JPH01301506A - Production of hydrogenated amorphous carbon thin film - Google Patents

Production of hydrogenated amorphous carbon thin film

Info

Publication number
JPH01301506A
JPH01301506A JP63133206A JP13320688A JPH01301506A JP H01301506 A JPH01301506 A JP H01301506A JP 63133206 A JP63133206 A JP 63133206A JP 13320688 A JP13320688 A JP 13320688A JP H01301506 A JPH01301506 A JP H01301506A
Authority
JP
Japan
Prior art keywords
gas
film
film thickness
hydrocarbon
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63133206A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawakami
和彦 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63133206A priority Critical patent/JPH01301506A/en
Publication of JPH01301506A publication Critical patent/JPH01301506A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title film with characteristics for thick film leading to facilitating device design, by introducing, in a specific mode, a mixed gas comprising hydrocarbon gas and hydrogen gas into a vacuum vessel followed by plasma chemical vapor deposition. CONSTITUTION:The relationship between film thickness and thin film characteristics is, in advance, studied for hydrogenated amorphous carbon thin film produced by plasma chemical vapor deposition using a mixed gas comprising one kind of hydrocarbon gas and hydrogen gas, thereby determining the critical film thickness with thin film characteristics invariant irrespective of film thickness; at the same time, the time T0 necessary for film thickness to attain said critical value from the beginning of film formation. Thence, a mixed gas comprising hydrogen gas and a mixed hydrocarbon gas mad up of said one kind of hydrocarbon and a second hydrocarbon gas higher in decomposition efficiency than said hydrocarbon is introduced into a vacuum vessel to initiate film formation. Thence, while fixing the volume ratio of the hydrocarbon gas to the hydrogen gas, the introduction amount of said second hydrocarbon is reduced so as to be zero after a lapse of or near the time T0, thereby the objective thin film can be obtained by plasma chemical vapor deposition.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、水素化アモルファス炭素薄膜の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for producing hydrogenated amorphous carbon thin films.

B9発明の概要 本発明は、炭化水素ガスと水素ガスとの混合ガスを真空
容器内に導入して、プラズマ化学的蒸着法により水素化
アモルファス炭素薄膜を製造する方法において、 例えばメタンガスを用いて、製造開始時から、膜厚の大
きさにより例えば抵抗率が変化しない臨界膜厚が得られ
るまでの時間T。を予め求めておき、メタンガスよりも
分解効率の高い例えばエチレンガスをメタンガスと混合
して、その混合ガスを製膜開始時に導入し、その後エチ
レンガスの導入量を時間T。またはその付近にて零にな
るようにコントロールすることによって、 膜厚が小さくてら、大きな膜厚の薄膜特性を得ることが
でき、これによりデバイス設計を容易にしたものである
B9 Summary of the Invention The present invention provides a method for producing a hydrogenated amorphous carbon thin film by a plasma chemical vapor deposition method by introducing a mixed gas of hydrocarbon gas and hydrogen gas into a vacuum container, using, for example, methane gas. The time T required from the start of production until a critical film thickness is obtained at which the resistivity does not change depending on the film thickness. is determined in advance, for example, ethylene gas, which has a higher decomposition efficiency than methane gas, is mixed with methane gas, the mixed gas is introduced at the start of film formation, and then the amount of ethylene gas introduced is determined by the time T. By controlling the film so that it becomes zero at or around that point, it is possible to obtain thin film characteristics with a large film thickness even if the film thickness is small, thereby facilitating device design.

C1従来の技術 ダイヤモンド状炭素薄膜もしくは水素化アモルファス炭
素薄膜の製造法としては、イオンビーム法、スパッタ法
、CVD法(化学的蒸着法)などが知られている。
C1 Prior Art Known methods for producing diamond-like carbon thin films or hydrogenated amorphous carbon thin films include ion beam method, sputtering method, and CVD method (chemical vapor deposition method).

イオンビーム法は基板にイオンビームを照射するため、
界面に構造欠陥が生じやすく、また有機材料や半導体な
どイオンビームに侵されやすい材質に対しては膜を形成
しにくいという欠点がある。
The ion beam method irradiates the substrate with an ion beam, so
It has the disadvantage that structural defects tend to occur at the interface, and it is difficult to form a film on materials that are easily attacked by ion beams, such as organic materials and semiconductors.

スパッタ法は、スパッタガス種等の製膜因子の変化によ
り各種の特性を引き出すことができて、イオンダメージ
、構造欠陥の少ない膜を作製出来るが、CVD法に較べ
て製膜速度が遅く、水素ガス中のスパッタでは水素が比
較的過剰に入りやすいという欠点が生じやすい。
The sputtering method can bring out various properties by changing film-forming factors such as the sputtering gas type, and can produce films with less ion damage and structural defects, but the film-forming speed is slower than the CVD method, and hydrogen Sputtering in gas tends to have the disadvantage that hydrogen tends to enter in a relatively excessive amount.

CVD法には、熱、光、プラズマCVD法等があり、水
素化アモルファス炭素薄膜は主にプラズマCVD法によ
り作製されている。
CVD methods include heat, light, and plasma CVD methods, and hydrogenated amorphous carbon thin films are mainly produced by plasma CVD methods.

D6発明が解決しようとする課題 ところで最近高性能デバイス作製のために他のアモルフ
ァス物質(アモルファスSi、アモルファスSiC等)
において超格子など原子層単位の極めて膜厚の小さい薄
膜について特性を制御する必要性が出て来た。プラズマ
CVD法は、製膜速度が速く工業生産向きであり、製膜
因子数も多いため、特性も他の製膜法に比較して多様な
ものを作製しやすい長所があるが、アモルファスは研究
の歴史も浅いため、プラズマ状態記述の物性値に対して
制御可能なパラメータが少ないこと及び製膜機構が明確
になっていないことから、プラズマ状態の変動による膜
特性の膜厚依存性等が生じ、このため均質でかつ目的特
性の膜を作製することが困難であり、l 00 nm以
下の膜厚の薄膜を設計する場合、設計通りのデバイスを
作製出来ないという問題点があった。アモルファスSt
、SiC等に見られたこれらの問題点がプラズマCVD
法で作製した水素化アモルファス炭素薄膜にも生じてい
ることが判明し、例えば第7図に示すように光吸収測定
においても同一の作製条件でありなから膜厚により図の
ような違いが見られる。このようなことからデバイス作
製上、特に膜厚が50nm以下の薄膜の製作において支
障をきたしている。
D6 Problems to be solved by the invention Recently, other amorphous materials (amorphous Si, amorphous SiC, etc.) have been used for the production of high-performance devices.
In recent years, it has become necessary to control the properties of thin films such as superlattices, which have extremely small thicknesses on the order of atomic layers. The plasma CVD method has a fast film forming speed and is suitable for industrial production, and has a large number of film forming factors, so it has the advantage of being able to easily produce products with a variety of properties compared to other film forming methods. Since the history of plasma processing is short, there are few parameters that can be controlled with respect to the physical property values that describe the plasma state, and the film forming mechanism is not clear, so film properties may depend on film thickness due to fluctuations in plasma state. Therefore, it is difficult to produce a film that is homogeneous and has the desired characteristics, and when designing a thin film with a thickness of 1 00 nm or less, there is a problem that a designed device cannot be produced. Amorphous St
, SiC, etc., these problems have been solved by plasma CVD.
It has been found that this phenomenon also occurs in hydrogenated amorphous carbon thin films prepared by the method, and for example, as shown in Figure 7, even in optical absorption measurements, differences can be seen depending on the film thickness even though the manufacturing conditions are the same. It will be done. This poses a problem in manufacturing devices, especially in manufacturing thin films with a thickness of 50 nm or less.

本発明の目的は、膜厚が小さくても大きな膜厚の薄膜特
性を得ることができ、これによりデバイス設計を容易に
することにある。
An object of the present invention is to obtain thin film characteristics with a large thickness even if the film thickness is small, thereby facilitating device design.

E0課題を解決するための手俊 本発明は、電力印加開始時からしばらくの間はプラズマ
状態が不安定であり、そのため従来の製法、即ちプラズ
マ状態の不安定、安定の時期にかかわらず同一の条件で
製造する方法では、膜厚か小さい場合にはプラズマ状態
の不安定性の影響を受け、この結果膜厚の大きさによっ
て特性にばらつきがある点に着眼して成されたものであ
り、具体的には一種類の炭化水素ガスと水素ガスとの混
合ガスを用いて得られる前記薄膜について、膜厚と薄膜
の特性との関係を予め調べることにより、膜厚の大きさ
によって薄膜の特性が変化しない臨界膜厚を求めると共
に、製膜開始時から膜厚か前記臨界膜厚になるまでの時
間T。を求めておき、面記一種類の炭化水素ガス及び当
該炭化水素ガスよりも分解効率の高い他の種類の炭化水
素ガスの混合炭化水素ガスと水素ガスとの混合ガスを真
空容器内に導入して製膜を開始し、その後炭化水素ガス
と水素ガスとの体積比を固定したまま、前記他の種類の
炭化水素ガスの導入量を前記時間To経過後またはその
付近にて零になるように減少させることを特徴とする。
To solve the E0 problem, the present invention has the advantage that the plasma state is unstable for a while from the start of power application, and therefore the conventional manufacturing method, that is, the same process regardless of the period of instability or stability of the plasma state. This method was developed based on the fact that when the film thickness is small, the plasma state is affected by instability, and as a result, the characteristics vary depending on the film thickness. Specifically, for the thin film obtained using a mixed gas of one type of hydrocarbon gas and hydrogen gas, by investigating the relationship between the film thickness and the properties of the thin film in advance, it is possible to determine the properties of the thin film depending on the size of the film thickness. In addition to determining the critical film thickness that does not change, the time T from the start of film formation until the film thickness reaches the critical film thickness. A mixture of one type of hydrocarbon gas and another type of hydrocarbon gas whose decomposition efficiency is higher than that of the hydrocarbon gas and hydrogen gas is introduced into a vacuum container. After that, while keeping the volume ratio of hydrocarbon gas and hydrogen gas fixed, the amount of the other type of hydrocarbon gas introduced is made to become zero after or near the elapse of the time To. It is characterized by decreasing.

F、実施例 本発明方法は、例えば第2図及び第3図に夫々示す製造
装置及び制御系を用いることにより実行される。第2図
に示すCVD装置は3槽分離真空槽1.〜I3を連設し
て成り、水素化アモルファス炭素薄膜(以下ra−c膜
」という)を得るためには、先ず真空槽1.内を1.3
3X10−’Pa(IXIO−’Torr)まで減圧し
た後、炭化水素ガス例えばメタン(CH4)ガスを適度
の水素ガスで希釈した混合ガスを真空槽1.内に導入ル
、電極を兼ねたサセプタ21上の基板3をヒータ41で
適時!50〜300℃に加熱した後所定の圧力に槽内を
調節し、次いで平面方向のムラをなくすためにサセプタ
21を回転させながら、電極51゜サセプタ21間に高
周波電源E、から13.56M1−1 zの高周波電力
20〜300Wを加え、プラズマを発生させて基板31
上に膜を形成する。6.は排気口である。真空槽11内
の圧力については、第3図に示すように真空計7よりの
検出値に基づいてコンピュータ8により排気ロエアー弁
スイッチ9及びマスフローコントローラ用電源IOを制
御することによって行われ、また電極への印加重力(人
力電力)については高周波電源11を制御することによ
って行われる。更にガス流量、ガス混合比もこの制御系
によって随時微妙に制御される。
F. EXAMPLE The method of the present invention is carried out, for example, by using the manufacturing apparatus and control system shown in FIGS. 2 and 3, respectively. The CVD apparatus shown in FIG. 2 has three separate vacuum tanks: 1. In order to obtain a hydrogenated amorphous carbon thin film (hereinafter referred to as "RA-C film"), first, a vacuum chamber 1. 1.3 inside
After reducing the pressure to 3X10-'Pa (IXIO-'Torr), a mixed gas prepared by diluting a hydrocarbon gas, such as methane (CH4) gas with an appropriate amount of hydrogen gas, is placed in a vacuum chamber 1. Introduce the substrate 3 on the susceptor 21, which also serves as an electrode, with the heater 41 at the appropriate time! After heating to 50 to 300°C, adjust the pressure inside the tank to a predetermined pressure, and then, while rotating the susceptor 21 to eliminate unevenness in the plane direction, a high frequency power source E, 13.56M1- is applied between the electrode 51° and the susceptor 21. 1z high frequency power of 20 to 300 W is applied to generate plasma and heat the substrate 31.
Form a film on top. 6. is an exhaust port. The pressure inside the vacuum chamber 11 is controlled by the computer 8 controlling the exhaust lower air valve switch 9 and the mass flow controller power supply IO based on the detected value from the vacuum gauge 7, as shown in FIG. The applied force (human power) is applied by controlling the high frequency power source 11. Furthermore, the gas flow rate and gas mixture ratio are also finely controlled by this control system.

他の真空槽It、Isは前記真空槽!、と同一構造に設
計されており、2−.23はサセプタ、4.。
The other vacuum chambers It and Is are the vacuum chambers! , is designed to have the same structure as 2-. 23 is a susceptor; 4. .

43はヒータ、5..5.は電極、6..6.は排気口
である。真空槽11〜鳳8間には図示しな、い基板搬送
機構が装着されており、ロック弁VA、VBを開閉する
ことにより真空状態を維持したまま基板を真空槽l、〜
11間を移動させることができる。
43 is a heater; 5. .. 5. is an electrode, 6. .. 6. is an exhaust port. A substrate transport mechanism (not shown) is installed between the vacuum chambers 11 and 8, and by opening and closing lock valves VA and VB, the substrates are transferred to the vacuum chambers 1 and 8 while maintaining the vacuum state.
It is possible to move between 11.

従って6槽にて独立に所望の特性の薄膜を作製すること
が可能であり、例えばP型半導体層、n型半導体層及び
真性半導体層を汚染されることなく順次に積層したもの
を作製することができる。
Therefore, it is possible to independently produce thin films with desired characteristics in six tanks. For example, it is possible to produce a thin film with desired characteristics, for example, by sequentially stacking a P-type semiconductor layer, an n-type semiconductor layer, and an intrinsic semiconductor layer without contamination. I can do it.

本発明方法はこれら真空槽!1〜1.のいずれの製膜プ
ロセスにおいても適用することができ、本発明方法を実
行するためには、先ず従来法によって臨界膜厚を求めて
おく。例えばメタンガスを炭化水素ガスとして用い、膜
厚が1100n以下であっても’l 00 nmの膜厚
と同程度の特性をもった薄膜を作製しようとする場合、
メタンガスを水素ガスによって50%に希釈した混合ガ
スを真空槽内に導入した後電力を印加し、製膜時間を変
えて種々の膜厚のa−C膜を予め作製しておく。そして
これらについて例えば抵抗率を調べ、膜厚の大きさによ
って抵抗率が変化しない臨界膜厚を求めると共に、電力
印加時から膜厚が臨界膜厚になるまでの時間T。を求め
ておく。第4図は抵抗率と膜厚との関係を示す測定デー
タであり、この図かられかるように抵抗率は膜厚が小さ
い程高く、略40nm(400人)を越えると膜厚増加
に対して飽和している。従ってこの場合臨界膜厚は40
nmとなる。なおこの例では、基板直径20Cff、基
板温度150℃、槽内圧力!3.3Pa。
The method of the present invention uses these vacuum chambers! 1-1. It can be applied to any film forming process, and in order to carry out the method of the present invention, the critical film thickness is first determined by a conventional method. For example, when trying to create a thin film using methane gas as a hydrocarbon gas and having the same properties as a film with a thickness of 100 nm, even if the film thickness is 1100 nm or less,
After a mixed gas of methane gas diluted to 50% with hydrogen gas is introduced into a vacuum chamber, electric power is applied, and a-C films of various thicknesses are prepared in advance by changing the film forming time. Then, for example, the resistivity of these is investigated, and the critical film thickness where the resistivity does not change depending on the film thickness is determined, and the time T from when power is applied until the film thickness reaches the critical film thickness. Let's find out. Figure 4 shows measurement data showing the relationship between resistivity and film thickness.As can be seen from this figure, the resistivity increases as the film thickness decreases, and when it exceeds approximately 40 nm (400 nm), the resistivity increases with increasing film thickness. It's saturated. Therefore, in this case, the critical film thickness is 40
nm. In this example, the substrate diameter is 20Cff, the substrate temperature is 150°C, and the pressure inside the tank is ! 3.3Pa.

人力電力20W、電極間距離2CJIとしている。The human power was 20W and the distance between the electrodes was 2CJI.

ところで炭化水素ガスとして用いるガス種と臨界膜厚と
の関係を調べたところ第5図に示すように、臨界膜厚は
ガス種の分解効率、即ち製膜速度と略比例していること
がわかった。このことから電力印加時から一定時間内に
おいて製膜された薄膜は膜厚の影響を受け、その原因は
プラズマ状態が電力印加開始時から一定時間内は不安定
であり、時間経過と共に安定状態に向かっていくためで
あると推察される。このように考えれば、プラズマ状態
が不安定な時間帯は前記時間T。に対応する。
By the way, when we investigated the relationship between the gas species used as hydrocarbon gas and the critical film thickness, we found that the critical film thickness is approximately proportional to the decomposition efficiency of the gas species, that is, the film formation rate, as shown in Figure 5. Ta. From this, a thin film formed within a certain period of time from the time of power application is affected by the film thickness, and the reason for this is that the plasma state is unstable within a certain time from the start of power application, and becomes stable over time. It is surmised that this is because they are heading towards the area. Considering this, the time period when the plasma state is unstable is the above-mentioned time T. corresponds to

そこで本発明では、製膜開始時即ち電力印加時にはメタ
ンガスよりも高い例えばエチレンガス(ctH*ガス)
をメタンガスと混合し、プラズマ状態が安定するに従っ
て、エチレンガス及びメタンガスの混合ガスと水素ガス
との体積比を固定したままエチレンガスの導入虫を減少
させる。具体的にはエチレンガス及びメタンガスよりな
る混合ガスに対するエチレンガスのガス濃度Gの初期値
をG。とすると、第6図に示すようにガス濃度Gをコン
トロールして製膜する。この例では時間tとガス濃度G
との関係は次式で表される。
Therefore, in the present invention, at the start of film formation, that is, when electric power is applied, a gas higher than methane gas, for example, ethylene gas (ctH* gas) is used.
is mixed with methane gas, and as the plasma state stabilizes, the volume ratio of the mixed gas of ethylene gas and methane gas to hydrogen gas is kept fixed and the number of insects introduced into the ethylene gas is reduced. Specifically, G is the initial value of the gas concentration G of ethylene gas for a mixed gas consisting of ethylene gas and methane gas. Then, the film is formed by controlling the gas concentration G as shown in FIG. In this example, time t and gas concentration G
The relationship with is expressed by the following equation.

G ”GOX (t  TO) ”/To”そしてG。G “GOX (t TO)”/To” and G.

を種々変えて特性を調べたところ、膜厚がl OOnm
以下のa−c膜について、メタンガス菫00%を炭化水
素ガスとして用いて作製した2 00 n m (各種
の特性が測定できる典型的厚さ)の膜厚を有するa−c
膜と同等の特性を得るためには、Goが10〜60%で
あった。10%以下では、分解効率の高いガスを混合し
た効果が少ないので、膜厚の大きさによってばらついて
しまう。一方第7図に示すようにガス種によって光学的
バンドギャップの大きさが異なるため、60%を越える
と光学的バンドギャップが低下してしまう。Goか10
〜60%の場合には、光吸収プロファイル、抵抗率につ
いて上記の200nmの膜厚のものと一致した。
When we investigated the characteristics by changing various values, we found that the film thickness was lOOnm.
The following a-c film has a film thickness of 200 nm (typical thickness at which various properties can be measured) and was prepared using 00% methane gas as a hydrocarbon gas.
In order to obtain properties equivalent to the membrane, Go was 10-60%. If it is less than 10%, the effect of mixing a gas with high decomposition efficiency will be small, and the thickness will vary depending on the size of the film. On the other hand, as shown in FIG. 7, the size of the optical bandgap varies depending on the gas species, so if it exceeds 60%, the optical bandgap will decrease. Go or 10
In the case of ~60%, the light absorption profile and resistivity matched those of the above film thickness of 200 nm.

本発明では、メタンガスに限らず例えばエチレンガス1
00%を炭化水素ガスとして用いた薄膜特性を得る場合
にも適用することができ、この場合にはエチレンガス及
びアセヂレンガス(C,H。
In the present invention, not only methane gas but also ethylene gas 1
It can also be applied to obtain thin film properties using 00% hydrocarbon gas, in which case ethylene gas and acetylene gas (C,H) are used.

ガス)よりなる混合ガスに対するアセチレンガス濃度の
初期値G。を10〜50%に設定して、第6図に示すよ
うにGをコントロールすれば、膜厚か1100n以下の
a−C膜について、エチレンガスlOO%を炭化水素ガ
スとして用いて作製した200nmの膜厚を有するa−
c膜と同等の特性を得ることができる。
Initial value G of acetylene gas concentration for a mixed gas consisting of By setting G to 10 to 50% and controlling G as shown in Figure 6, for an a-C film with a film thickness of 1100 nm or less, a 200 nm film made using 100% ethylene gas as a hydrocarbon gas can be obtained. a- with film thickness
It is possible to obtain properties equivalent to those of c-film.

G9発明の効果 本発明では、電力印加開始時からしばらくの間は従来の
条件では十分なプラズマ状態が得られず、これに起因し
て膜厚が小さい場合には特性にばらつきがあるという点
に着目し、例えばメタンガス100%に対応するa−c
膜を得る場合、製造開始時即ち電力印加開始時にはメタ
ンガスよりも分解効率の高い例えばエチレンガスをメタ
ンガスと混合し、プラズマ状態が安定にするに従ってエ
チレンガスの導入量を減少させているため、例えばメタ
ンガスlOO%あるいはエチレンガス100%で製膜し
た、アモルファス超格子等でよく用いられる2〜20 
n m (20〜200人)の膜厚のa−c膜を得た場
合、200 n m (2000人)の膜厚程度のもの
と同一の特性を得ることができ、従ってデバイス設計が
簡単になる。
G9 Effects of the Invention The present invention has an advantage in that a sufficient plasma state cannot be obtained under conventional conditions for a while from the start of power application, and due to this, there are variations in characteristics when the film thickness is small. Focusing on, for example, a-c corresponding to 100% methane gas
When obtaining a film, at the start of production, that is, when power is applied, for example, ethylene gas, which has a higher decomposition efficiency than methane gas, is mixed with methane gas, and as the plasma state stabilizes, the amount of ethylene gas introduced is reduced. 2 to 20, which is often used in amorphous superlattice films formed with lOO% or 100% ethylene gas.
If an a-c film with a thickness of 20 nm (20 to 200 people) is obtained, it is possible to obtain the same characteristics as a film with a thickness of about 200 nm (2000 people), which simplifies device design. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るガス濃度パターンを示す
グラフ、第2図は製造装置の一例を示す構成図、第3図
は制御系を示すブロック図、第4図は抵抗率と膜厚との
関係を示すグラフ、第5図はガス種毎の臨界膜厚及び製
膜速度を示すグラフ、第6図は光学的バンドギャップと
ガス種との関係を示すグラフ、第7図は光吸収特性を示
すグラフである。 !1〜l、・・・真空槽、2I〜23・・・サセプタ、
3・・・基板、4.〜4.・・・ヒータ、51〜53・
・・電極、61〜6.・・排気口。 第1図 ブス薬事へ゛ターン図 T。 畔 間 (sec) 拡杭手 (Ω・am) 第5図 でス糎毎のテ゛°−り図 CHb     CtHh     CzHzブス糎 第6図 代2す宜勺ノ\゛ンドギ黛ヅフ゛に77”ス糎ヒの閘イ
示訝りCH4C2H4C2H2
Fig. 1 is a graph showing a gas concentration pattern according to an embodiment of the present invention, Fig. 2 is a configuration diagram showing an example of a manufacturing device, Fig. 3 is a block diagram showing a control system, and Fig. 4 is a graph showing resistivity and film. Figure 5 is a graph showing the critical film thickness and film forming rate for each gas type. Figure 6 is a graph showing the relationship between optical band gap and gas type. Figure 7 is a graph showing the relationship between optical band gap and gas type. It is a graph showing absorption characteristics. ! 1 to l,... vacuum chamber, 2I to 23... susceptor,
3...Substrate, 4. ~4. ... Heater, 51-53.
...Electrode, 61-6. ··exhaust port. Figure 1 Turn diagram T to Busu Pharmaceutical Affairs. Pile width (sec) Pile expansion (Ω・am) In Fig. 5, there are 77” squares for each thread in Fig. 6. Glue lock indication CH4C2H4C2H2

Claims (1)

【特許請求の範囲】[Claims] (1)炭化水素ガスと水素ガスとの混合ガスを真空容器
内に導入して、プラズマ化学的蒸着法により水素化アモ
ルファス炭素薄膜を製造する方法において、 一種類の炭化水素ガスと水素ガスとの混合ガスを用いて
得られる前記薄膜について、膜厚と薄膜の特性との関係
を予め調べることにより、膜厚の大きさによって薄膜の
特性が変化しない臨界膜厚を求めると共に、製膜開始時
から膜厚が前記臨界膜厚になるまでの時間T_0を求め
ておき、前記一種類の炭化水素ガス及び当該炭化水素ガ
スよりも分解効率の高い他の種類の炭化水素ガスの混合
炭化水素ガスと水素ガスとの混合ガスを真空容器内に導
入して製膜を開始し、その後炭化水素ガスと水素ガスと
の体積比を固定したまま、前記他の種類の炭化水素ガス
の導入量を前記時間T_0経過後またはその付近にて零
になるように減少させることを特徴とする水素化アモル
ファス炭素薄膜の製造方法。
(1) In a method for producing a hydrogenated amorphous carbon thin film by plasma chemical vapor deposition by introducing a mixed gas of hydrocarbon gas and hydrogen gas into a vacuum container, one type of hydrocarbon gas and hydrogen gas are mixed. For the thin film obtained using a mixed gas, by examining the relationship between film thickness and thin film properties in advance, we can determine the critical film thickness at which the properties of the thin film do not change depending on the size of the film thickness. The time T_0 required for the film thickness to reach the critical film thickness is determined, and a mixed hydrocarbon gas of the one type of hydrocarbon gas and another type of hydrocarbon gas whose decomposition efficiency is higher than that of the hydrocarbon gas and hydrogen are determined. A mixed gas with gas is introduced into a vacuum container to start film formation, and then, while keeping the volume ratio of hydrocarbon gas and hydrogen gas fixed, the amount of the other type of hydrocarbon gas introduced is changed over the time T_0. 1. A method for producing a hydrogenated amorphous carbon thin film, which comprises reducing the amount to zero after a certain period of time or around the same time.
JP63133206A 1988-05-31 1988-05-31 Production of hydrogenated amorphous carbon thin film Pending JPH01301506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133206A JPH01301506A (en) 1988-05-31 1988-05-31 Production of hydrogenated amorphous carbon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133206A JPH01301506A (en) 1988-05-31 1988-05-31 Production of hydrogenated amorphous carbon thin film

Publications (1)

Publication Number Publication Date
JPH01301506A true JPH01301506A (en) 1989-12-05

Family

ID=15099212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133206A Pending JPH01301506A (en) 1988-05-31 1988-05-31 Production of hydrogenated amorphous carbon thin film

Country Status (1)

Country Link
JP (1) JPH01301506A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617997A1 (en) * 1993-03-23 1994-10-05 Rotem Industries Ltd. Method of improving the selectivity of carbon membranes by chemical carbon vapor deposition
US5413773A (en) * 1990-10-09 1995-05-09 General Motors Corporation Method for forming carbon filters
JP2009235495A (en) * 2008-03-27 2009-10-15 Ngk Insulators Ltd Method for forming amorphous carbon film
JP2009242879A (en) * 2008-03-31 2009-10-22 Ngk Insulators Ltd Dlc film deposition method
CN102659094A (en) * 2012-01-03 2012-09-12 西安电子科技大学 Method for preparing graphene on SiC substrate based on annealing of Cu film and C12 reaction
CN103553029A (en) * 2013-10-31 2014-02-05 中国科学院上海微***与信息技术研究所 Method for preparing vertical graphene-based thermal material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413773A (en) * 1990-10-09 1995-05-09 General Motors Corporation Method for forming carbon filters
EP0617997A1 (en) * 1993-03-23 1994-10-05 Rotem Industries Ltd. Method of improving the selectivity of carbon membranes by chemical carbon vapor deposition
US5695818A (en) * 1993-03-23 1997-12-09 Rotem Industries Ltd. Method of improving the selectivity of carbon membranes by chemical carbon vapor deposition
JP2009235495A (en) * 2008-03-27 2009-10-15 Ngk Insulators Ltd Method for forming amorphous carbon film
JP2009242879A (en) * 2008-03-31 2009-10-22 Ngk Insulators Ltd Dlc film deposition method
CN102659094A (en) * 2012-01-03 2012-09-12 西安电子科技大学 Method for preparing graphene on SiC substrate based on annealing of Cu film and C12 reaction
CN103553029A (en) * 2013-10-31 2014-02-05 中国科学院上海微***与信息技术研究所 Method for preparing vertical graphene-based thermal material
CN103553029B (en) * 2013-10-31 2015-07-01 中国科学院上海微***与信息技术研究所 Method for preparing vertical graphene-based thermal material

Similar Documents

Publication Publication Date Title
Hu et al. Reactive‐ion etching of GaAs and InP using CCl2F2/Ar/O2
Voutsas et al. Structure of As‐Deposited LPCVD Silicon Films at Low Deposition Temperatures and Pressures
US5051380A (en) Process for producing semiconductor device
US4900591A (en) Method for the deposition of high quality silicon dioxide at low temperature
JP2000150513A (en) Deposition of silicon nitride thin film
JPH084071B2 (en) Deposited film formation method
Hazbun et al. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition
JP2006522495A (en) Method and apparatus for depositing silicon oxide on large area substrates
JPH01301506A (en) Production of hydrogenated amorphous carbon thin film
Mukherjee et al. Real-time ellipsometry at high and low temperatures
Adam et al. Low-temperature growth of epitaxial (1 0 0) silicon based on silane and disilane in a 300 mm UHV/CVD cold-wall reactor
JPH11172418A (en) Film forming device
Patil et al. Effect of deposition temperature on the chemical properties of thermally deposited silicon nitride films
Koch et al. I n situ investigation of InAs metalorganic chemical vapor deposition growth using reflectance anisotropy
Besland et al. Interpretation of stress variation in silicon nitride films deposited by electron cyclotron resonance plasma
JP7134336B2 (en) METHOD AND MEASUREMENT DEVICE FOR DETECTING ANORMAL GROWTH OF GRAPHEN, AND FILM FORMING SYSTEM
JPH01302813A (en) Manufacture of amorphous semiconductor thin film
Wilson et al. New insights on nucleation of tungsten on insulators during selective chemical vapor deposition
Ohno et al. Chemical vapor deposition of CeO2 films using a liquid metallorganic source
US20080207003A1 (en) Production method of semiconductor apparatus
TW201932636A (en) Techniques to improve adhesion and defects for tungsten carbide film
Futako et al. In situ ESR observation of interface dangling bond formation processes during amorphous SiO2 growth on Si
Rice et al. Low temperature PZT film by MOCVD
JPS62139875A (en) Formation of deposited film
JPS6190421A (en) Formation of deposited film