiling point and decomposition temperature of the compound. In this distillation, highly pure alkyl gallium or indium can be obtained.

[実施例] 実施例し マグネシウム/ガリウムの原子比が5.8のガリウム−
マグネシウム合金の切り粉50gをパイレックス製フラ
スコに入れ、これに臭化エチルを300m1加え、攪拌
しながら、ジエチルエーテル5mlを1時間かけて滴下
した。滴下終了後、引き続いて90℃の温度で2時間加
熱、攪拌した。この結果、灰色のスラッジ状の反応生成
物が得られた。次いで、フラスコに蒸留装置を取付け、
50mmHgで減圧蒸留し、60〜70°Cの留分を2
4g得た。この留分をトルエンで希釈し、エタノール及
び水を加えて蒸発乾固し、塩酸水溶液を加えて誘導結合
プラズマ発光法によりガリウム含有率を測定した。この
結果、ガリウム含有率は、41−.6%であり、ジエチ
ルエーテルは、6.3%含まれていると推算された。
[Example] Example: Gallium with a magnesium/gallium atomic ratio of 5.8
50 g of magnesium alloy chips were placed in a Pyrex flask, 300 ml of ethyl bromide was added thereto, and 5 ml of diethyl ether was added dropwise over 1 hour while stirring. After the dropwise addition was completed, the mixture was heated and stirred at a temperature of 90° C. for 2 hours. As a result, a gray sludge-like reaction product was obtained. Next, attach a distillation device to the flask,
Distilled under reduced pressure at 50 mmHg, and distilled the fraction at 60 to 70°C into 2
I got 4g. This fraction was diluted with toluene, ethanol and water were added, evaporated to dryness, an aqueous hydrochloric acid solution was added, and the gallium content was measured by inductively coupled plasma emission method. As a result, the gallium content was 41-. It was estimated that 6.3% of diethyl ether was contained.

ル1口」1 実施例1で用いた合金と同し合金50.0 gとジエチ
ルエーテル300m1とをパイレックス製フラスコに入
れ、攪拌しながら、これに臭化エチル300m]を1時
間かけて滴下し、他は、実施例]と同様の操作を行なっ
た。この結果、ガリウム含有率は、25.9%であり、
ジエチルエーテルは、41.7%含まれていると推算さ
れた。
Put 50.0 g of the same alloy used in Example 1 and 300 ml of diethyl ether into a Pyrex flask, and while stirring, drop 300 ml of ethyl bromide over 1 hour. , and other operations were the same as those in Example]. As a result, the gallium content was 25.9%,
It was estimated that 41.7% of diethyl ether was contained.

失胤鮮主 マグネシウム/インジウムの原子比が2.9のインジウ
ム−マグネシウム合金20.0gをパイレックス製フラ
スコに入れ、これに臭化エチルをiooml加え、攪拌
しながら、ジエチルエーテル7mlを30分間かけて滴
下し、引き続き2時間反応させた。次に、20Torr
で減圧蒸留し、95〜110℃の留分を22g採取した
。この留分を、実施例1と同様の方法により分析した結
果、インジウムの含有率は、50.2%で、ジエチルエ
ーテルは11.7%含まれていると推算された。
Put 20.0 g of an indium-magnesium alloy with a magnesium/indium atomic ratio of 2.9 into a Pyrex flask, add ioml of ethyl bromide, and add 7 ml of diethyl ether over 30 minutes while stirring. This was added dropwise and the reaction was continued for 2 hours. Next, 20 Torr
The mixture was distilled under reduced pressure, and 22 g of a fraction at a temperature of 95 to 110°C was collected. As a result of analyzing this fraction by the same method as in Example 1, it was estimated that the indium content was 50.2% and the diethyl ether content was 11.7%.

比較例2 実施例2で用いた合金と同じ合金20.0gをジエチル
エーテル150m1とをパイレックス製反応装置に入れ
、攪拌しながら、これに臭化エチルを1時間かけて滴下
し、引き続いて1−時間反応を行わせた。次いで、実施
例2と同様の方法により、減圧蒸留して、95〜110
℃の留分を26.0g採取した。この留分を、実施例]
と同様の方法により分析した結果、インジウムの含有率
は、43.0%であり、ジエチルエーテルは、24.3
%含まれていると推算された。
Comparative Example 2 20.0 g of the same alloy as used in Example 2 and 150 ml of diethyl ether were placed in a Pyrex reactor, and while stirring, ethyl bromide was added dropwise to this over 1 hour. The reaction was allowed to take place for a period of time. Next, vacuum distillation was carried out in the same manner as in Example 2 to give 95 to 110
26.0g of the fraction at ℃ was collected. This fraction was used as Example]
As a result of analysis using the same method as above, the content of indium was 43.0%, and the content of diethyl ether was 24.3%.
It is estimated that it contains %.

[発明の効果コ 本発明は、ガリウム又はインジウム−マグネシウム合金
とハロゲン化アルキルとを直接混合し、<W該混合物中
にマグネシウム1重量部に対し、び。
[Effects of the Invention] The present invention involves directly mixing gallium or indium-magnesium alloy and an alkyl halide, and adding <W to 1 part by weight of magnesium in the mixture.

C左−チル化合物を0.5重量部以下添加して反応させ
るようにしたため、効率良く、高収率で、しかもエーテ
ラートの含有量の極めて少ない高純度のアルキルガリウ
ム又はアルキルインジウムを製造できるという格別の効
果を奏する。
Since the reaction is carried out by adding 0.5 parts by weight or less of the C left-thyl compound, it is possible to produce highly pure alkyl gallium or alkylindium efficiently, with high yield, and with extremely low etherate content. It has the effect of

Claims (1)

【特許請求の範囲】[Claims] ガリウム−マグネシウム合金又はインジウム−マグネシ
ウム合金とハロゲン化アルキルとを反応させてアルキル
ガリウム又はアルキルインジウムを製造する方法におい
て、前記ガリウム−マグネシウム合金又はインジウム−
マグネシウム合金とハロゲン化アルキルとを直接混合し
、当該混合物中にマグネシウム1当量に対し、エーテル
化合物を0.5当量以下添加して反応させることを特徴
とする有機金属化合物の製造方法。
In a method for producing alkylgallium or alkylindium by reacting a gallium-magnesium alloy or an indium-magnesium alloy with an alkyl halide, the gallium-magnesium alloy or indium-
A method for producing an organometallic compound, which comprises directly mixing a magnesium alloy and an alkyl halide, and adding 0.5 equivalent or less of an ether compound per equivalent of magnesium to the mixture for reaction.
JP63130180A 1988-05-30 1988-05-30 Production of organometallic compound Pending JPH01301684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130180A JPH01301684A (en) 1988-05-30 1988-05-30 Production of organometallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130180A JPH01301684A (en) 1988-05-30 1988-05-30 Production of organometallic compound

Publications (1)

Publication Number Publication Date
JPH01301684A true JPH01301684A (en) 1989-12-05

Family

ID=15027969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130180A Pending JPH01301684A (en) 1988-05-30 1988-05-30 Production of organometallic compound

Country Status (1)

Country Link
JP (1) JPH01301684A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043462A (en) * 1989-04-28 1991-08-27 Messer Greisheim Process for the production of gallium-alkyl compounds
US5248800A (en) * 1991-11-19 1993-09-28 Shell Research Limited Process for the preparation of trialkyl gallium compounds
EP1705719A1 (en) * 2005-03-23 2006-09-27 Nichia Corporation Methods for producing trialkyl gallium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043462A (en) * 1989-04-28 1991-08-27 Messer Greisheim Process for the production of gallium-alkyl compounds
US5248800A (en) * 1991-11-19 1993-09-28 Shell Research Limited Process for the preparation of trialkyl gallium compounds
EP1705719A1 (en) * 2005-03-23 2006-09-27 Nichia Corporation Methods for producing trialkyl gallium
EP1755175A1 (en) * 2005-03-23 2007-02-21 Nichia Corporation Methods for producing trialkyl gallium
EP1903618A1 (en) 2005-03-23 2008-03-26 Nichia Corporation Method for producing trialkyl gallium
US7667063B2 (en) 2005-03-23 2010-02-23 Nichia Corporation Method for producing trialkyl gallium
US8278470B2 (en) 2005-03-23 2012-10-02 Nichia Corporation Method for producing trialkyl gallium

Similar Documents

Publication Publication Date Title
US4599150A (en) Preparation of adducts
JP3334881B2 (en) Method for producing trialkyl group 3a metal compound
JPH01301684A (en) Production of organometallic compound
US5358670A (en) Process for preparing grignard reagents in diethylene glycol dibutyl ether
JPH04273884A (en) Preparation of trimethylaluminum
JP4073146B2 (en) Method for purifying gallium alkoxide
US4045494A (en) Method for preparing triogranophosphines
US5380895A (en) Method for the synthesis of metal alkyls and metal aryls
JPH01100178A (en) Method for purifying trialkylindium
JP2008184419A (en) High-purity trialkylindium and its production method
JP2864985B2 (en) Method for producing tri (secondary alkyl) silane compound
JPH03173846A (en) Preparation of chlorocarboxylic acid chloride
Drożdżynski Preparation of uranium trichloride by thermal vacuum decomposition of ammonium tetrachlorouranate (III) tetrahydrate
JP3732311B2 (en) Method for producing organic indium compound
JP2551097B2 (en) Method for dehydrating metal halides
JP3177881B2 (en) Method for producing organic copper complex
JPH02167290A (en) Production of trimethylindium
JPS6232188B2 (en)
JP3661825B2 (en) Method for producing organic indium compound
JP3484561B2 (en) Method for producing 4-trimethylsiloxy-3-penten-2-one
JPH01249736A (en) Production of alcohol
JP3909781B2 (en) Method for producing organic indium compound
JP3556275B2 (en) Purification method of t-butyl cyanoacetate
JPH0678346B2 (en) Method for preparing alkylhalodisilane
US6720456B2 (en) Process for the preparation of 2,3-pentanedione