JPH01299425A - Gas temperature sensor - Google Patents

Gas temperature sensor

Info

Publication number
JPH01299425A
JPH01299425A JP63128428A JP12842888A JPH01299425A JP H01299425 A JPH01299425 A JP H01299425A JP 63128428 A JP63128428 A JP 63128428A JP 12842888 A JP12842888 A JP 12842888A JP H01299425 A JPH01299425 A JP H01299425A
Authority
JP
Japan
Prior art keywords
temperature
sensor
gas
fluid
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63128428A
Other languages
Japanese (ja)
Inventor
Kazunori Shioda
和則 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63128428A priority Critical patent/JPH01299425A/en
Publication of JPH01299425A publication Critical patent/JPH01299425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a high-performance gas temperature sensor having a saturation characteristic and a response performance improved together, by a method wherein a radiation shield surrounding a temperature-sensitive element of the sensor is constructed in a multilayer structure, an air flow velocity around the temperature- sensitive element is accelerated and a stagnant state is formed on the surface of the temperature-sensitive element. CONSTITUTION:A gas fluid 2 is introduced into an internal space 11 from an inlet port 10 formed by a radiation shield 13. The space 11 forms a narrow space in the shape of a nozzle, and the fluid 2 is thereby accelerated and reaches the vicinity of a temperature-sensitive element 1 of a sensor. The fluid 2 passes the lateral side of the temperature-sensitive element 1 along a streamlined fore end part 6a of a support and reaches a discharge port 12, except that it is interrupted and put in a stagnant state on the surface of the temperature-sensitive element 1 on the upstream side of the gas. Accordingly, a recovery temperature of the fluid 2 in the vicinity of the temperature-sensitive element 1 becomes equal to the total temperature. Besides, the amount of radiation heat from the temperature-sensitive body 1 is reduced by the multilayer shield 13 and thus a radiation loss is near to zero. Thereby a saturation characteristic and a response performance can be improved together.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、熱電対を使用したガス流体の温度を測定する
センサに係わり、流体の全温度測定用の(従来の技術) 火力発電におけるガスタービンや石炭燃焼等によるMH
D直接発電などに代表されるエネルギ機器は、高温ガス
流体を作動媒体としている。さらに、今後は化石燃料の
有効利用を指向して、高温ガス流体を利用した複合発電
システムの開発が社会的に要請されることは想像に廻く
ない。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a sensor for measuring the temperature of a gaseous fluid using a thermocouple, which is a sensor for measuring the total temperature of a fluid (conventional technology). ) MH caused by gas turbines, coal combustion, etc. in thermal power generation
D Energy devices, such as those typified by direct power generation, use high-temperature gas fluid as a working medium. Furthermore, it is not hard to imagine that in the future there will be a social demand for the development of combined power generation systems that utilize high-temperature gas fluids, with the aim of making more effective use of fossil fuels.

ガス温度の測定方法としては、現在様々な方法が開発さ
れるにいたり、光学的な非接触測定法などセンサを直接
ガス流体中に挿入しないで済む方法もある。しかし、高
温、高流速のガス流体における全温度の測定法としては
、従来からの熱電対温度計測法が簡便であり、かつ最も
信頼性の高い実測値を提供してくれる。
Various methods are currently being developed to measure gas temperature, and there are also methods that do not require directly inserting a sensor into the gas fluid, such as optical non-contact measurement methods. However, as a method for measuring the total temperature in a gas fluid at high temperature and high flow rate, the conventional thermocouple temperature measurement method is simple and provides the most reliable measured values.

熱電対温度計は、そもそも2つの異種金属、または2つ
の異種合金を連結させて成る電気回路の2つの接合点を
それぞれ異なった温度としたときに、ゼーベック効果に
基づき接合点の温度差によって回路に発生する熱起電力
を利用したものであり、以下にガス温度センサの従来例
を第2図を参照して説明する。
A thermocouple thermometer is a thermocouple thermometer that measures the temperature of an electrical circuit made by connecting two dissimilar metals or two dissimilar alloys when the two junctions are set to different temperatures. A conventional example of a gas temperature sensor will be described below with reference to FIG. 2.

第2図は、運動状態にある高温ガス流体中に置かれたガ
ス温度測定用センサの要部断面図である。
FIG. 2 is a sectional view of a main part of a sensor for measuring gas temperature placed in a high-temperature gas fluid in a state of motion.

ガス流体の温度を測定することを目的として上記接合点
のひとつであるセンサ感温部1をガス流体2中に挿入す
ると、ガス流体2がこのセンサ感温部1を加熱して一定
の測定温度T8が得られる。
When the sensor temperature sensing part 1, which is one of the junctions mentioned above, is inserted into the gas fluid 2 for the purpose of measuring the temperature of the gas fluid, the gas fluid 2 heats the sensor temperature sensing part 1 to maintain a constant measurement temperature. T8 is obtained.

しかし、この測定温度は一般には、運動流体の静温度T
よりも高めの値を示す。原理的には運動流体の静温度T
を直接側る方法はなく、流体中にどんな温度計を挿入し
ても静温度Tより高い測定値を示すのが普通である。そ
れは温度計表面の上流側先端から発生する境界層の縁で
は測定温度は正に静温度Tであるが、境界層内で温度が
上昇し、その後の温度計表面で回復温度TPになるから
である。そこで、運動状態にある流体温度の測定法にお
いでは静温度Tではなく、全温度(澱み温度)′roを
測定するのが一般的となる。全温度T。とは、流れを等
エントロピー的に堰止めたときの平衡状態の温度であり
、流れの保存量である。回復温度T、は流体の静温度T
より高めの値を示す一方。
However, this measured temperature is generally the static temperature T of the moving fluid.
It shows a higher value than . In principle, the static temperature T of the moving fluid
There is no way to directly measure T, and no matter what kind of thermometer you insert into the fluid, it will usually show a reading higher than the static temperature T. This is because the measured temperature at the edge of the boundary layer generated from the upstream tip of the thermometer surface is exactly the static temperature T, but the temperature rises within the boundary layer and then reaches the recovery temperature TP at the thermometer surface. be. Therefore, in the method of measuring the temperature of a fluid in a state of motion, it is common to measure the total temperature (stagnation temperature) 'ro rather than the static temperature T. Total temperature T. is the temperature at equilibrium when the flow is isentropically dammed, and is the conserved quantity of the flow. The recovery temperature T is the static temperature T of the fluid.
While it shows a higher value.

全温度T。より低めの値を示すのが普通である。Total temperature T. Usually it shows a lower value.

このとき、センサ固有の補正係数を導入することによっ
て3111定温度である回復温度T、を全温度T0に換
算してやらなければならない。
At this time, the recovery temperature T, which is the 3111 constant temperature, must be converted into the total temperature T0 by introducing a correction coefficient unique to the sensor.

また、特に高温のガス流体の温度測定においては、上記
のセンサ感温部1からの熱伝導、輻射等による熱量の損
失によって非平衡状態になり、測定温度はさらに回復温
度T1より低めの値を示す様になる。そこでセンサ感温
部1とリード線3を支持する固定座4を熱絶縁性に優れ
た材料で構成することにより、センサ感温部1から支え
5.及び支柱6への熱伝導損失を低減している。また、
センサ感温部1の周りには覆い7を設け、核部からガス
流体2への輻射伝熱をシールドしている。
In addition, especially when measuring the temperature of a high-temperature gas fluid, a non-equilibrium state occurs due to loss of heat due to heat conduction, radiation, etc. from the sensor temperature sensing part 1, and the measured temperature is lower than the recovery temperature T1. It becomes as shown. Therefore, by constructing the fixing seat 4 that supports the sensor temperature-sensing section 1 and the lead wire 3 from a material with excellent thermal insulation, the sensor temperature-sensing section 1 is supported by 5. And the heat conduction loss to the pillar 6 is reduced. Also,
A cover 7 is provided around the sensor temperature sensing part 1 to shield radiation heat transfer from the core part to the gas fluid 2.

覆い7の先端部にはガス吸入孔8が開けられ、ここから
ガス流体2をセンサ感温部1近くに導入しており、セン
サ感温部1を加熱したガス流体2aはガス洩れ孔9から
吐出される。このときセンサ感温部1近傍では近似的に
流体の堰止め状態が実現されているとして、 その回復
温度T7から全温度T0を算出する。
A gas suction hole 8 is opened at the tip of the cover 7, through which the gas fluid 2 is introduced near the sensor temperature sensing part 1, and the gas fluid 2a that has heated the sensor temperature sensing part 1 is passed through the gas leak hole 9. It is discharged. At this time, the total temperature T0 is calculated from the recovery temperature T7, assuming that the fluid is approximately dammed up in the vicinity of the sensor temperature sensing part 1.

(発明が解決しようとする課M) ところで、高効率ガスタービンやMHD発電など、従来
のエネルギ機器よりも高温のガス流体を作動媒体とする
場合、上記のガス温度測定用センサにおいては、特に輻
射による熱損失が無視できない様になる。2000 K
以上の温度領域ではこの傾向は顕著となり、もはや正確
な温度測定はできなくなる。これは温度測定用センサと
しての飽和特性の限界を示すもので、高温流体であれば
ある程測定温度は回復温度を下まわることを意味する。
(Problem M to be solved by the invention) By the way, when a gas fluid with a higher temperature than conventional energy equipment is used as a working medium, such as a high-efficiency gas turbine or MHD power generation, the above-mentioned gas temperature measurement sensor is particularly sensitive to radiation. The heat loss due to this cannot be ignored. 2000K
This tendency becomes noticeable in the above temperature range, and accurate temperature measurement is no longer possible. This indicates the limit of saturation characteristics as a temperature measurement sensor, and means that the higher the temperature of the fluid, the lower the measured temperature will be below the recovery temperature.

一方、輻射シールド用の覆い7はセンサ感温部1を包括
する様に配置されているが、ガス流体の通風を阻害する
ものであってはならず、センサ感温部1のまわりを通風
するガス流体の吸入孔と洩れ孔は最低限必要である。加
えて、上記の飽和性能とは別のセンサ性能としてセンサ
の応答性能が問題とされる場合、センサ感温部周りを通
風するガス流体の局部流速をさらに増加させることが要
求される。この様に高温流体の全温度測定用センサとし
ての総合性能は、センサ感温部からの輻射シールドと該
部近傍の局部流速の維持が同時に満足されなければ得ら
れないものであり、従って1時間応答の速い高温流体の
温度測定は現実には極めて困鑑な場合が多い。
On the other hand, the radiation shielding cover 7 is arranged so as to enclose the sensor temperature-sensing section 1, but it must not obstruct the ventilation of the gas fluid, but rather allows the ventilation to flow around the sensor temperature-sensing section 1. Gas fluid suction holes and leak holes are required at a minimum. In addition, if the response performance of the sensor is considered as a sensor performance other than the saturation performance described above, it is required to further increase the local flow velocity of the gas fluid that circulates around the temperature sensing part of the sensor. In this way, overall performance as a sensor for measuring the total temperature of high-temperature fluid cannot be achieved unless radiation shielding from the sensor's temperature-sensitive part and maintenance of the local flow velocity near the part are satisfied at the same time. In reality, it is often extremely difficult to measure the temperature of high-temperature fluids that respond quickly.

本発明は、上記の問題点を解決するためになされたもの
であり、温度センサの輻射シールド効果を向上させなか
らセンサ感温部まわりの通風流速を加速し、かつセンサ
感温部表面では滅み状態を形成し、飽和性能と応答性能
を同時に向上させた高性能ガス温度測定用センサを提供
することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and does not improve the radiation shielding effect of the temperature sensor, accelerates the airflow velocity around the temperature sensing part of the sensor, and eliminates radiation on the surface of the temperature sensing part of the sensor. The object of the present invention is to provide a high-performance gas temperature measurement sensor that simultaneously improves saturation performance and response performance.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記の目的を達成するため本発明のガス温度センサは、
ガス流体中に2つの異種金属、又は異種合金を接合して
成る熱電対接合部を前記ガス流体に接触する様に配置す
ることにより前記ガス流体の前温度を測定するガス温度
測定用センサにおいて、前記熱電対接合部を包括する多
層構造の輻射シールドを配置した構造とする。
(Means for Solving the Problems) In order to achieve the above object, the gas temperature sensor of the present invention has the following features:
A gas temperature measurement sensor that measures the pre-temperature of the gas fluid by arranging a thermocouple joint made of two dissimilar metals or dissimilar alloys in contact with the gas fluid, The structure includes a radiation shield having a multilayer structure that surrounds the thermocouple junction.

また、熱電対接合部を包括するセンサ内部空間における
輻射シールドの形状を、熱電対接合部まわりを流通する
ガス流体の流れを円滑化する様な流線形状とすることに
より、熱電対接合部まわりの通風流速を向上させ、かつ
熱電対接合部を固定する部位を、熱電対接合部の局部で
のみガス流体の堰止め状態を実現する様にガス流体の流
れ方向を核部にて偏向させ、上記輻射シールドにより形
成される流線形状と対向する流線形状を以てガス流路を
形成して、熱雷対接合部に吸入したガス流体を吐出する
様な構成とすれば効果的である。
In addition, the shape of the radiation shield in the sensor internal space that encompasses the thermocouple junction is streamlined to smooth the flow of gas fluid around the thermocouple junction. The flow direction of the gas fluid is deflected at the core so that the gas fluid is blocked only in the local part of the thermocouple joint, and the flow direction of the gas fluid is deflected at the core of the part where the thermocouple joint is fixed. It is effective to form a gas flow path with a streamline shape opposite to the streamline shape formed by the radiation shield, and to discharge the gas fluid sucked into the thermal lightning pair junction.

(作用) 本発明に係わるガス温度測定用センサによれば、センサ
感温部を包括する輻射シールドが空隙をはさんだ多層構
造となっているので、センサ感温部から多層シールドを
介した外界への輻射エネルギ・フラックスをしばらく漸
近的にゼロに近づけることができる。これにより、セン
サまわりのシールドで囲まれる空間内では準平衡状態に
あると言ってよく、センサ感温部の温度、すなわち測定
温度は流体の回復温度に等しいと考えてよい。
(Function) According to the gas temperature measurement sensor according to the present invention, the radiation shield surrounding the sensor temperature sensing part has a multilayer structure with a gap in between, so that the radiation shield from the sensor temperature sensing part to the outside world via the multilayer shield. The radiant energy flux of can be brought asymptotically close to zero for a while. As a result, it can be said that the space surrounded by the shield around the sensor is in a quasi-equilibrium state, and the temperature of the sensor temperature sensing part, that is, the measured temperature can be considered to be equal to the recovery temperature of the fluid.

また、上記の多層シールドのうち最も内側のシールドは
、センサ感温部を加熱するガス流体を導入する為の流路
を形成し、センサ感温部の表面局部でのみ流体が堰止め
状態となるほかは、ガス流体の通風を円滑に行っている
。これはセンサまわりにガス流体が全体的に澱んでしま
うことを防止し、センサ感温部の輻射シールド効果を維
持しながら、絶えずセンサ感温部に外界のガス流体を供
給することによって、センサ感温部を外界のガス流体中
に露出したときと同様の雰囲気をセンサ感温部まわりに
形成しているわけである。
In addition, the innermost shield among the multilayer shields described above forms a flow path for introducing the gas fluid that heats the temperature sensing part of the sensor, and the fluid is blocked only at a local part of the surface of the temperature sensing part of the sensor. Others allow smooth ventilation of gas fluids. This prevents the gas fluid from stagnating all around the sensor, maintains the radiation shielding effect of the sensor temperature sensing part, and continuously supplies external gas fluid to the sensor temperature sensing part. This creates the same atmosphere around the sensor's temperature-sensitive section as when the heated section is exposed to the gaseous fluid in the outside world.

さらに、センサ感温部まわりの局部流速を向上させてい
るのでセンサとしての時間応答も高速化され、以て輻射
損失の低減による飽和性能を高め、センサ応答速度を高
速化した高性能ガス温度測定用センサを得ることができ
る。
Furthermore, since the local flow velocity around the sensor's temperature-sensitive part has been improved, the time response of the sensor is also faster, which improves saturation performance by reducing radiation loss and high-performance gas temperature measurement with faster sensor response speed. It is possible to obtain a sensor for

(実施例) 以下1本発明の一実施例について図面に従って説明する
。第1図はガス温度測定用センサの断面図であり、第2
図に示す従来例と同一の構成要素。
(Example) An example of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of the gas temperature measurement sensor, and the second
The same components as the conventional example shown in the figure.

部品には同一の番号を付している。Parts are given the same number.

第1図においてセンサ感温部1は第2図と同様に2つの
異種金属、または異種合金を接合して成る熱電対接合部
の一端であり、リード線3が外部の計測系(図示せず)
に接続されている。センサ感温部1.及びリード線3は
熱絶縁性に優れた材料から成る固定座4を介して支柱6
の先端部6aにとり付けられている。
In FIG. 1, the sensor temperature sensing part 1 is one end of a thermocouple junction made by joining two dissimilar metals or dissimilar alloys, as in FIG. )
It is connected to the. Sensor temperature sensing part 1. The lead wire 3 is connected to the support 6 via a fixed seat 4 made of a material with excellent thermal insulation properties.
It is attached to the tip 6a of the.

一方、外界のガス流体2は輻射シールド13のうち最も
内側の輻射シールド13aにより形成される入口孔10
から経由してセンサ内部空間11へ導入される。このと
き輻射シールド13aは軸対称の流線形状を成しており
、流体の入口圧力損失を低減する構造となっている。セ
ンサ内部空間11はノズル状の狭小空間を形成し、ガス
流体2aを加速して、センサ感温部1近傍に至らしめる
。ここでセンサ感温部1のガス上流側表面でガス流体2
aは堰止められて澱み状態となる以外は、支柱の先端部
6aが形成する流線形状に沿ってセンサ感温部1の側部
を抜けて吐出口12から外界のガス流体2中へ吐出され
る。この様に外界の流体2を効率的にセンサ内部空間1
1に取り入れ、センサ感温部1を加熱した後、再び外界
に戻されるので、センサ感温部1の局部表面を除いてガ
ス流体2aが澱む場所はない。
On the other hand, the gas fluid 2 in the outside world enters the inlet hole 10 formed by the innermost radiation shield 13a of the radiation shields 13.
It is introduced into the sensor internal space 11 via the . At this time, the radiation shield 13a has an axially symmetrical streamline shape, and has a structure that reduces fluid inlet pressure loss. The sensor internal space 11 forms a nozzle-shaped narrow space, and accelerates the gas fluid 2a to reach the vicinity of the sensor temperature sensing part 1. Here, the gas fluid 2 is on the gas upstream surface of the sensor temperature sensing part 1
Except for a being dammed up and in a stagnant state, it passes through the side of the sensor temperature sensing part 1 along the streamline shape formed by the tip 6a of the support and is discharged from the discharge port 12 into the gas fluid 2 in the outside world. be done. In this way, the external fluid 2 can be efficiently transferred to the sensor internal space 1.
1 and heats the sensor temperature sensing part 1, the gas fluid 2a is returned to the outside world, so there is no place where the gas fluid 2a stagnates except for the local surface of the sensor temperature sensing part 1.

さらに、輻射シールド13は、最も内側にある流線形状
の輻射シールド13aに加えて、それを包括する多層構
造となっている。これによりセンサ感温部1から外界の
ガス流体2.又は外部構造材(図示せず)への輻射放熱
量を著しく小さくすることができる。
Furthermore, the radiation shield 13 has a multilayer structure that includes the innermost streamlined radiation shield 13a. As a result, the temperature sensing part 1 of the sensor is transferred to the external gas fluid 2. Alternatively, the amount of radiant heat dissipated to external structural members (not shown) can be significantly reduced.

以上のごとくセンサ感温部1の近傍にのみ流れの澱み状
態を作る他は、センサ内部空間11でのガス流体の通風
は円滑に行われるので、センサ感温部1近傍の回復温度
は外界のガス流体2の全温度(澱み温度)に等しいと言
える。また、センサ感温部1からの輻射放熱量は多層の
輻射シールド13により非常に低減されているので、セ
ンサ感温部1が実際に測定する温度は流体の回復温度と
言ってよく、すなわち上記によって測定温度は流体の全
温度に等しいと言える。
As described above, except for creating a flow stagnation state only near the sensor temperature sensing part 1, the gas fluid is smoothly ventilated in the sensor internal space 11, so that the recovery temperature near the sensor temperature sensing part 1 is lower than that of the outside world. It can be said that it is equal to the total temperature (stagnation temperature) of the gas fluid 2. Furthermore, since the amount of radiation heat released from the sensor temperature sensing part 1 is greatly reduced by the multi-layer radiation shield 13, the temperature actually measured by the sensor temperature sensing part 1 can be called the recovery temperature of the fluid, that is, the above-mentioned temperature. Therefore, the measured temperature can be said to be equal to the total temperature of the fluid.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り1本発明のガス温度センサによれば、
センサ感温部を囲む輻射シールドを多層構造としたこと
により、センサ感温部がらの輻射エネルギ・フラックス
を極限的にゼロに漸近させることができる。従って、セ
ンサ感温部からの熱損失を大幅に減少させることができ
、特に2000 K以上の高温ガス流体の温度測定を阻
害する輻射損失については殆ど問題とならなくなり、2
000 K以上の温度測定にも充分使用できる。
As explained above, according to the gas temperature sensor of the present invention,
By forming the radiation shield that surrounds the sensor's temperature sensing part into a multilayer structure, the radiant energy flux of the sensor's temperature sensing part can be brought asymptotic to zero. Therefore, the heat loss from the sensor's temperature sensing part can be significantly reduced, and radiation loss, which obstructs temperature measurement of high-temperature gas fluids of 2000 K or higher, is almost no longer a problem.
It can also be used for temperature measurements of 000K or higher.

また、上記の輻射シールドを流線形状とし、センサ内部
に流体が澱むことなくガス流体が流通する様にしたので
、ガス流体が急激に温度変化したとしでも、センサとし
て充分な応答性能をもたせることができる。
In addition, the radiation shield described above has a streamlined shape so that the gas fluid can flow without stagnation inside the sensor, so even if the temperature of the gas fluid changes suddenly, the sensor has sufficient response performance. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わるガス温度センサの構
成を示す断面図、第2図は従来のガス温度センサの構成
を示す断面図である。 1・・・センサ感温部  2,2a・・・ガス流体3・
・・リード線    4・・・固定座5・・・支え  
    6・・・支柱6a・・・先端部     7・
・・覆い8・・・ガス吸入孔   9・・・ガス洩れ孔
10・・・入口孔     11・・・センサ内部空間
12・・・吐出口     13.13a・・・輻射シ
ールド代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 第2閃
FIG. 1 is a sectional view showing the structure of a gas temperature sensor according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the structure of a conventional gas temperature sensor. 1... Sensor temperature sensitive part 2, 2a... Gas fluid 3.
... Lead wire 4 ... Fixed seat 5 ... Support
6... Support column 6a... Tip part 7.
...Cover 8...Gas suction hole 9...Gas leak hole 10...Inlet hole 11...Sensor internal space 12...Discharge port 13.13a...Radiation shield agent Patent attorney Noriaki Ken Yudo Ken Daishimaru Figure 1, 2nd Flash

Claims (2)

【特許請求の範囲】[Claims] (1)ガス流体中に熱電対接合部がガス流体に接触する
様に設置され、前記ガス流体の全温度を測定するガス温
度センサにおいて、前記熱電対接合部を包括する多層構
造の輻射シールドを備えていることを特徴とするガス温
度センサ。
(1) In a gas temperature sensor that is installed in a gas fluid so that a thermocouple junction is in contact with the gas fluid and measures the total temperature of the gas fluid, a multilayer radiation shield that surrounds the thermocouple junction is provided. A gas temperature sensor characterized by comprising:
(2)輻射シールドは、センサ内部空間側では流線形状
を形成するとともに、熱電対接合部の固定部位は、ガス
流体の流れ方向を偏向させ、上記輻射シールドが形成す
る流線形状と対向する流線形状を以てガス流路を形成し
て、熱電対接合部に吸入したガス流体を吐出する構成と
したことを特徴とする特許請求の範囲第1項記載のガス
温度センサ。
(2) The radiation shield forms a streamlined shape on the sensor inner space side, and the fixed portion of the thermocouple junction deflects the flow direction of the gas fluid and faces the streamlined shape formed by the radiation shield. 2. The gas temperature sensor according to claim 1, wherein the gas flow path is formed in a streamlined shape and the gas fluid sucked into the thermocouple junction is discharged.
JP63128428A 1988-05-27 1988-05-27 Gas temperature sensor Pending JPH01299425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63128428A JPH01299425A (en) 1988-05-27 1988-05-27 Gas temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63128428A JPH01299425A (en) 1988-05-27 1988-05-27 Gas temperature sensor

Publications (1)

Publication Number Publication Date
JPH01299425A true JPH01299425A (en) 1989-12-04

Family

ID=14984504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128428A Pending JPH01299425A (en) 1988-05-27 1988-05-27 Gas temperature sensor

Country Status (1)

Country Link
JP (1) JPH01299425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110211614A1 (en) * 2010-03-01 2011-09-01 Christoph Gmelin Device for fixing a temperature sensor
JP2012097347A (en) * 2010-11-05 2012-05-24 Toyota Motor Corp Cold spray measuring device and measuring method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110211614A1 (en) * 2010-03-01 2011-09-01 Christoph Gmelin Device for fixing a temperature sensor
US9121775B2 (en) * 2010-03-01 2015-09-01 Robert Bosch Gmbh Device for fixing a temperature sensor
JP2012097347A (en) * 2010-11-05 2012-05-24 Toyota Motor Corp Cold spray measuring device and measuring method using the same

Similar Documents

Publication Publication Date Title
US9243963B2 (en) Total temperature probe
Metzger et al. Heat transfer experiments and flow visualization for arrays of short pin fins
Wilson et al. Flow and heat transfer in a preswirl rotor–stator system
Gardner et al. MEMS thermal flow sensors—An accuracy investigation
Babus' Haq et al. Thermal performance of a pin-fin assembly
Bankston The transition from turbulent to laminar gas flow in a heated pipe
Nealy et al. Measurements of heat transfer distribution over the surfaces of highly loaded turbine nozzle guide vanes
JP2013130192A (en) Apparatus for determining air temperature
KR19980079415A (en) Flow detection device
US2946221A (en) Stator blade mounting of condition sensing elements in fluid flow machines
US3451862A (en) Temperature sensor probe
Olson Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages
Boyle et al. Experimental determination of stator endwall heat transfer
JPH01299425A (en) Gas temperature sensor
JP2021089276A (en) Thermal management system and thermal management method
Ou et al. Influence of mainstream turbulence on leading edge film cooling heat transfer through two rows of inclined film slots
Cimina et al. Experimental study of pressure drop and heat transfer in a u-bend channel with various guide vanes and ribs
Liu et al. Heat transfer of impinging jet arrays on a ribbed surface
Haydt et al. Heat transfer coefficient augmentation for a shaped film cooling hole at a range of compound angles
JPH02105029A (en) Sensor for measuring gas temperature
Takahashi et al. Effects of hot streak indexing in a 1-1/2 stage turbine
US2681573A (en) High-temperature thermometer
Hall et al. Recirculation effects produced by a pair of heated jets impinging on a ground plane
Hager et al. Microsensors for high heat flux measurements
GB1327104A (en) Probe for diagnosing high temperature gases