JPH01299476A - Method for determining failed section of underground transmission line - Google Patents

Method for determining failed section of underground transmission line

Info

Publication number
JPH01299476A
JPH01299476A JP12968488A JP12968488A JPH01299476A JP H01299476 A JPH01299476 A JP H01299476A JP 12968488 A JP12968488 A JP 12968488A JP 12968488 A JP12968488 A JP 12968488A JP H01299476 A JPH01299476 A JP H01299476A
Authority
JP
Japan
Prior art keywords
sheath
current
voltage
phase
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12968488A
Other languages
Japanese (ja)
Inventor
Makoto Hara
原 信
Hideo Sato
英男 佐藤
Koichi Sugiyama
耕一 杉山
Hiroshi Kawakami
川神 裕志
Mitsumasa Shimada
嶋田 光正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12968488A priority Critical patent/JPH01299476A/en
Publication of JPH01299476A publication Critical patent/JPH01299476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To make it possible to determine a failed section instantaneously and accurately even for one circuit of three-core cable, by measuring the voltage drop in a sheath at a specified interval, detecting a sheath current, and determining the failed section by the comparison of the values at a plurality of points. CONSTITUTION:When any of conductors 4 and sheath 6 are shorted, a sheath current flows through the sheath 6. The voltage between terminals 7 and 7 at both ends of a connecting box is measured with a voltage detector 9. The voltage is amplified and transduced into a light signal with an electricity/light transducer 11. The signal is transmitted to a central judging device through optical fiber cable 12. In the central judging device, the transmitted light signal is regenerated into the current value and the current phase. These values are stored, compared and operated. The absolute value and the phase of the sheath current are changed before and after the grounded point. Based on this fact, the obtained sheath currents are compared at a plurality of points, and the changing point is obtained. The part corresponding to the changing point is judged to be the grounded section. Since a current feeding patter of the objective underground line is known, the level distribution and the phase of the sheath current in the longitudinal direction are detected, and the grounded point is determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地中送電線路の絶縁破壊によって発生する地絡
事故の故障区間を特定する地中送電線路の故障区間標定
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for locating a faulty section of an underground power transmission line for identifying a faulty section of an earth fault caused by insulation breakdown of the underground power transmission line.

(従来の技術〕 電気エネルギーの需要の増大により安定した電力供給が
必要となり、ケーブルをはじめとする地中送電線路の信
顛性に関する技術の開発が行われている。同様に、突発
的な事故に際しては、速やかに故障箇所を標定して適切
な復旧作業を行う必要がある。地中送電線路における事
故としては、絶縁破壊によって導体とシースとが短絡す
る地絡事故が代表的であり、この地絡事故が生じた場合
には地絡区間の特定を早急に行う必要があり、マレ−ル
ープ法、パルスレーダ法、サーチコイル法などの種々の
方法が採用されている。また、これらの方法に対し、ク
ロスボンド接続を有する単心型力ケーブル線路に関して
は、地絡時にクロスボンド線に流れる電流を電流トラン
スで検出し、その電流の絶対値並びに電流位相の分布を
解析することで地絡区間を標定することが行われている
(Conventional technology) As the demand for electrical energy increases, a stable power supply becomes necessary, and technology related to the reliability of underground power transmission lines such as cables is being developed. In such cases, it is necessary to quickly locate the faulty location and carry out appropriate restoration work.A typical accident on underground power transmission lines is a ground fault, in which the conductor and sheath short circuit due to insulation breakdown. When a ground fault occurs, it is necessary to identify the ground fault section immediately, and various methods such as the Murray loop method, pulse radar method, and search coil method are used. On the other hand, for single-core power cable lines with cross-bond connections, a current transformer detects the current flowing through the cross-bond wire in the event of a ground fault, and analyzes the absolute value and current phase distribution of the current. The area is being oriented.

[発明が解決しようとする課題] しかし、前者のマレ−ループ法などの方法では地絡位置
の標定に多大の時間と労力を必要とする共に、地絡点の
抵抗値が高い場合には地絡位置の検出ができない不都合
がある。
[Problems to be solved by the invention] However, the former Murray loop method requires a lot of time and effort to locate the ground fault location, and if the resistance value of the ground fault point is high, There is an inconvenience that the fault position cannot be detected.

これに対し、後者のクロスボンド線の電流を検出する方
法は、地絡区間の標定を迅速、かつ、正確に行うことが
できるが、この方法はクロスポンド接続を有する単心の
電力ケーブルにのみ適用できるものである。すなわち、
3相の導体が単一のシース内に挿入された3心ケーブル
や各相の導体が個々のシース内に挿入されたトリプレッ
クスケーブルなどのようにクロスボンド線を備えていな
い地中送電線路には適用できず、汎用性の低いものとな
っている。
On the other hand, the latter method of detecting the current in a cross-bonded wire can quickly and accurately locate the ground fault section, but this method is only applicable to single-core power cables with cross-bond connections. It is applicable. That is,
Underground power transmission lines without cross-bond wires, such as three-core cables with three-phase conductors inserted in a single sheath or triplex cables with each phase conductor inserted in individual sheaths. cannot be applied and has low versatility.

そこで本発明は、種々の構造の電カケープルを有する地
中送電線路に対して地絡位置を迅速、かつ、正確に標定
することができる地中送電線路の故障区間標定方法を提
供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fault section locating method for underground power transmission lines that can quickly and accurately locate the ground fault location for underground power transmission lines having power cables of various structures. shall be.

〔課題を解決するための手段] 本発明は、3心OFケーブルなどのように各相の導体が
単一のシース内に導入された電力ケーブルの地絡標定に
適用するため、電力ケーブルのシースにおける電圧降下
を所定間隔で測定し、この電圧値からシース電流を検出
し、そのレベルあるいは位相を複数の地点で比較するよ
うにしたものである。すなわち、本発明は以下の地中送
電線路を対象として次に示す手段を行うものである。
[Means for Solving the Problem] The present invention is applied to ground fault location of a power cable in which conductors of each phase are introduced in a single sheath, such as a three-core OF cable. The voltage drop is measured at predetermined intervals, the sheath current is detected from this voltage value, and its level or phase is compared at multiple points. That is, the present invention performs the following means for the following underground power transmission line.

(1)適用対象と地中送電線路 各相の導体が単一のシース内に挿入された電力ケーブル
である。この電力ケーブルのシースにはシースに流れる
シース電流を電圧から間接的に測定するための一対の端
子が所定間隔で設けられる。
(1) Applicable target: underground power transmission line A power cable in which the conductors of each phase are inserted into a single sheath. A pair of terminals are provided at a predetermined interval on the sheath of this power cable for indirectly measuring the sheath current flowing through the sheath from the voltage.

(2)適用される手段 上記電力ケーブルの端子間における電圧を複数の地点で
測定し、この電圧に基づいてシースの端子取付位置に流
れるシース電流を検出し、検出されたシース電流のレベ
ルあるいは位相を複数の地点で比較する。
(2) Applicable means Measure the voltage between the terminals of the power cable at multiple points, detect the sheath current flowing to the terminal attachment position of the sheath based on the voltage, and detect the level or phase of the detected sheath current. Compare at multiple locations.

シース電流は電力ケーブルの地絡によって生じるが、1
回線の電力ケーブルでは導体を流れる導体電流とシース
を流れるシース電流は絶対値が同じで、逆向きに流れる
(すなわち、位相が反転している)ため、電流トランス
などによってはこれらの合成電流は零となってしまい検
出することができない。しがし、シース電流によってシ
ース電圧降下が生じており、この電圧を測定することで
間接的にシース電流を検出することができる。シース電
流は地絡点を境にして電力ケーブルの前後で絶対値、位
相が大きく変化する。従って、他の部位におけるシース
電流と比較することによりその変位点が得られるため、
地絡区間を標定することができる。
The sheath current is caused by a ground fault in the power cable, but 1
In a line power cable, the conductor current flowing through the conductor and the sheath current flowing through the sheath have the same absolute value but flow in opposite directions (that is, the phase is reversed), so depending on the current transformer, etc., their combined current may be zero. , and cannot be detected. However, a sheath voltage drop occurs due to the sheath current, and by measuring this voltage, the sheath current can be indirectly detected. The sheath current changes greatly in absolute value and phase before and after the power cable, with the ground fault point as the boundary. Therefore, the displacement point can be obtained by comparing with the sheath current at other parts,
Ground fault sections can be located.

(作用〕 上記構成では、地絡によって生じるシース電流はシース
の複数の地点に設けられた一対の端子間の電圧を測定す
ることにより、複数の地点で検出される。得られたシー
ス電流のレベルあるいは位相を複数の地点で比較するこ
とにより変位点を検出でき、地絡区間の標定を行う。
(Operation) In the above configuration, the sheath current caused by a ground fault is detected at multiple points by measuring the voltage between a pair of terminals provided at multiple points on the sheath.The level of the obtained sheath current Alternatively, the displacement point can be detected by comparing the phase at multiple points, and the ground fault section can be located.

〔実施例] 以下、本発明を添付図面により具体的に説明する。〔Example] Hereinafter, the present invention will be explained in detail with reference to the accompanying drawings.

本発明は絶縁破壊によって導体とシースとが短絡した場
合に、シースに流れる電流のレベルおよび位相が地絡点
を境にして大きく変化することを利用して故障区間の標
定を行うものであり、その原理を第4図(a)、(b)
により説明する。これらの図において、導体42が絶縁
体42aによって絶縁されてシース43に挿入されて地
中送電線路41を形成している。第4図(a)において
は、この導体42の両端が電源44に接続されており、
同図(b)においては導体42の右端側が電源44に接
続され、左端側が負荷45に接続されている。正常な状
態では電源44からの送電により電流は導体42内を矢
印47方向に流れている。このようなケーブル41に地
絡が生じると、地絡点46を境にしてその両側では導体
電流47が反転してシース43内を流れるシース電流4
8が生じる(同図(a))。すなわち、地絡点46の左
右ではシース43内を流れるシース電流の位相に約18
0″′のずれを生じる。
The present invention locates a faulty area by utilizing the fact that when a conductor and sheath are short-circuited due to dielectric breakdown, the level and phase of the current flowing through the sheath change significantly across the ground fault point. The principle is shown in Figure 4 (a) and (b).
This is explained by: In these figures, a conductor 42 is insulated by an insulator 42a and inserted into a sheath 43 to form an underground power transmission line 41. In FIG. 4(a), both ends of this conductor 42 are connected to a power source 44,
In the figure (b), the right end side of the conductor 42 is connected to the power source 44, and the left end side is connected to the load 45. Under normal conditions, current flows in the conductor 42 in the direction of the arrow 47 due to power transmission from the power source 44. When a ground fault occurs in such a cable 41, the conductor current 47 is reversed on both sides of the ground fault point 46, and the sheath current 4 flowing inside the sheath 43 is reversed.
8 is generated ((a) in the same figure). That is, on the left and right sides of the ground fault point 46, the phase of the sheath current flowing inside the sheath 43 is approximately 18
This results in a deviation of 0''.

一方、同図■)では地絡点46で導体42内の導体電流
47の大部分がシース電流48となって反対方向に流れ
る。従って、地絡点46よりも負荷45側のシース43
を流れるシース電流が少なくなる。このため、地絡点4
6を中心として電源44側のシース電流のレベルに比べ
て負荷45側のシース電流のレベルが小さくなり、電流
値が急変する。このようなシース電流の位相の反転およ
びその電流値の急変は地中送電線路の給電条件などによ
っていずれか一方、または双方が併合して起こるもので
あり、所定部位のシース電流を測定し、その測定値を他
の部位のシース電流と比較することにより地絡点の標定
が可能となる。
On the other hand, in (2) in the figure, most of the conductor current 47 in the conductor 42 becomes a sheath current 48 at the ground fault point 46 and flows in the opposite direction. Therefore, the sheath 43 is closer to the load 45 than the ground fault point 46.
The sheath current flowing through the For this reason, ground fault point 4
6, the level of the sheath current on the load 45 side becomes smaller than the level of the sheath current on the power source 44 side, and the current value changes suddenly. Such reversal of the phase of the sheath current and sudden changes in its current value can occur either or both together, depending on the power supply conditions of the underground power transmission line, etc., so it is necessary to measure the sheath current at a predetermined location and By comparing the measured value with the sheath current at other locations, it becomes possible to locate the ground fault point.

以上のような原理を電力ケーブルが1回線である送電線
路に適用する場合、導体電流とシース電流とが逆向きで
、しかもレベルが路間等となるため、電流トランスを使
用してもその出力は零となって検出することができない
。しかし、シースにはシース電流が流れており、シース
の抵抗により電圧降下が生じている。本発明はこのシー
スに生じる電圧を測定してシース電流を間接的に検出し
、検出されたシース電流のレベルあるいは位相を比較す
ることで地絡区間を標定するものである。
When applying the above principle to a power transmission line with a single line of power cable, the conductor current and sheath current are in opposite directions and the level is between the lines, so even if a current transformer is used, the output will be low. becomes zero and cannot be detected. However, a sheath current flows through the sheath, and a voltage drop occurs due to the resistance of the sheath. The present invention measures the voltage generated in the sheath to indirectly detect the sheath current, and locates the ground fault section by comparing the level or phase of the detected sheath current.

第1図は本発明が適用される地中送電線路を示し、電力
ケーブル1が接続箱2によって接続されている。電力ケ
ーブル1は第2図に示すように、3相の各導体4が絶縁
体5にそれぞれ被覆されてケーブルコアが形成され、こ
のケーブルコアの3条が単一のシース6内に挿入されて
構成される。ただし、内外の半導電層等の図示は省略し
た。この場合、シース6は鉛あるいはアルミニウムなど
の導電性金属が使用され、絶縁破壊によりいずれかの導
体4とシース6とが短絡するとシース6にシース電流が
流れる。前記接続箱2はこのような電力ケーブル1と基
本的構成は同一であり、最外側はシースと同質の導電性
金属により覆われて、内部保護が図られている。このよ
うな接続箱2は電力ケーブル1の長手方向を接続するよ
うに複数段けられ、これにより所定長さの送電線路が形
成される。そして、この送電線路には所定間隔で一対の
端子7が設けられる。本実施例では端子7は接続箱2の
両端に設けられており、このような構成を各接続箱2に
適用することにより送電線路には電力ケーブル接続区間
毎に端子が設けられることとなる。この端子7はリード
線8によって電圧検出器9に接続されて一対の端子7間
の電圧が測定される。電圧検出器9は増幅器10に接続
され、電圧値は必要なレベルまで増幅される。そして、
増幅された電気信号は増幅器10に接続された電気/光
変換器11によって光信号に変換された後、光フアイバ
ケーブル12によってコンピュータなどの中央判定装置
(図示せず)に伝送される。以上のような構成は接続箱
2毎に設けられており、中央判定装置では各接続箱2か
ら伝送される光信号を電流値および電流の位相に再生し
てメモリし、メモリされた各接続箱2からの電気信号を
比較演算する。ここで、電圧検出器9により測定される
電圧は接続箱2の両端、すなわち、電力ケーブルのシー
ス6の電圧であり、この電圧値とシース6の抵抗値を知
ることによりシースを流れるシース電流を検出すること
ができる。既述のように地絡点の前後ではシース電流の
絶対値および位相が変化するため、得られたシース電流
を複数の地点(接続箱2)ごとに比較することにより変
位点を求めることができる。そして、この変位点に対応
する部位が地絡区間と判定することができる。その際、
対象となる地中送電線路が第4図(a)の給電パターン
であるか、第4図(ト))の給電パターンであるかは事
前に知ることができるものであり、よって地中送電線路
の長さ方向におけるシース電流のレベル分布、位相を検
出することにより容易に地絡点を標定することができる
FIG. 1 shows an underground power transmission line to which the present invention is applied, and a power cable 1 is connected by a junction box 2. As shown in FIG. 2, the power cable 1 has three phase conductors 4 each covered with an insulator 5 to form a cable core, and three strips of this cable core inserted into a single sheath 6. configured. However, illustrations of internal and external semiconductive layers, etc. are omitted. In this case, the sheath 6 is made of a conductive metal such as lead or aluminum, and when any of the conductors 4 and the sheath 6 are short-circuited due to dielectric breakdown, a sheath current flows through the sheath 6. The connection box 2 has the same basic structure as the power cable 1, and the outermost side is covered with a conductive metal of the same quality as the sheath to protect the inside. A plurality of such connection boxes 2 are arranged so as to connect the power cables 1 in the longitudinal direction, thereby forming a power transmission line of a predetermined length. A pair of terminals 7 are provided on this power transmission line at predetermined intervals. In this embodiment, the terminals 7 are provided at both ends of the connection box 2, and by applying such a configuration to each connection box 2, the power transmission line is provided with a terminal for each power cable connection section. This terminal 7 is connected to a voltage detector 9 by a lead wire 8, and the voltage between the pair of terminals 7 is measured. Voltage detector 9 is connected to amplifier 10 and the voltage value is amplified to the required level. and,
The amplified electrical signal is converted into an optical signal by an electrical/optical converter 11 connected to an amplifier 10, and then transmitted via a fiber optic cable 12 to a central determination device (not shown) such as a computer. The above configuration is provided for each junction box 2, and the central determination device regenerates the optical signal transmitted from each junction box 2 into a current value and current phase and stores it in memory. Compare and calculate the electrical signals from 2. Here, the voltage measured by the voltage detector 9 is the voltage at both ends of the junction box 2, that is, the voltage at the sheath 6 of the power cable, and by knowing this voltage value and the resistance value of the sheath 6, the sheath current flowing through the sheath can be determined. can be detected. As mentioned above, the absolute value and phase of the sheath current change before and after the ground fault point, so the displacement point can be found by comparing the obtained sheath current at multiple points (junction box 2). . Then, the part corresponding to this displacement point can be determined to be the ground fault section. that time,
It is possible to know in advance whether the target underground power transmission line has the power feeding pattern shown in Figure 4 (a) or the power feeding pattern shown in Figure 4 (g)). By detecting the level distribution and phase of the sheath current in the length direction, the ground fault point can be easily located.

第3図は本発明が適用される別例を示し、一対の端子7
が電力ケーブル1のシースの適宜箇所に設けられている
。本発明の目的は地絡による故障区間の標定であり、こ
のように電力ケーブル1のシースに端子7を設けても同
様に標定か可能である。ここで、第1図の実施例の方が
接続工事の際に検出端子7の工事を一緒に行うことがで
きる利点を有し、第3図の実施例は、一対の端子7間の
電圧降下が大になるため測定器の精度を下げることがで
きる。
FIG. 3 shows another example to which the present invention is applied, in which a pair of terminals 7
are provided at appropriate locations on the sheath of the power cable 1. The purpose of the present invention is to locate a faulty section due to a ground fault, and even if the terminal 7 is provided in the sheath of the power cable 1 in this way, the same location is possible. Here, the embodiment shown in FIG. 1 has the advantage that the detection terminal 7 can be constructed at the same time as the connection work, and the embodiment shown in FIG. The accuracy of the measuring instrument can be lowered because the value becomes large.

なお、上記実施例では電気信号に変換しているが、この
変換を行うことなく電圧信号のまま伝送しても良い。
In the above embodiment, the voltage signal is converted into an electric signal, but the voltage signal may be transmitted as it is without performing this conversion.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、電カケープルのシース電
流によるシースの電圧降下を所定間隔で測定し、この電
圧に基づいてシースを流れる電流を検出し、検出された
シース電流の複数の地点における比較によって故障区間
の標定を行うため、3心ケーブルの1回線からなる地中
送電線路であってもその故障区間の標定を瞬時に、正確
に行うことができる。
As explained above, the present invention measures the voltage drop across the sheath due to the sheath current of the power cable at predetermined intervals, detects the current flowing through the sheath based on this voltage, and compares the detected sheath current at multiple points. Since the fault section is located using the following method, the fault section can be located instantly and accurately even in an underground power transmission line consisting of one line of three-core cable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される地中送電線路の構成を示す
概略図、第2図はその電力ケーブルを示す断面図、第3
図は本発明の別例を示す概略図、第4図は本発明の基本
原理を示す概略図9 符号の説明 1−一一一一〜−−−−−電力ケーブル 2−・−−−
m−−−・接続箱4−−−〜−−−−−−導体
FIG. 1 is a schematic diagram showing the configuration of an underground power transmission line to which the present invention is applied, FIG. 2 is a cross-sectional view showing the power cable, and FIG.
The figure is a schematic diagram showing another example of the present invention, and FIG. 4 is a schematic diagram showing the basic principle of the present invention.
m----・Connection box 4--------Conductor

Claims (1)

【特許請求の範囲】 各相の導体が単一のシースに挿入された電 力ケーブルの故障位置を標定する地中送電線路の故障区
間標定方法において、 前記シースに所定間隔の複数の地点で一対 の端子を設けて端子間における電圧を測定し、測定され
た電圧に基づいて端子間のシース に流れる電流を前記複数の地点で検出し、 検出された前記複数の地点のシース電流の レベルあるいは位相を比較して故障区間の標定を行うこ
とを特徴とする地中送電線路の故障区間標定方法。
[Claims] In a fault section locating method for an underground power transmission line, which locates a fault location in a power cable in which conductors of each phase are inserted into a single sheath, Providing terminals and measuring the voltage between the terminals, detecting the current flowing in the sheath between the terminals at the plurality of points based on the measured voltage, and determining the level or phase of the sheath current at the plurality of detected points. A method for locating a faulty section of an underground power transmission line, characterized by locating a faulty section by comparison.
JP12968488A 1988-05-27 1988-05-27 Method for determining failed section of underground transmission line Pending JPH01299476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12968488A JPH01299476A (en) 1988-05-27 1988-05-27 Method for determining failed section of underground transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12968488A JPH01299476A (en) 1988-05-27 1988-05-27 Method for determining failed section of underground transmission line

Publications (1)

Publication Number Publication Date
JPH01299476A true JPH01299476A (en) 1989-12-04

Family

ID=15015622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12968488A Pending JPH01299476A (en) 1988-05-27 1988-05-27 Method for determining failed section of underground transmission line

Country Status (1)

Country Link
JP (1) JPH01299476A (en)

Similar Documents

Publication Publication Date Title
EP0356017A2 (en) Liquid leakage detection apparatus
US20160245854A1 (en) Two-wire resistance terminated ground check
EP0294159B1 (en) Branched sensor system
KR101984432B1 (en) Diagnosis device for monitoring degradation of cable and diagnosis method thereof
KR100538018B1 (en) A new measurement equipment for the shieth currents of grounding power cables
JPH01299476A (en) Method for determining failed section of underground transmission line
CN113567807A (en) Method for detecting current abnormity of power cable metal sheath layer
JPH02262072A (en) Fault section locating system of underground transmission line
JPS6215473A (en) Locating method for fault point of transmission line
JP2568097B2 (en) Power cable accident section detection method
HU210576B (en) Instrument for measuring contact resistance for checking completness of the mains line connections
JP2001272432A (en) LIVE-WIRE tan delta MEASURING APPARATUS
JPH01299477A (en) Method for determining failed section of underground transmission line
JPH01299475A (en) Method for determining failed section of underground transmission line
JPS62261078A (en) Detection of fault point for cable
SU1718157A1 (en) Method of determining a search direction in testing power lines for shorted spots and device thereof
JP3115671B2 (en) Three-wire sense meter
JPH05164804A (en) Fault section detecting method for power cable line
SU1188679A1 (en) Method of locating short-circuits in mine cable conductors
SU1262429A1 (en) Method of locating cable core fault
SU1007050A2 (en) Method of determining damaged phase at single-phase earthing in network with insulated neutral wire
JP2568092B2 (en) Power cable accident section detection method
JP2003057288A (en) Fault-point specifying method for branch cable line
JPH08146074A (en) Detection of power cable trouble section
JPH034940Y2 (en)