JPH01300221A - Vibration proofing device for optical equipment - Google Patents

Vibration proofing device for optical equipment

Info

Publication number
JPH01300221A
JPH01300221A JP13190588A JP13190588A JPH01300221A JP H01300221 A JPH01300221 A JP H01300221A JP 13190588 A JP13190588 A JP 13190588A JP 13190588 A JP13190588 A JP 13190588A JP H01300221 A JPH01300221 A JP H01300221A
Authority
JP
Japan
Prior art keywords
vibration
circuit
optical system
correction optical
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13190588A
Other languages
Japanese (ja)
Inventor
Koichi Washisu
晃一 鷲巣
Toru Nagata
徹 永田
Hiroshi Sumio
弘 角尾
Masao Shikami
政雄 鹿海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13190588A priority Critical patent/JPH01300221A/en
Publication of JPH01300221A publication Critical patent/JPH01300221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To drive a correction optical system in a state wherein there is no oscillation due to disturbing vibration by providing a vibration convergence control means, and obtaining a vibration area wherein the vibration of a vibration proofing system is detected based upon detected vibration information even if a vibration sensor detects disturbance. CONSTITUTION:The vibration proofing device equipped with the vibration sensor 11 for detecting the vibration of optical equipment, an arithmetic means 12 for calculating the output of the vibration sensor 11, etc., is further provided with the vibration convergence control means which controls the input to a driving means 14 so as to converge the vibration of the vibration proofing system on the vibration area where vibration is detected based upon vibration information detected by the vibration sensor 11. Then, even if the vibration sensor 11 detects disturbing vibration generated by the correction optical system side, etc., the driving of the correction optical system is suppressed through the operation of the vibration convergence control means to converge the vibration. Consequently, the correction optical system can be driven with high accuracy without being affected by the disturbance according to the detected vibration.

Description

【発明の詳細な説明】 し産業上の利用分計] 本発明は、角加速度計、加速度計等の加速度センサを用
いて比較的低い周波数の振動を受ける光学機器の振動を
検出し、補正光学系を駆動制御して振動の影響を排除す
る光学機器の防振装置に係り、詳しくは、例えばカメラ
等の手ブレによる影響を受ける光学機器に搭載されて、
1)1z〜12)1z程度の周波数の振動(手ブレ角速
度)を検出し、これを像プレ防止の情報として像プレ防
止を図る光学機器の防振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applicability Meter] The present invention detects the vibration of an optical device that receives relatively low frequency vibration using an acceleration sensor such as an angular accelerometer or an accelerometer, and It relates to a vibration isolation device for optical equipment that eliminates the effects of vibration by controlling the drive of the system, and more specifically, it is installed in optical equipment that is affected by camera shake, such as a camera.
The present invention relates to an anti-vibration device for optical equipment that detects vibrations (camera shake angular velocity) with a frequency of about 1) 1z to 12) 1z and uses this as information for preventing image blur to prevent image blur.

[従来の技術] 本発明の対象となる従来技術を、カメラの場合を例にし
て以下説明する。
[Prior Art] The conventional technology to which the present invention is applied will be explained below, taking the case of a camera as an example.

現代のカメラでは露出決定やピント合せ等の撮影にとっ
て重要な作業はすべて自動化されているため、カメラ操
作に未熟な人でも撮影失敗を起す可能性は非常に少なく
なっているが、カメラブレによる撮影失敗だけは自動的
に防ぐことができない。
Modern cameras automate all important tasks for photography, such as exposure determination and focus adjustment, so there is a very low chance that even people who are inexperienced in operating the camera will make a mistake, but there are still cases of failure due to camera shake. cannot be prevented automatically.

それ故、最近ではカメラブレに起因する撮影失敗をも防
止することのできるカメラが研究されており、゛特に、
撮影者の手ブレによる撮影失敗を防止することのできる
カメラについての開発、研究が進められている。
Therefore, in recent years, research has been carried out on cameras that can prevent shooting failures caused by camera shake.
2. Description of the Related Art Research and development are underway on cameras that can prevent photographic failures caused by camera shake.

上記の手ブレは、周波数として通常IHzないし12)
1zの振動であるが、カメラシャッターのレリーズ時点
においてこのような手ブレを起していても像ブレのない
写真を撮影可能とするためには、上記手ブレによるカメ
ラの振動を検出し、その検出値に応じて補正レンズをカ
メラの振動変位の方向に応じて変位させてやらなければ
ならない。したがって、上記目的(すなわち、カメラの
ブレが生じても像ブレを生じない写真を撮影できること
)を達成するためにはカメラの振動(特に手ブレによる
振動)を正確に検出することが必要となる。
The frequency of the camera shake mentioned above is usually IHz to 12)
1z vibration, but in order to be able to take pictures without image blur even if such camera shake occurs at the time of camera shutter release, it is necessary to detect the camera vibration caused by the camera shake and to correct it. The correction lens must be displaced in accordance with the direction of vibrational displacement of the camera in accordance with the detected value. Therefore, in order to achieve the above objective (i.e., to be able to take pictures that do not cause image blur even when camera shake occurs), it is necessary to accurately detect camera vibrations (especially vibrations caused by camera shake). .

そしてカメラブレの検出は、原理的にいえば、加速度信
号、速度信号を出力する加速度計、速度計および該加速
度信号、速度信号を1階積分もしくは2階積分して速度
信号もしくは変位信号を出力する積分器を含むカメラブ
レ検出システムをカメラに搭載することによっておこな
うことができる。
In principle, camera shake is detected by using an accelerometer or speedometer that outputs an acceleration signal or a speed signal, and then performing first-order integration or second-order integration of the acceleration signal or speed signal to output a speed signal or a displacement signal. This can be done by equipping the camera with a camera shake detection system that includes an integrator.

ここで角加速度計を用いたカメラプレ検出システムにつ
いて第8図を用いてその概要を説明する。
Here, an outline of a camera pre-detection system using an angular accelerometer will be explained using FIG. 8.

第8図の例は、光軸84に対して互いに直交する矢印8
4aで示すピッチ方向(Pitch)のカメラ縦ブレと
、矢印84bで示すヨ一方向(Yaw)のカメラ横ブレ
を検出するシステムの図である。
In the example of FIG.
84 is a diagram of a system for detecting vertical camera shake in the pitch direction (Pitch) indicated by 4a and horizontal camera shake in the Yaw direction (arrow 84b); FIG.

82は補正光学系88を有するレンズ鏡筒で、カメラの
縦ブレ、カメラの横ブレを検出するサーボ角加速度計等
の微小角加速度を検出できる角加速度計83a、、83
b、がその角加速度検出方向83a2,83b2を図示
の方向に向けるようにして取付けられている。87a、
87bは公知のアナログ積分回路(以下車に積分回路と
いう)であり、各角加速度計83a、 、83b、から
の角加速度信号を1階積分して手プレ速度もしくは2v
Ia積分して手プレ変位に変換する。
82 is a lens barrel having a correction optical system 88, and angular accelerometers 83a, 83 capable of detecting minute angular acceleration such as a servo angular accelerometer for detecting vertical camera shake and horizontal camera shake.
b, are attached so that their angular acceleration detection directions 83a2, 83b2 are directed in the direction shown in the figure. 87a,
87b is a well-known analog integration circuit (hereinafter referred to as a car integration circuit), which performs first-order integration of the angular acceleration signals from each angular accelerometer 83a, , 83b, and calculates the manual speed or 2V.
Ia is integrated and converted to manual displacement.

88a1は補正光学系88をX軸方向に駆動するヨー駆
動部、88b1は補正光学系88をY軸方向に駆動する
ピッチ駆動部、88a2は補正光学系88のX軸方向の
位置を検出する位置センサ、88b2は補正光学系88
のY軸方向の位置を検出する位置センサ、89a、89
bはサーボ増幅器で、これらの駆動部88al、88b
1%位置センサ88a2 。
88a1 is a yaw drive unit that drives the correction optical system 88 in the X-axis direction, 88b1 is a pitch drive unit that drives the correction optical system 88 in the Y-axis direction, and 88a2 is a position that detects the position of the correction optical system 88 in the X-axis direction. Sensor, 88b2 is correction optical system 88
position sensors 89a, 89 for detecting the position in the Y-axis direction of
b is a servo amplifier, and these driving parts 88al, 88b
1% position sensor 88a2.

88b2、サーボ増幅器により公知のサーボ回路を構成
し、手プレ変位に応じて像面90での像を安定させるよ
うに補正光学系88を駆動する。。
88b2, a servo amplifier constitutes a known servo circuit, and drives the correction optical system 88 so as to stabilize the image on the image plane 90 according to the displacement of the hand. .

[発明が解決しようとしている課題] しかし上述従来例では以下の欠点が生じ安定な防振を得
ることが出来なかった。すなわち、撮影者がカメラを構
えるときにカメラに人力される外乱や、補正光学系88
が駆動する時に生ずる振動が、第8図中波状の矢印81
1の如くレンズを伝搬し、振動センサ(第8図では角加
速度センサ83a+ 、83b+)がこの外乱振動を検
知し、その出力で補正光学系88を振動させ、更にその
外乱振動を振動センサが検知してしまうため発振を起こ
してしまう。
[Problems to be Solved by the Invention] However, in the conventional example described above, the following drawbacks occurred and stable vibration isolation could not be obtained. In other words, disturbances caused by manual force on the camera when the photographer holds the camera, and the correction optical system 88
The vibration that occurs when the is driven is shown by the wavy arrow 81 in FIG.
1, the vibration sensor (angular acceleration sensors 83a+, 83b+ in FIG. 8) detects this disturbance vibration, the output vibrates the correction optical system 88, and the vibration sensor further detects the disturbance vibration. This causes oscillation.

第9図はそれを説明したブロック図であるが振動センサ
11、演算回路12.駆動回路14の実線の流れの他に
レンズを伝搬する破線17の外乱振動の閉じたループが
形成されてしまっている事がわかる。
FIG. 9 is a block diagram illustrating the vibration sensor 11, arithmetic circuit 12. It can be seen that in addition to the flow of the drive circuit 14 shown by the solid line, a closed loop of disturbance vibration shown by the broken line 17 propagating through the lens is formed.

そのような発振を防ぐ手段として第10図に示すように
演算回路12と駆動回路14の接続を、低域通過回路■
101を介して行なっている。これは上述の外乱振動は
手プレ周波数1〜12 [Hz1以上に存在することか
ら、低域通過回路v101にて手プレ周波数には影響を
及ぼさず外乱振動のみを除去できるものであるが、実際
には外乱振動の周波数は手プレ周波数に対し1桁程度高
いたけであるため、この外乱振動を低域通過回路■10
1で除去しようとすると、演算回路12からの手プレ周
波数の高周波領域、つまり10 [Hz]近辺の信号は
、この低域通過回路■の影響で精度を悪化させられてし
まい、これは防振効果の著しい劣下を引き起こしてしま
うという欠点があった。
As a means to prevent such oscillation, as shown in FIG.
This is done via 101. This is because the above-mentioned disturbance vibration exists in the hand play frequency 1 to 12 [Hz1 or higher, so the low-pass circuit v101 can remove only the disturbance vibration without affecting the hand play frequency. Since the frequency of the disturbance vibration is about an order of magnitude higher than the manual frequency, this disturbance vibration is processed by a low-pass circuit ■10.
1, the precision of the signal in the high frequency range of the manual frequency from the arithmetic circuit 12, that is, around 10 [Hz], will be affected by this low-pass circuit ■, and the accuracy will be deteriorated. The drawback was that it caused a significant decrease in effectiveness.

本発明の目的は、例えば手ブレ等の検出すべき周波数帯
域における信号の検出精度を劣化させずに外乱振動の除
去を行うことができる光学機器の防振装置を提供せんと
するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vibration isolating device for optical equipment that can remove external vibrations without degrading the detection accuracy of signals in a frequency band to be detected, such as camera shake.

[課題を解決するための手段] 本発明の目的を達成するための手段の1例とするところ
は、補正光学系を駆動する補正光学系駆動制御手段と、
光学機器の振動を検出する振動センサと、該振動センサ
の出力を演算する演算手段と、該演算結果に基づいて補
正光学系駆動制御手段を駆動する駆動手段とを備え、該
振動センサが振動を検出すると、該補正光学系を振動の
影響を排除する方向に駆動制御する光学機器の防振装置
において、該振動センサで検出した振動情報に基づいて
、検出すべき振動領域に防振系の振動を収束せしめるよ
うに該駆動手段への人力を制御する振動収束制御手段を
有することを特徴とする光学機器の防振装置にある。
[Means for Solving the Problems] One example of means for achieving the object of the present invention is a correction optical system drive control means for driving a correction optical system;
A vibration sensor that detects vibration of an optical device, a calculation means that calculates an output of the vibration sensor, and a drive means that drives a correction optical system drive control means based on the calculation result, and the vibration sensor detects the vibration. When detected, in the vibration isolating device of the optical equipment that drives and controls the correction optical system in a direction to eliminate the influence of vibration, the vibration of the vibration isolating system is applied to the vibration area to be detected based on the vibration information detected by the vibration sensor. The present invention provides a vibration isolator for an optical instrument, comprising a vibration convergence control means for controlling human power applied to the drive means so as to converge the vibration.

[作   用コ 上記の如く構成した本発明による光学機器の防振装置は
、補正光学系側等から発生した外乱振動を振動センサが
検知しても、振動収束制御手段の動作により、補正光学
系の駆動を抑制して防振系の振動を収束せしめ、検知す
べき振動に応じて外乱に影響されることなく高精度に補
正光学系を駆動する。
[Function] In the vibration isolating device for an optical device according to the present invention configured as described above, even if the vibration sensor detects disturbance vibration generated from the correction optical system side, the vibration convergence control means operates to stop the correction optical system. The vibration control system suppresses the drive of the image stabilization system to converge the vibration of the vibration isolation system, and drives the correction optical system with high precision in accordance with the vibration to be detected without being affected by external disturbances.

[実 施 例コ 以下本発明を図面に示す実施例に基づいて詳細に説明す
る。
[Embodiments] The present invention will be described in detail below based on embodiments shown in the drawings.

実施例1 第1図は本発明による光学機器の防振装置の実施例1を
示すブロック図である。
Embodiment 1 FIG. 1 is a block diagram showing Embodiment 1 of the vibration isolating device for optical equipment according to the present invention.

11は第8図に示すサーボ角加速度計83a、。11 is a servo angular accelerometer 83a shown in FIG.

83b1である振動センサ、12は第8図に示す1階も
しくは2階の積分を行うアナログ積分回路87a、87
bである演算回路である。13は後記する外部人力18
の大きさに応じてその時定数を変化させる低域通過回路
Iで、外部入力18が犬のときに時定数を大きくし、外
部入力が小のときに時定数が小さくなるように設定され
るFET、Cds等の可変抵抗を用いた公知の回路であ
る。14は第8図に示す補正光学系88を駆動する駆動
部88al、88Jを駆動制御するためのサーボ増幅器
89a、89bである補正光学系の駆動回路、15は演
算回路12の出力から外乱振動周波数帯域だけを選別す
る公知の帯域通過回路もしくは高域通過回路である周波
数選別回路である。16は周波数選別回路15の出力振
幅を直流出力に変換する公知のRMS−DCコンバータ
等で構成された振幅−出力変換回路で、出力を低域通過
回路113の外部入力18として、低域通過回路113
の時定数を制御している。
83b1 is a vibration sensor, 12 is an analog integration circuit 87a, 87 that performs first- or second-order integration shown in FIG.
b is an arithmetic circuit. 13 is external human resources 18, which will be described later.
A low-pass circuit I that changes its time constant according to the magnitude of the FET. , Cds, and other known circuits using variable resistors. Reference numeral 14 indicates a drive circuit for the correction optical system, which is servo amplifiers 89a and 89b for driving and controlling the drive units 88al and 88J that drive the correction optical system 88 shown in FIG. This frequency selection circuit is a known band pass circuit or high pass circuit that selects only a band. Reference numeral 16 denotes an amplitude-to-output conversion circuit composed of a known RMS-DC converter or the like that converts the output amplitude of the frequency selection circuit 15 into a DC output. 113
The time constant of

なお振動センサ11は、角加速度を検知する上記した角
加速度計の他に、振動ジャイロ等の角速度を検知するセ
ンサや、加速度を検知する加速度センサであってもよく
、加速度センサの場合には、第8図中においてピッチ方
向84a1ヨ一方向84bに夫々一対の加速度センサを
設け、対をなす加速度センサからの信号を差動増幅器に
夫々入力し、差動加速度信号を積分回路に入力する。
In addition to the above-mentioned angular accelerometer that detects angular acceleration, the vibration sensor 11 may be a sensor that detects angular velocity such as a vibrating gyroscope, or an acceleration sensor that detects acceleration. In FIG. 8, a pair of acceleration sensors are provided in each of the pitch directions 84a1 and 84b, and the signals from the pair of acceleration sensors are input to a differential amplifier, respectively, and the differential acceleration signals are input to an integrating circuit.

このように構成した本実施例の防振装置は、前述したよ
うにひとたび補正光学系等からの外乱振動17がレンズ
鏡筒を伝搬して振動センサ11に入力されると、一定周
波数の発振が起きる。周波数選別回路15は、演算回路
12の出力に含まれる前記発振周波数成分だけを取り出
しそれを振幅−出力変換回路16にて直流出力にして、
その出力で低域通過回路Iの時定数を大きくするように
制御している。外乱振動の振幅が大きいと外部人力18
が大きくなって低域通過回路113の時定数が犬ぎくな
り、演算回路12の出力に含まれる発掘成分は低域通過
回路113で除去されて駆動回路14には伝わらない。
As described above, in the vibration isolating device of this embodiment configured in this way, once the disturbance vibration 17 from the correction optical system etc. propagates through the lens barrel and is input to the vibration sensor 11, oscillation at a constant frequency is caused. get up. The frequency selection circuit 15 extracts only the oscillation frequency component included in the output of the arithmetic circuit 12 and converts it into a DC output through the amplitude-output conversion circuit 16.
The output is used to control the time constant of the low-pass circuit I. If the amplitude of disturbance vibration is large, external human power 18
becomes large, the time constant of the low-pass circuit 113 becomes too narrow, and the excavation component included in the output of the arithmetic circuit 12 is removed by the low-pass circuit 113 and is not transmitted to the drive circuit 14.

すると外乱振動の伝搬は無くなるため、振幅−出力変換
回路16の出力すなわち外部人力18が小さくなり、低
域通過回路113の時定数は小さくなり、演算回路12
の手プレ信号の精度を損なわずに駆動回路14に人力出
来る様になる。
Then, the propagation of the disturbance vibration disappears, so the output of the amplitude-output conversion circuit 16, that is, the external human power 18, becomes smaller, the time constant of the low-pass circuit 113 becomes smaller, and the arithmetic circuit 12
The drive circuit 14 can be operated manually without impairing the accuracy of the manual signal.

又、このような構成のメリットとして、補正光学系から
常に一定の外乱振動が発生している場合には手プレ信号
の精度をほとんど損なわず、かつ発掘の起こらないベス
トポイントまで時定数を自動的に設定してゆけることで
あり、組み立て時の調整を必要としないばかりでなく外
乱振動の大きさが変化しても安定した防振、システムを
構築出来る。
In addition, the advantage of this configuration is that when a constant disturbance vibration is always generated from the correction optical system, the accuracy of the hand play signal is hardly affected, and the time constant can be automatically adjusted to the best point where no excavation occurs. This not only eliminates the need for adjustment during assembly, but also allows the construction of a stable vibration isolation system even when the magnitude of disturbance vibration changes.

実施例2 第2図は本発明による防振装置の実施例2のブロック図
である。
Embodiment 2 FIG. 2 is a block diagram of Embodiment 2 of the vibration isolator according to the present invention.

本実施例において、実施例1と異なる点は低域通過回路
がその時定数を時系列的に変化させる低域通過回路lI
21となり、振動−出力変換回路16の出力が比較回路
22に接続され、比較回路22の出力が低域通過回路I
+ 21への外部人力23になっていることに有る。
This embodiment differs from Embodiment 1 in that the low-pass circuit changes its time constant over time.
21, the output of the vibration-output conversion circuit 16 is connected to the comparison circuit 22, and the output of the comparison circuit 22 is connected to the low-pass circuit I.
+21 to 23 external human resources.

ここで時系列的に時定数を変化させる低域通過回路!!
21は、前述の低域通過回路Iの外部人力18として過
渡応答時間の長いフィルタの出力を用い、そのフィルタ
への人力として比較回路22からの外部人力23を接続
すればよく、このような構成は公知であるから説明は省
略する。そして外部人力23が人力されると低域通過回
路I+ 21の時定数は、時定数大からしだいに時定数
小に変化してゆく。
Here is a low-pass circuit that changes the time constant over time! !
21 uses the output of a filter with a long transient response time as the external power 18 of the low-pass circuit I described above, and connects the external power 23 from the comparator circuit 22 as the power to the filter. Since this is well known, the explanation will be omitted. When the external human power 23 is applied manually, the time constant of the low-pass circuit I+ 21 gradually changes from a large time constant to a small time constant.

このような構成においても外乱振動がレンズを伝搬して
それを振動センサ11が検知すると、前述の如く振幅−
出力変換回路16の出力が大きくなり、それが比較器2
2の一定基準値を越えると、外部人力23が出力し、低
域通過回路I!21の時定数は大きくなり、外乱振動を
減少させながら次第に時定数を小さくしてゆき、低域通
過回路TI 21による手ブレ信号への精度低下を減少
させてゆく。
Even in such a configuration, when disturbance vibration propagates through the lens and is detected by the vibration sensor 11, the amplitude -
The output of the output conversion circuit 16 increases, and it becomes the output of the comparator 2.
When the constant reference value of 2 is exceeded, the external human power 23 outputs an output, and the low-pass circuit I! The time constant of TI 21 becomes large, and the time constant is gradually reduced while reducing disturbance vibration, thereby reducing the decrease in accuracy of the camera shake signal caused by the low-pass circuit TI 21.

このような構成の最大のメリットは、比較回路22の一
定基準値を任意に設定出来る事であり、ある程度外乱振
動による発振が残っていても手プレ信号の精度低下を招
くより良い場合や、手プレ信号の精度を低下させても外
乱振動の発掘を全く無くす場合等を、状況に応じて任意
に設定できる点にある。
The biggest advantage of such a configuration is that the constant reference value of the comparator circuit 22 can be set arbitrarily, and there are cases where even if some oscillation due to disturbance vibration remains, it is better to reduce the accuracy of the manual signal, or when The point is that it can be arbitrarily set depending on the situation, such as cases in which disturbance vibrations are completely eliminated even if the accuracy of the pre-signal is lowered.

実施例3 第3図は本発明による防振装置の実施例3のブロック図
であり、基本的な動作は実施例2と同様であるが時定数
を可変する低域通過回路の代わりに時定数の小さい第1
の低域通過回路II+32と、時定数の大きい第2の低
域通過回路IV33があり、公知のアナログスイッチ等
により構成される信号選択回路31により演算回路12
の出力信号をどちらの低域通過回路に入力させるかを選
択し、その選択された第1の低域通過回路II+ 32
又は第2の低域通過回路IV 33から駆動回路14に
信号を人力する。そして信号選択回路31は比較回路2
2からの出力があれば、演算回路12の信号を時定数の
大きい第2の低域通過回路IV 33に入力させ、比較
回路22の出力のないときは時定数の小さい第2の低域
通過回路II+ 32に人力させるように設定されてい
る。
Embodiment 3 FIG. 3 is a block diagram of Embodiment 3 of the vibration isolator according to the present invention. The basic operation is the same as in Embodiment 2, but a time constant is used instead of a low-pass circuit that varies the time constant. small first
There are a low-pass circuit II+32 and a second low-pass circuit IV33 with a large time constant.
Select which low-pass circuit is to input the output signal of, and select the selected first low-pass circuit II+ 32.
Alternatively, a signal is manually input from the second low-pass circuit IV 33 to the drive circuit 14. The signal selection circuit 31 is the comparator circuit 2.
If there is an output from the comparison circuit 22, the signal from the arithmetic circuit 12 is input to the second low-pass circuit IV 33 with a large time constant, and when there is no output from the comparator circuit 22, the signal is input into the second low-pass circuit IV 33 with a small time constant. Circuit II+ 32 is set to be manually operated.

すなわち、比較器22の一定基準値を越える外乱振動を
振動センサ11が検出すると、信号選択回路31は演算
回路12からの信号を時定数の大きい第2の低域通過回
路IV 33に入力させるので、外乱振動が減少し、そ
の結果比較回路22への人力値が下がり、基準値以下と
なると、信号選択回路31は演算回路12からの信号を
時定数の小さい第1の低域通過回路II+ 32に入力
させる。
That is, when the vibration sensor 11 detects disturbance vibration that exceeds a certain reference value of the comparator 22, the signal selection circuit 31 inputs the signal from the arithmetic circuit 12 to the second low-pass circuit IV 33 having a large time constant. When the disturbance vibration decreases and, as a result, the human input value to the comparator circuit 22 decreases to below the reference value, the signal selection circuit 31 transfers the signal from the arithmetic circuit 12 to the first low-pass circuit II+ 32 with a small time constant. input.

したがって、本実施例は前述した実施例2と同様の効果
が得られる他、前述した実31例の如く低域通過回路を
時定数可変とする必要がないので、簡単な回路構成で実
現できる。
Therefore, in addition to obtaining the same effects as the second embodiment described above, this embodiment can be realized with a simple circuit configuration since it is not necessary to make the low-pass circuit variable in time constant as in the 31st example described above.

また、比較回路22からの出力がない場合には、外乱振
動の伝搬がないので、第4図に示す如く、時定数の小さ
い第1の低域通過回路II+32を省略しても同様の効
果が得られ、より一層回路の簡略化を可能とする。
Furthermore, when there is no output from the comparator circuit 22, there is no propagation of disturbance vibration, so the same effect can be obtained even if the first low-pass circuit II+32 with a small time constant is omitted, as shown in FIG. This makes it possible to further simplify the circuit.

実施例4 第5図は本発明による防振装置の実施例4を示すブロッ
ク図であり、第1図の実施例1では外部入力18の信号
に応じて時定数を可変する低域通過回路を用いているが
、本実施例では外部人力5・2の信号に応じて増幅率を
可変させる公知の増幅回路151を介して演算回路12
と駆動回路14を接続しており、増幅回路I51は外部
人力52が大きくなると増幅率を小さくするようになっ
ている。
Embodiment 4 FIG. 5 is a block diagram showing Embodiment 4 of the vibration isolator according to the present invention. In Embodiment 1 of FIG. However, in this embodiment, the arithmetic circuit 12 is connected to the arithmetic circuit 12 via a known amplification circuit 151 that varies the amplification factor according to signals from external human power 5 and 2.
and the drive circuit 14, and the amplifier circuit I51 is configured to reduce the amplification factor when the external human power 52 increases.

この場合、外乱振動17が伝搬され、振動センサ11が
それを検知すると外部人力52の信号が大きくなり、増
幅回路I51の増幅率が小さくなり演算回路から駆動回
路への振動の入力を小さくして発振を防ぐことができる
。この構成では第1図の時定数可変の低域通過回路13
が単なる増幅率可変の増幅回路になるため、回路が極め
て簡単になる。
In this case, when the disturbance vibration 17 is propagated and the vibration sensor 11 detects it, the signal from the external human power 52 increases, and the amplification factor of the amplifier circuit I51 decreases, reducing the vibration input from the arithmetic circuit to the drive circuit. Oscillation can be prevented. In this configuration, the variable time constant low-pass circuit 13 shown in FIG.
Since it is simply an amplifier circuit with a variable amplification factor, the circuit becomes extremely simple.

実施例5,6 第6図、第7図は各々本発明による防振装置の実施例5
および実施例6のブロック図であり、第2図、第3図の
時定数可変低域通過回路TI 21 、時定数の小さい
第1の低域通過回路II+ 32時定数の大きい第2の
低域通過回路rV33が増幅率を時系列的に可変させる
増幅回路I+ 61 、第1の増幅率の増幅回路III
 71 、第2の増幅率の増幅回路II+ 72に代わ
っている点が異なり、第6図に示す実施例5では、外部
人力62が人力されると増幅率可変増幅回路I!61は
増幅率を小から所望の率まで時系列的に増幅率を変化さ
せるように設定され、第7図に示す実施例6では外部人
カフ3が人力された時は増幅率の小さい第2の増幅率の
増幅回路IV 72へ、外部人カフ3が人力されない時
は、防振効果に必要な所望の増幅率の第1の増幅率の増
幅回路II+ 71へ信号選択回路31が演算回路12
からの信号を分配する構成となっており、その動作及び
効果は実施例2.3.4と同様である。
Embodiments 5 and 6 FIGS. 6 and 7 respectively show Embodiment 5 of the vibration isolating device according to the present invention.
and a block diagram of Embodiment 6, in which the variable time constant low-pass circuit TI 21 of FIGS. 2 and 3, the first low-pass circuit II+ 32 with a small time constant, the second low-pass circuit with a large time constant Amplifier circuit I+ 61 in which the pass circuit rV33 varies the amplification factor in time series, an amplifier circuit III with the first amplification factor
71, second amplification factor amplifier circuit II+ 72, and in the fifth embodiment shown in FIG. 61 is set to change the amplification factor over time from a low amplification factor to a desired rate, and in the sixth embodiment shown in FIG. When the external cuff 3 is not operated manually, the signal selection circuit 31 goes to the amplification circuit II+ 71 with a first amplification factor of a desired amplification factor necessary for the anti-vibration effect.
The structure is such that the signal from the terminal is distributed, and its operation and effects are the same as those in Embodiment 2.3.4.

実施例7〜実施例13 第11図〜第17図は本発明による防振装置の実施例7
〜実施例13のブロック図であり、実施例1〜実施例6
では演算回路12の信号をもとに駆動回路14への入力
信号を制御していたが、図示される様に振動センサ11
の信号で制御するように構成した点が異なり、他は夫々
実施例1〜実施例6と同じであり、このような構成でも
夫々実施例1〜実施例6と同様な効果か得られることは
言うまでもない。
Embodiment 7 to Embodiment 13 FIGS. 11 to 17 show Embodiment 7 of the vibration isolating device according to the present invention.
~It is a block diagram of Example 13, and it is a block diagram of Example 1 to Example 6.
In the above, the input signal to the drive circuit 14 was controlled based on the signal from the arithmetic circuit 12, but as shown in the figure, the vibration sensor 11
The difference is that the configuration is configured so as to be controlled by the signal of , and the other points are the same as in Examples 1 to 6, respectively, and even with such a configuration, the same effects as in Examples 1 to 6 can be obtained. Needless to say.

実施例14 第18図は本発明による防振装置の実施例14を示す斜
視図であり、振動センサ83a、。
Embodiment 14 FIG. 18 is a perspective view showing Embodiment 14 of the vibration isolator according to the present invention, in which vibration sensors 83a,

83b、は緩衝部材181a+、181az、181b
1.181biを介してレンズ鏡筒の固定筒82aと外
筒82bとの間に弾性的に支持固定されており、外乱振
動811が伝わると緩衝部材181a+、18182,
181b+、181b2の剛性が小さくなって外乱振動
が振動センサに伝わらないために発振が起きず、また外
乱振動が小さい時は緩衝部材181at、181a2,
181b+。
83b, buffer members 181a+, 181az, 181b
It is elastically supported and fixed between the fixed barrel 82a and the outer barrel 82b of the lens barrel via the 1.181bi, and when the disturbance vibration 811 is transmitted, the buffer members 181a+, 18182,
Since the rigidity of 181b+, 181b2 is reduced and the disturbance vibration is not transmitted to the vibration sensor, oscillation does not occur, and when the disturbance vibration is small, the buffer members 181at, 181a2,
181b+.

181b2の剛性が高いため手プレ周波数帯域の48号
は劣下しない構造になっており、その詳細を第19図に
示す。
Since the rigidity of 181b2 is high, the structure is such that the hand play frequency band No. 48 is not degraded, and the details are shown in FIG.

第19図は緩衝部材181a1.a2の構造を示す部分
拡大図であり、緩衝部材はバネ191a、 、 191
a2と摩擦板192a、 、 +92a2により構成さ
れており、バネ191al、191a2は一端が夫々振
動センサ83a1に固定され、他端が摩擦板192a、
192aに夫々固定されている。摩擦板192a、 、
 192a2は固定筒82aの外周および外筒82bの
内周に形成した摩擦面82a、、82b、と摩擦接触し
ており、バネ191a、、191a2の張力により摩擦
面82a、 、82b、の静止摩擦は大きくなり、大き
い剛性て振動センサをレンズ鏡筒に支持している。
FIG. 19 shows a buffer member 181a1. It is a partially enlarged view showing the structure of a2, and the buffer members are springs 191a, , 191
a2 and friction plates 192a, +92a2, one end of the springs 191al and 191a2 is fixed to the vibration sensor 83a1, and the other end is the friction plate 192a, +92a2.
192a, respectively. Friction plate 192a, ,
192a2 is in frictional contact with friction surfaces 82a, 82b formed on the outer periphery of the fixed cylinder 82a and the inner periphery of the outer cylinder 82b, and the static friction of the friction surfaces 82a, , 82b is reduced by the tension of the springs 191a, 191a2. The vibration sensor is supported by the lens barrel with increased size and rigidity.

そして外乱振動811が振動センサに人力しようとする
と、摩擦面82a、 、82b、に°゛すベリ°′が生
じ、摩擦面は動摩擦接触となるために外乱振動が吸収さ
れる。すなわち、一般に動摩擦係数は静止摩擦係数に比
べて著るしく小さいため緩衝部材181al、181a
2の剛性は小さくなり外乱振動は振動センサに伝達され
ないことになる。
When the disturbance vibration 811 is applied manually to the vibration sensor, a deflection occurs on the friction surfaces 82a, 82b, and the friction surfaces come into dynamic frictional contact, so that the disturbance vibration is absorbed. That is, since the coefficient of dynamic friction is generally significantly smaller than the coefficient of static friction, the buffer members 181al, 181a
The rigidity of the sensor 2 becomes small, and disturbance vibrations are not transmitted to the vibration sensor.

モして外乱1辰動がなくなると、!yi衝部材の剛性が
高くなるため手プレ周波数帯域の信号は劣下しない。
When the disturbance 1 movement disappears, ! Since the stiffness of the yi shock member is increased, the signal in the manual frequency band does not deteriorate.

このような構成は振動センサ取り付けに限られず、例え
ば補正光学系のレンズへの取り付は等に利用しても同様
の効果を得られ、前述した各実施例のような複雑な回路
を必要とせず簡厚に機械的に防振システムの安定化を図
ることかできる。
Such a configuration is not limited to attaching a vibration sensor, but can also be used for, for example, attaching a correction optical system to a lens, etc., to obtain the same effect, and does not require complicated circuits as in the above-mentioned embodiments. It is possible to easily stabilize the vibration isolation system mechanically.

[発明の効果] 以上説明してきたように、第1の本発明によれは、補正
光学系側等からの外乱を振動センサが検出しても、検出
した振動情報に基づき防振系の振動を検知すべき振動領
域となるように補正光学系の駆動が行なわれるので、外
乱振動の発振のない状態で補正光学系の駆動が可能にな
り、高精度で安定した動作を得ることができる。
[Effects of the Invention] As described above, according to the first aspect of the present invention, even if the vibration sensor detects a disturbance from the correction optical system side, the vibration of the vibration isolation system is suppressed based on the detected vibration information. Since the correction optical system is driven so as to correspond to the vibration region to be detected, the correction optical system can be driven in a state where there is no oscillation of disturbance vibration, and highly accurate and stable operation can be obtained.

また第2の発明によれば、補正光学系側等からの外乱振
動を緩衝手段で吸収し振動センサに伝達されるのを機械
的に防止し、検知すべぎ手ぶれ等の振動のみで補正光学
系を駆動制御することができる。
Further, according to the second invention, disturbance vibrations from the correction optical system side etc. are absorbed by the buffer means and mechanically prevented from being transmitted to the vibration sensor, and the correction optical system detects only vibrations such as camera shake. The drive can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明による光学機器の防振装置の
実施例1乃至実施例3を示すブロック図、第4図は実施
例3の変形例を示すブロック図、第5図乃至第7図は本
発明による光学機器の防振装置の実施例4乃至実施例6
を示すブロック図、第8図は従来のカメラの防振システ
ムの斜視図、第9図及び第10図は従来のカメラの防振
システムのブロック図、第11図乃至第17図は本発明
による光学機器の防振装置の実施例7乃至実施例13を
示すブロック図、第18図は本発明による光学機器の防
振装置の実施例14を示す斜視図、第19図はその要部
を示す断面図である。 11・・・振動センサ   12・・・演算回路13・
・・低域通過回路T  14・・・駆動回路15・・・
周波数選別回路 16・・・振幅−出力変換回路 1B、23.52.62・・・外部人力21・・・低域
通過回路I+ 22・・・比較回路 32・・・低域通過回路II+ 33・・・低域通過回路1■ 51・・・増幅回路1   61・・・増幅回路II第
9図 tI                Il     
            ノ07          
     /4第18図 第19図 82゜
1 to 3 are block diagrams showing embodiments 1 to 3 of the vibration isolating device for optical equipment according to the present invention, FIG. 4 is a block diagram showing a modification of embodiment 3, and FIGS. Figure 7 shows embodiments 4 to 6 of the vibration isolating device for optical equipment according to the present invention.
8 is a perspective view of a conventional camera anti-vibration system, FIGS. 9 and 10 are block diagrams of a conventional camera anti-vibration system, and FIGS. 11 to 17 are a perspective view of a conventional camera anti-vibration system. FIG. 18 is a block diagram showing Embodiments 7 to 13 of the vibration isolating device for optical equipment, FIG. 18 is a perspective view showing Embodiment 14 of the vibration isolating device for optical equipment according to the present invention, and FIG. 19 shows the main parts thereof. FIG. 11... Vibration sensor 12... Arithmetic circuit 13.
...Low pass circuit T14...Drive circuit 15...
Frequency selection circuit 16...Amplitude-output conversion circuit 1B, 23.52.62...External human power 21...Low pass circuit I+ 22...Comparison circuit 32...Low pass circuit II+ 33. ...Low-pass circuit 1 ■ 51 ... Amplifier circuit 1 61 ... Amplifier circuit II Figure 9 tI Il
No07
/4 Fig. 18 Fig. 19 82゜

Claims (1)

【特許請求の範囲】 1 補正光学系を駆動する補正光学系駆動制御手段と、
光学機器の振動を検出する振動センサと、該振動センサ
の出力を演算する演算手段と、該演算結果に基づいて補
正光学系駆動制御手段を駆動する駆動手段とを備え、該
振動センサが振動を検出すると、該補正光学系を振動の
影響を排除する方向に駆動制御する光学機器の防振装置
において、 該振動センサで検出した振動情報に基づい て、検出すべき振動領域に防振系の振動を収束せしめる
ように該駆動手段への入力を制御する振動収束制御手段
を有することを特徴とする光学機器の防振装置。 2 被取付け体に取り付けた振動センサからの振動情報
に基づいて、振動の影響を排除する方向に補正光学系を
駆動制御する光学機器の防振装置において、該振動セン
サと該補正光学系とは、光学機器に伝搬される振動に応
じて剛性を可変とする緩衝手段を介して接続しているこ
とを特徴とする光学機器の防振装 置。
[Claims] 1. Correction optical system drive control means for driving the correction optical system;
A vibration sensor that detects vibration of an optical device, a calculation means that calculates an output of the vibration sensor, and a drive means that drives a correction optical system drive control means based on the calculation result, and the vibration sensor detects the vibration. When detected, in the vibration isolating device of the optical equipment that drives and controls the correction optical system in a direction to eliminate the influence of vibration, the vibration of the vibration isolating system is applied to the vibration area to be detected based on the vibration information detected by the vibration sensor. 1. A vibration isolating device for an optical device, comprising vibration convergence control means for controlling input to the drive means so as to converge the vibration. 2. In a vibration isolating device for an optical device that drives and controls a correction optical system in a direction to eliminate the influence of vibration based on vibration information from a vibration sensor attached to an attached object, what is the vibration sensor and the correction optical system? A vibration isolating device for an optical device, characterized in that the device is connected via a buffer means whose rigidity is variable according to vibrations propagated to the optical device.
JP13190588A 1988-05-30 1988-05-30 Vibration proofing device for optical equipment Pending JPH01300221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13190588A JPH01300221A (en) 1988-05-30 1988-05-30 Vibration proofing device for optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13190588A JPH01300221A (en) 1988-05-30 1988-05-30 Vibration proofing device for optical equipment

Publications (1)

Publication Number Publication Date
JPH01300221A true JPH01300221A (en) 1989-12-04

Family

ID=15068912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13190588A Pending JPH01300221A (en) 1988-05-30 1988-05-30 Vibration proofing device for optical equipment

Country Status (1)

Country Link
JP (1) JPH01300221A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220375A (en) * 1989-06-21 1993-06-15 Minolta Camera Kabushiki Kaisha Camera having blurring correction apparatus
US5309190A (en) * 1991-05-31 1994-05-03 Ricoh Company, Ltd. Camera having blurring movement correction mechanism
JP2007221704A (en) * 2006-02-20 2007-08-30 Canon Inc Imaging apparatus
JP2008020666A (en) * 2006-07-13 2008-01-31 Pentax Corp Image-shake correcting device
JP2008020691A (en) * 2006-07-13 2008-01-31 Pentax Corp Image-shake correcting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220375A (en) * 1989-06-21 1993-06-15 Minolta Camera Kabushiki Kaisha Camera having blurring correction apparatus
US5309190A (en) * 1991-05-31 1994-05-03 Ricoh Company, Ltd. Camera having blurring movement correction mechanism
JP2007221704A (en) * 2006-02-20 2007-08-30 Canon Inc Imaging apparatus
JP4612900B2 (en) * 2006-02-20 2011-01-12 キヤノン株式会社 Imaging apparatus and control method thereof
JP2008020666A (en) * 2006-07-13 2008-01-31 Pentax Corp Image-shake correcting device
JP2008020691A (en) * 2006-07-13 2008-01-31 Pentax Corp Image-shake correcting device

Similar Documents

Publication Publication Date Title
JP6362556B2 (en) Control device, imaging device, control method, program, and storage medium
JP5274130B2 (en) Image blur correction apparatus, optical apparatus, image pickup apparatus, and image blur correction apparatus control method
JP5094606B2 (en) Image shake correction apparatus, optical apparatus including the same, image pickup apparatus, and image shake correction apparatus control method
JP5031690B2 (en) Anti-vibration control device, imaging device, and control method for image stabilization control device
JP2009258389A (en) Image blur correction apparatus, imaging apparatus and optical apparatus
US5745799A (en) Image blur prevention apparatus
JPH01300221A (en) Vibration proofing device for optical equipment
JPH05323436A (en) Image blur preventive device
US20030053803A1 (en) Optical apparatus and optical system
JP2013210614A (en) Imaging apparatus
JP2011118073A (en) Image blur correcting apparatus
JPH0337616A (en) Vibration proof camera
JPH08110540A (en) Image blurring preventive camera
JPH05107623A (en) Attaching device for deflection detector
JP3225055B2 (en) Image stabilizer
JP2902726B2 (en) Image stabilizer
JP3131431B2 (en) Image blur prevention measures
JPH01298311A (en) Vibration isolation device for optical equipment
JP5693656B2 (en) Image shake correction apparatus, optical apparatus including the same, image pickup apparatus, and image shake correction apparatus control method
JPH0439616A (en) Correcting optical mechanism
JP5207861B2 (en) Image shake correction apparatus, image pickup apparatus including the same, optical apparatus, and image shake correction apparatus control method
KR101575097B1 (en) Image signal processor for vibration compensation
JPH0337617A (en) Vibration proof camera
JPH0411469A (en) Image pickup device
JP5420042B2 (en) Image blur correction apparatus, optical apparatus including the same, imaging apparatus, and image blur correction apparatus control method