JPH01298189A - Electrode for electrolysis - Google Patents

Electrode for electrolysis

Info

Publication number
JPH01298189A
JPH01298189A JP63125984A JP12598488A JPH01298189A JP H01298189 A JPH01298189 A JP H01298189A JP 63125984 A JP63125984 A JP 63125984A JP 12598488 A JP12598488 A JP 12598488A JP H01298189 A JPH01298189 A JP H01298189A
Authority
JP
Japan
Prior art keywords
electrode
substrate
thin film
ions
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63125984A
Other languages
Japanese (ja)
Other versions
JPH0572478B2 (en
Inventor
Kaoru Hirakata
平形 薫
Akihiko Fujii
昭彦 藤井
Yoshio Okabe
岡部 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP63125984A priority Critical patent/JPH01298189A/en
Publication of JPH01298189A publication Critical patent/JPH01298189A/en
Publication of JPH0572478B2 publication Critical patent/JPH0572478B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To produce an electrode for electrolysis not causing passivation or undermining phenomenon by interposing an intermediate layer of Pt, etc., irradiated with ions when a valve metal substrate is coated with a Pt family metal. CONSTITUTION:The surface of a valve metal substrate such as a Ti, Ta or Ti-Pd substrate is roughened and a thin film of one or more kinds of metals selected among Pt, Ir, Ru, Os, Rh, Pd, Ti, Ta, Nb, Zr, Mo, W, Fe, Co, Ni, Mn, pb, Sn, Sb, Bi, In, Tl and Al or one or more kinds of oxides of such metals is formed on the substrate as an intermediate layer having about 100-1,000Angstrom thickness. The substrate having the formed thin film is irradiated with ions of nitrogen, etc., by about 1X10<16>-5X10<18>ions/cm<2> at about 20-200kV acceleration voltage in a vacuum vessel under about 1X10<-6>mmHg pressure. An electrode coat contg. a Pt family metal and/or the oxide thereof is then formed on the thin film to produce an electrode for electrolysis having a prolonged service life.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水)H液中での電解処理に用いる不溶性1ヒ
極に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an insoluble 1-hypolyte used for electrolytic treatment in an aqueous solution.

(従来の技術) 従来、水溶液電解に用いる不溶性電極としては、チタン
基本」−に熱分解法lこよりPt、 I r、 Ru等
の白盆族−11属またはそれらの酸化物、あるいはそれ
らとTi、Ta、Nb、Snなどの金属酸化物との混晶
を被覆した電極、またチタン基体上にPtを77キ、あ
るいはクランド成型したチタンPt電極が広(用いられ
ている。
(Prior art) Conventionally, insoluble electrodes used in aqueous solution electrolysis have been made using titanium as a base material using thermal decomposition methods such as Pt, Ir, Ru, etc., or their oxides, or their combinations with Ti. , electrodes coated with mixed crystals with metal oxides such as Ta, Nb, and Sn, and titanium Pt electrodes formed by 77mm Pt on a titanium substrate or by crund molding are widely used.

」1記熱分解法電極の被覆の微細構造は熱分解法に特有
な無数のクラ7りを有しており、電1稈液がこのクラッ
クから侵入して絶縁性のチタン酸化物層が生成し、陽極
が不動態化して通電ができなくなるという欠点があり、
又、チタンPt電極においてもPL層にピンホール等の
欠陥を有するため前記同様不動態化を生じ、被覆が残留
しているにも拘わらずか命に至るという問題がある。
1. The fine structure of the coating of the pyrolysis electrode has numerous cracks unique to the pyrolysis method, and the electrolyte culm enters through these cracks to form an insulating titanium oxide layer. However, it has the disadvantage that the anode becomes passivated and cannot conduct electricity.
Furthermore, since the titanium Pt electrode also has defects such as pinholes in the PL layer, passivation occurs in the same manner as described above, and even though the coating remains, there is a problem that it can lead to death.

また、7ツ化浴、硫酸浴等においては前記同様にクラッ
ク、ピンホールから電解液が侵入してチタン基体を腐食
する。
In addition, in a hexafluoride bath, a sulfuric acid bath, etc., the electrolytic solution enters through cracks and pinholes and corrodes the titanium substrate as described above.

この不動態化あるいは腐食は、基体と電極被覆との界面
を41面方向に進むいわゆるアンダーマイニング現象に
より増長されるもので、クラック、ピンホール等の被覆
の一部の欠陥は電極の耐久性を者しく劣化させるもので
ある。
This passivation or corrosion is exacerbated by the so-called undermining phenomenon that progresses in the 41-plane direction at the interface between the substrate and the electrode coating, and some defects in the coating, such as cracks and pinholes, impair the durability of the electrode. It seriously deteriorates the quality of life.

二の現象を防止する手段として、熱分解法電極において
は、例えば、特公昭60−22 f) 74号公報に見
られるように基体と電極被覆との間に熱分解法によりT
i、Ta、Nbなどのバルブ金属酸化物とSnなどの金
属酸化物から成る複合酸化物の中間障壁層を設ける試み
が為されているが、中間層を熱分解法により形成せしめ
るためクラックが存在し、アンダーマイニング現象を完
全に防止できず、特公昭57−49636号公報におい
ては白金メツキをした後、熱分解法により白金族金属ま
たはそれらの酸化物を被覆し白金メツキ層を中間障壁層
とする方法があるが、未だに十分であるとはいえない。
As a means to prevent the second phenomenon, in the case of a pyrolytic electrode, for example, as shown in Japanese Patent Publication No. 60-22 f) 74, a thermal decomposition method is used to inject T between the substrate and the electrode coating.
Attempts have been made to form an intermediate barrier layer of a composite oxide consisting of valve metal oxides such as i, Ta, and Nb and metal oxides such as Sn, but cracks exist because the intermediate layer is formed by a thermal decomposition method. However, the undermining phenomenon could not be completely prevented, and in Japanese Patent Publication No. 57-49636, after platinum plating, platinum group metals or their oxides were coated by a thermal decomposition method, and the platinum plating layer was used as an intermediate barrier layer. There are ways to do this, but they are still not sufficient.

また、チタンPt電極の艮か命化の試みとして、特公昭
53−122633号公報において、白金メツキした後
、加熱処理を行ない基体と白金の合金化を試みた方法が
あるが、完全な合金層を得るためにはかなりの高温を必
要とした。さらに、チタンよりも耐食性に優れたZr。
In addition, as an attempt to improve the quality of titanium Pt electrodes, there is a method in Japanese Patent Publication No. 122633/1983 in which an attempt was made to alloy the base and platinum by platinum plating and heat treatment. A fairly high temperature was required to obtain this. Furthermore, Zr has better corrosion resistance than titanium.

Taを基体とした白金メツキ電極が考案されているが白
金層の密着力がチタンよりも劣るため、工業的には殆ど
用いられていない。
A platinum-plated electrode based on Ta has been devised, but it is hardly used industrially because the adhesion of the platinum layer is inferior to that of titanium.

一方、近年の電子ビーム技術の進展に伴ない、特開昭6
2−218592号公報にあるように、1μm程度のP
tJNをメツキしたピンホール等の欠陥を有する白金メ
ツキチタン電極の表面にイオン照射またはイオンミキシ
ング処理を施し露出し、たチタン表面に耐食性を持たせ
、白金層をち密で欠陥の少ない表面に改質する方法が示
されている。
On the other hand, with the progress of electron beam technology in recent years,
As stated in Publication No. 2-218592, P of about 1 μm
The surface of a platinum-plated titanium electrode that has defects such as pinholes plated with tJN is subjected to ion irradiation or ion mixing treatment to expose the surface, impart corrosion resistance to the titanium surface, and modify the platinum layer into a dense and defect-free surface. A method is shown.

しかし、工業電解プロセスに用いる白金メンキナクン電
極の白金層の厚みは電解消耗量と電極交換頻度を勘案し
て通常3μ噛以上であり、イオン照射法による表面改質
層の厚みは数百Å以下のごく薄い層に限られ、又、改質
層の厚みを増すために多量のイオンを照射してもpt層
がスパッター効果により削られるため薄い改質層しか得
られず、実際の白金メツキチタン電極に応用することは
かなりの困難がある。
However, the thickness of the platinum layer of platinum electrodes used in industrial electrolytic processes is usually 3μ or more, taking into account the amount of electrolytic consumption and the frequency of electrode replacement, and the thickness of the surface modified layer by ion irradiation is less than several hundred Å. The layer is limited to a very thin layer, and even if a large amount of ions are irradiated to increase the thickness of the modified layer, the PT layer is scraped away by the sputtering effect, so only a thin modified layer can be obtained, making it difficult to use in actual platinum-plated titanium electrodes. It is quite difficult to apply.

(発明が解決しようとする課題) 本発明は、基体の腐食あるいは基体と電極波1との界面
に不動態化を起こさず、アンダーマイニング現象を生じ
ない十分な耐久性を有する電解用電極を提供することに
ある。
(Problems to be Solved by the Invention) The present invention provides an electrode for electrolysis having sufficient durability that does not cause corrosion of the substrate or passivation at the interface between the substrate and the electrode wave 1, and does not cause the undermining phenomenon. It's about doing.

(課題を解決するための手段) 本発明者等は、上記問題の原因が基体と電極被覆との界
面にあり、基体の耐食性を向上させて不動態化を防止し
、電極被覆の密着力を高めることについて鋭意検討した
結果、ついに本発明に至りこの問題を克服したものであ
る。
(Means for Solving the Problems) The present inventors believe that the cause of the above problem lies in the interface between the substrate and the electrode coating, and that they have improved the corrosion resistance of the substrate to prevent passivation and improve the adhesion of the electrode coating. As a result of intensive study on how to increase the power consumption, the present invention was finally developed to overcome this problem.

即ち、本発明はバルブ金属基本玉に白金族金属および/
またはそれらの酸化物を含有した被覆を施した電解用電
極において、前記バルブ金属基体と前記被覆との中間に
P t+ I r、 Ru+ Os+ Rh、 Pd。
That is, the present invention includes a platinum group metal and/or a valve metal base ball.
Or in an electrolytic electrode coated with an oxide thereof, Pt+Ir, Ru+Os+Rh, Pd is provided between the valve metal base and the coating.

Ti、Ta、Nb、Zr=Mo、W、Fe、Co、Ni
、Mn、E”b。
Ti, Ta, Nb, Zr=Mo, W, Fe, Co, Ni
, Mn, E”b.

Sn、Sb、Bi、In、T1.AIから選ばれた金属
または該金属の酸化物の1種以上にイオン照射処理を施
した中間層を設けた電解用電極である。
Sn, Sb, Bi, In, T1. This is an electrode for electrolysis provided with an intermediate layer in which one or more metals selected from AI or oxides of the metals are subjected to ion irradiation treatment.

以f、本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail.

本発明に用いる基体の材質は耐食性、導電性金属である
Ti、Ta、Nb、などのバルブ金属あるいはTi  
Pd等のバルブ金属基合金が用いられ、形状は平板、有
孔板、棒状体、エキスバンド体等いかなるものでもよい
The material of the substrate used in the present invention is a valve metal such as Ti, Ta, or Nb, which is a corrosion-resistant and conductive metal, or a valve metal such as Ti, Ta, or Nb.
A valve metal-based alloy such as Pd is used, and the shape may be any shape such as a flat plate, a perforated plate, a rod-like body, or an expanded body.

該基体は以下に詳述する中間層および電極被覆を施す前
に粗面化処理を行なう。粗面化処理はトリクレンなどの
有機溶剤で脱脂した後、アルミナ研削材等を用いてブラ
スト処理を行なうが、あるいは塩酸、シュウ酸、7ツ酸
、硫酸等により化学エツチングを施す。特に熱シュウ酸
によるエツチングであらされた表面は三次元的なミクロ
ボアを有し電極被覆の密着力が向上するため好ましい。
The substrate is subjected to a surface roughening treatment before being coated with the intermediate layer and electrode coating described in detail below. The surface roughening treatment is performed by degreasing with an organic solvent such as trichloride, followed by blasting using an alumina abrasive, or by chemical etching with hydrochloric acid, oxalic acid, heptanoic acid, sulfuric acid, etc. In particular, a surface etched with hot oxalic acid is preferred because it has three-dimensional micropores and improves the adhesion of the electrode coating.

次に、このように清浄化、粗面化した基体表面にアンダ
ーマイニング現象等による基体の不動態化を防止するた
めに中間層を形成する。該中間層の形成のためには、ま
ず、P L、I r、 Ru+ Ost Rh+Pd、
Ti+Ta、Nb、Zr、Mo、W、Fe、Co、Ni
、Mn。
Next, an intermediate layer is formed on the thus cleaned and roughened surface of the substrate in order to prevent passivation of the substrate due to undermining or the like. In order to form the intermediate layer, first, P L, I r, Ru+ Ost Rh+Pd,
Ti+Ta, Nb, Zr, Mo, W, Fe, Co, Ni
, Mn.

pb、s口、Sh、Bi、In、TI、AIの金属また
はそれらの金属酸化物の中から任意の1種以上を選定し
基体上に薄膜を形成させる。この薄膜の形成力法は公知
の技術を用いることができ、例えば前記金属塩化物、V
酸塩等の水溶液、あるいはバルブ金属アルフキシトのア
ルコール溶液を基体−Lに塗布し、大気中で加熱処理を
行なう熱分解法、又は化学メツキ法、電気メツキ法、ス
パッタリング法、真空蒸着法等による。
A thin film is formed on the substrate by selecting any one or more of metals such as PB, S, Sh, Bi, In, TI, and AI or their metal oxides. A known technique can be used to form this thin film, for example, the metal chloride, V
A thermal decomposition method in which an aqueous solution of an acid salt or an alcoholic solution of a valve metal alphoxide is applied to the substrate L and heat-treated in the atmosphere, a chemical plating method, an electroplating method, a sputtering method, a vacuum evaporation method, etc. are used.

続いて、薄膜を形成させた基体を1×10″6IIII
flHg程度の真空槽内に置き、窒素、酸素、アルゴン
等のイオンを20〜200KVの加速電圧でイオン照射
処理を施す。
Subsequently, the substrate on which the thin film was formed was heated to 1×10″6III.
It is placed in a vacuum chamber at about flHg and subjected to ion irradiation treatment with ions of nitrogen, oxygen, argon, etc. at an accelerating voltage of 20 to 200 KV.

本発明は、このイオン照射処理により打ち込んだイオン
と前記薄膜形成金属または金属酸化物、および基体金属
がミキシング状態となり、反応あるいは合金化すること
により表面層が改質され著しく耐食性が増し、さらにこ
の改質層上に電極活性物質を被覆した場合、密着性にも
優れるという新たな知見に基づいて為されたものである
In the present invention, the implanted ions, the thin film-forming metal or metal oxide, and the base metal are brought into a mixing state through this ion irradiation treatment, and the surface layer is modified by reaction or alloying, resulting in significantly increased corrosion resistance. This was done based on the new knowledge that when an electrode active material is coated on the modified layer, it also has excellent adhesion.

本発明の薄膜の厚みは100人〜1000人が適当であ
る。イオン照射処理を施すと薄膜形成金属は一部スバッ
ター効果により削られるため、100人よりも薄いと改
質層中の薄膜形成金属の量が不足し、また1 000Å
以上になると基体表面が改質されず薄膜層のみが改質さ
れてしまうため耐食性の向上が図られない場合がある。
The appropriate thickness of the thin film of the present invention is 100 to 1000. When ion irradiation is applied, part of the thin film-forming metal is removed due to the spatter effect, so if the thickness is less than 100 Å, the amount of thin film-forming metal in the modified layer will be insufficient;
If this is the case, the surface of the substrate will not be modified and only the thin film layer will be modified, so that corrosion resistance may not be improved.

また、照射イオン量はlXl0”〜5X1018イオン
/cI112がj透光であり、lXl0”イオン/cp
2よりら少ないと十分に改質できず、5X10”412
70112以上になるとスパッター効果による薄膜形成
金属の損失が大きくなる。
In addition, the amount of irradiated ions is lXl0"~5X1018 ions/cI112 is j transparent, and lXl0" ions/cp
If it is less than 2, sufficient modification cannot be achieved, and 5X10”412
If it exceeds 70112, the loss of the thin film forming metal due to the sputtering effect will increase.

本発明のイオン照射処理による改質層の厚みは数百人程
度であり、耐久性をより望む場合には薄縁形成処理とイ
オン照射処理を交互に繰り返し行6うか、または同時に
実施するダイナミックミキシング法等により改質層を望
む厚さとすることがCきる。
The thickness of the modified layer obtained by the ion irradiation treatment of the present invention is approximately several hundred layers, and if greater durability is desired, the thin edge forming treatment and the ion irradiation treatment may be alternately repeated6, or a dynamic mixing method may be used in which they are carried out simultaneously. etc., the modified layer can be made to have a desired thickness.

次にこのようにして調整した中間層上に所望する電解プ
ロセスに適した電極被覆を形成する。例えば、海水電解
の場合には、特開昭59 25988号公報に記載のP
L−1rO2−RuOxの複合酸化物被覆を熱分解法に
より施し、酸素発生を伴なう電解プロセスには特公昭5
7 54555号公報に見られるようにIrO2の被覆
が施されるが、この場合、本発明の主旨から理解される
ように、中間障壁層として設けた該公報の酸化ビスマス
層は必要としない。また、特公昭60−58312号公
報の白金族金属またはそれらの酸化物の中間層を施し、
該中間層Eに二酸化鉛を電着した二酸化鉛被覆電極にも
、中間層を本発明のイオン照射処理による中間層に変更
することにより耐久性の改善が為される。また、従来か
ら用いられているtメンキチタン電極においても本発明
の中間層をPt層と基体との間に設けることによりアン
ダーマイニング現象を防止できる。
An electrode coating suitable for the desired electrolytic process is then formed on the intermediate layer thus prepared. For example, in the case of seawater electrolysis, P
The composite oxide coating of L-1rO2-RuOx is applied by thermal decomposition method, and the electrolytic process accompanied by oxygen generation is
7 54555, but in this case the bismuth oxide layer of that publication provided as an intermediate barrier layer is not required, as understood from the gist of the invention. In addition, an intermediate layer of platinum group metals or their oxides as described in Japanese Patent Publication No. 60-58312 is applied,
The durability of the lead dioxide-coated electrode in which lead dioxide is electrodeposited on the intermediate layer E can also be improved by changing the intermediate layer to an intermediate layer subjected to the ion irradiation treatment of the present invention. Further, even in conventionally used t-mended titanium electrodes, the undermining phenomenon can be prevented by providing the intermediate layer of the present invention between the Pt layer and the substrate.

本発明のイオン照射処理による中間層の構造は十分に解
明されていないが、改質された層の表面は打ち込みイオ
ン、薄膜形成金属または金属酸化物、および基体構成元
素が化学反応を起こし、結晶成長の度合らかなり進んで
・いるが、深部に行くにつれて非晶質ないし分子および
金属元素が混合した状態になっていると思われる。
Although the structure of the intermediate layer formed by the ion irradiation treatment of the present invention has not been fully elucidated, the surface of the modified layer undergoes a chemical reaction between the implanted ions, the thin film-forming metal or metal oxide, and the constituent elements of the base, resulting in crystallization. Although the degree of growth is quite advanced, it seems that the deeper you go, the more amorphous or a mixture of molecules and metal elements becomes.

本発明は、前記結晶化の進んだ改質されtこ中間層の表
面に白金族金属またはそれらの酸化物を含んだ被覆を施
した場合、良好な密着性を有し、不動態化により電極被
覆を残したまま寿命に至ることがないという知見に基づ
く。
In the present invention, when a coating containing a platinum group metal or an oxide thereof is applied to the surface of the modified interlayer with advanced crystallization, it has good adhesion and is passivated to an electrode. This is based on the knowledge that the coating does not remain intact until the end of its life.

(実施例) 以下、本発明を実施例により具体的に述べるが、これら
は本発明を何等限定するものではない。
(Examples) Hereinafter, the present invention will be specifically described with reference to Examples, but these are not intended to limit the present invention in any way.

実施例1 厚さIIIII*の市販のTi板をトリクレン蒸気脱脂
し、80℃の6%シュウ酸水溶液により粗面化を行ない
、次いで、該基体上にPtをスパッタリング法により2
00人の厚みとなるよう蒸着し、その後酸素イオンを8
0KVの加速電圧で3.1×1016イオン/cm2と
なるまでイオン照射処理を施して基体表面を改質した。
Example 1 A commercially available Ti plate with a thickness of III* was degreased with trichlene vapor and roughened with a 6% oxalic acid aqueous solution at 80°C, and then Pt was deposited on the substrate by a sputtering method.
Deposited to a thickness of 0.000 people, and then added oxygen ions to a thickness of 8.00 people.
The surface of the substrate was modified by performing ion irradiation treatment at an accelerating voltage of 0 KV until it reached 3.1×10 16 ions/cm 2 .

この改質層の耐久性を見るために25°Cの645%H
2S O4水溶液中で銀−塩化銀電極を参照電極として
走査速度30a+V/秒でサイクリックポルタングラム
を測定した結果を第1図に示す。
To check the durability of this modified layer, 645% H at 25°C
FIG. 1 shows the results of measuring a cyclic portangram in a 2S O4 aqueous solution using a silver-silver chloride electrode as a reference electrode at a scanning speed of 30a+V/sec.

比較例1 実施例1と同様に基体を清浄化、粗面化し、Ptをスパ
ッタリング;去により200人蒸着口たのみでイオン照
射処理を施さなかった場合についても実施例1と同じく
サイクリックポルタングラムを測定した結果を合わせて
第1図に示す。また実施例1と同様に脱脂、粗面化のみ
を行なったTi板の結果を第2図に示す。
Comparative Example 1 The substrate was cleaned and roughened in the same manner as in Example 1, and Pt was sputtered; cyclic portangrams were obtained in the same manner as in Example 1 in the case where only 200 evaporators were used and no ion irradiation treatment was performed. The results of the measurements are shown in Figure 1. Further, FIG. 2 shows the results of a Ti plate that was only subjected to degreasing and surface roughening in the same manner as in Example 1.

第1図及び第2図において、負の電位域に見られる負電
流は水素発生を示しており、それよりし若干高電位側に
観測される正電流ピークはチタンが活性溶解しているこ
とを示している。ptを蒸着した比較例1は耐久性が向
上しているものの、小さな正電流ピークが見られ不十分
である。これに対して、実施例1における改質層は正電
流ピークか出現せず耐久性の向上が図られていることか
わかる。
In Figures 1 and 2, the negative current observed in the negative potential range indicates hydrogen generation, and the positive current peak observed slightly on the higher potential side indicates active dissolution of titanium. It shows. Although Comparative Example 1 in which PT was vapor-deposited has improved durability, a small positive current peak is observed and is insufficient. In contrast, in the modified layer of Example 1, no positive current peak appeared, indicating that durability was improved.

実施例2 脱脂、エツチングしたチタン基体上にスパッタリング法
によI)白金を600人蒸着口、次いで酸素イオンを8
0KVの加速電圧で2X10”イオン、/ CIII 
2となるまでイオン照射処理を施した後、ヘキサヒドロ
キソ白金酸ナトリウム水溶液から白金を3μm電気メツ
キし、電極を製作した。この電極をNa2S0.100
g/Q、(NH,)2So。
Example 2 I) Platinum was deposited on a degreased and etched titanium substrate by a sputtering method using 600 evaporation ports, and then oxygen ions were deposited at 8
2X10” ions at 0KV accelerating voltage, /CIII
After performing ion irradiation treatment until it reached 2, platinum was electroplated to a thickness of 3 μm from an aqueous solution of sodium hexahydroxoplatinate to produce an electrode. This electrode is made of Na2S0.100
g/Q, (NH,)2So.

]、30g/l、pトl 1.2の水溶液中で、50゛
C1200A/d+o2.50′J>電解−10分休止
の断続条件下で陰極に白金板を用いて耐久試験を行なっ
た。結果を第1表に示す。
], 30 g/l, ptl 1.2 in an aqueous solution, a durability test was conducted using a platinum plate as a cathode under intermittent conditions of 50°C1200A/d+O2.50'J>electrolysis with a 10-minute pause. The results are shown in Table 1.

実施例3〜9 実施例2において白金をスパッタリング法により蒸着し
た工程をFe、Co、Sn、Bi、Pbの硝酸塩、硫酸
塩、塩化物などの水溶液、また、T i、 Taのアル
フキシトのブタ/−ル溶液を電極基体に塗布し、500
℃、20分間の加熱処理を行ない60()人の薄膜を形
成させた以外はすべて同一にして製作した電極を用いて
実施例2と同様の耐久試験を行なった。結果を第1表に
示す。
Examples 3 to 9 The process of depositing platinum by sputtering in Example 2 was carried out using aqueous solutions of nitrates, sulfates, chlorides, etc. of Fe, Co, Sn, Bi, and Pb, as well as alfuxite of Ti and Ta. - Coat the solution on the electrode substrate,
A durability test similar to that of Example 2 was conducted using electrodes manufactured in the same manner as in Example 2, except that the electrodes were heat treated at .degree. C. for 20 minutes to form a thin film of 60 mm. The results are shown in Table 1.

比較例2 市販の白金メツキチタン電極(白金厚み3μm11)を
使用し、実施例2と同様な方法で耐久性試験を行なった
。結果を第1表に示す。
Comparative Example 2 A durability test was conducted in the same manner as in Example 2 using a commercially available platinum-plated titanium electrode (platinum thickness: 3 μm). The results are shown in Table 1.

第1表 実施例10  ゛ 実施例1と同様に製作した電極基体上に塩化タンタルと
塩化スズの塩酸溶液を塗布し、火気中で5 (’l 0
°C13()分間の焼成を行なう熱分解法により500
人のT a 20 sとS n O2の複合酸化物薄膜
を形成し、次いで酸素イオンを80 K Vの加速電圧
で2X10”イオン/cll12となる主でイオン照射
処理を施した。次に、塩化イリジウム酸のイソプロパ7
−ル溶液を該薄膜上に塗布し、大気中で500 ’C1
1時間の焼成を繰り返し行ない約10g / +n 2
のIrO2被覆電極を製作した。この電極を用いて16
%l−+ 2S O、水溶液中、常温で3 +’) O
A/am2でか命試験を行なった。結果を第2表に示す
Table 1 Example 10 ゛A hydrochloric acid solution of tantalum chloride and tin chloride was applied onto an electrode substrate produced in the same manner as in Example 1, and 5 ('l 0
500 °C by pyrolysis method with calcination for 13 () minutes.
A composite oxide thin film of human T a 20 s and Sn O 2 was formed, and then ion irradiation treatment was performed with oxygen ions at an acceleration voltage of 80 KV to give 2×10” ions/cll12. Next, chloride isopropyl iridium 7
- Coat the solution on the thin film and heat it at 50'C1 in air.
Repeated baking for 1 hour yields approximately 10g/+n2
An IrO2 coated electrode was fabricated. 16 using this electrode
%l-+ 2S O in aqueous solution at room temperature 3 +') O
A life test was conducted on A/am2. The results are shown in Table 2.

実施例11.12 実施例10と同様な方法で塩化白金酸とオルトチタン酸
ブチルをブタ7−ルに溶解した塗布液、また、塩化イリ
ジウム酸のイソプロパ7−ル溶液を用いて熱分解法1こ
よりP L + T i O2、T r (−) 、と
して600人の薄膜を形成した以外はすべて実施例10
と同じ方法で電極を製作し、試験した結果を第2表に示
す。
Example 11.12 Thermal decomposition method 1 was carried out using a coating solution prepared by dissolving chloroplatinic acid and butyl orthotitanate in butyl alcohol in the same manner as in Example 10, and using an isopropyl alcohol solution of chloroiridic acid. All the procedures were the same as in Example 10 except that 600 thin films were formed as P L + T i O2, T r (-).
Electrodes were manufactured in the same manner as above and the results of the tests are shown in Table 2.

比較例3 実施例IOと同様な方法で・、約〈〕、331mのT 
a 、 O、とS n 02の複合酸化物薄膜を形成し
、イオン照射処理は施さないで該薄膜上に約1” ll
i / n+・の1r02被覆を熱分解法により施した
電極の試験結果を第2表に示す。
Comparative Example 3 In the same manner as in Example IO, T of approximately 331 m
A composite oxide thin film of a, O, and S n 02 was formed, and a thickness of about 1” ll was formed on the thin film without ion irradiation treatment.
Table 2 shows the test results of electrodes coated with i/n+·1r02 by pyrolysis.

比較例4 中間層薄膜を形成させず、またイオン照射処理ら施さず
に約lOg/m2のIre2被覆を熱分解法により形成
させた電極の試験結果を第2表に示す。
Comparative Example 4 Table 2 shows the test results of an electrode in which an Ire2 coating of about 10 g/m2 was formed by pyrolysis without forming an intermediate thin film or ion irradiation treatment.

第2表 実施例13 工、す/グしたチタン基体上に塩化ビスマスとオルトチ
タン酸ブナルの7ミルアルコール溶液を塗布し、火気中
で500 ’C11時間の加熱処理を行ない約300人
の酸化ビスマスと酸化チタンの複合酸化物薄膜を形成上
次に窒素イオンを80K Vの加速電圧て゛3.1x1
016イオン/cll+”となるまでイオン照射処理を
行ない、その後、特開昭59−25988号公報に記載
されるごと<pt:I r02:Ru02= 65 :
20 : 15 (重量比)となるように白金族金属塩
化物の塩酸溶液を塗布して、大気中500°C11時間
の焼成を2回行ない2g/ m 2のP L +I r
o 2 +RuO2被覆を持つ海水電解用電極を製作し
た。この電極を用いて3%塩水中、50A/dm’の条
件で電解した。電極の寿命は250時間で・あった。尚
、前記公報に記載された方法により同じ電極被覆を持つ
電極のが命は135時間であった。
Table 2 Example 13 A 7 mil alcohol solution of bismuth chloride and bunal orthotitanate was coated on a polished titanium substrate and heat treated at 500'C for 11 hours in an open flame to produce about 300 bismuth oxides. After forming a composite oxide thin film of titanium oxide and titanium oxide, nitrogen ions were added at an accelerating voltage of 80KV (3.1x1).
The ion irradiation process is performed until 016 ions/cll+" is reached, and then as described in Japanese Patent Application Laid-Open No. 59-25988 <pt:I r02:Ru02=65:
A hydrochloric acid solution of platinum group metal chloride was applied so that the ratio was 20:15 (weight ratio), and baking was performed twice for 11 hours at 500°C in the air to give a P L +I r of 2 g/m2.
An electrode for seawater electrolysis with o 2 +RuO2 coating was fabricated. Using this electrode, electrolysis was carried out in 3% salt water at 50 A/dm'. The life of the electrode was 250 hours. The life of an electrode with the same electrode coating using the method described in the above publication was 135 hours.

(発明の効果) 金属または金属酸化物の薄膜を形成させ、次いでイオン
照射処理を施した中間層を設けた事により、従来性なわ
れていた熱分解法、あるいはメンキ法による中間障壁層
による不動態化、基体の腐食防止効果を著しく向上させ
ることができ、電極被覆の有効利用率は格段に増大し、
電極の艮か命化が図られた。
(Effects of the invention) By forming a thin film of metal or metal oxide and then providing an intermediate layer that is subjected to ion irradiation treatment, it is possible to eliminate the interference caused by the intermediate barrier layer by the conventional thermal decomposition method or the Menki method. Mobilization, the corrosion prevention effect of the substrate can be significantly improved, and the effective utilization rate of the electrode coating is greatly increased.
The electrodes were brought to life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1お上り比較例1:こおいて測定したサ
イクリックポルタングラムの結果である。 第2図はT1板のサイクリックポルタングラムの結果で
ある。 特許出願人 日本カーリノド株式会社
FIG. 1 shows the results of cyclic portangrams measured in Example 1 and Comparative Example 1. Figure 2 shows the results of the cyclic portangram of the T1 plate. Patent applicant: Nippon Karinodo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] バルブ金属基体上に白金族金属および/またはそれらの
酸化物を含有した被覆を施した電解用電極において、前
記バルブ金属基体と前記被覆との中間にPt、Ir、R
u、Os、Rh、Pd、Ti、Ta、Nb、Zr、Mo
、W、Fe、Co、Ni、Mn、Pb、Sn、Sb、B
i、In、Tl、Alから選ばれた金属または該金属の
酸化物の1種以上にイオン照射処理を施した中間層を設
けた事を特徴とする電解用電極。
In an electrolytic electrode in which a coating containing platinum group metals and/or their oxides is provided on a valve metal substrate, Pt, Ir, R, or the like is provided between the valve metal substrate and the coating.
u, Os, Rh, Pd, Ti, Ta, Nb, Zr, Mo
, W, Fe, Co, Ni, Mn, Pb, Sn, Sb, B
An electrode for electrolysis, characterized in that an intermediate layer is provided in which one or more metals selected from i, In, Tl, and Al or oxides of the metals are subjected to ion irradiation treatment.
JP63125984A 1988-05-25 1988-05-25 Electrode for electrolysis Granted JPH01298189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63125984A JPH01298189A (en) 1988-05-25 1988-05-25 Electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63125984A JPH01298189A (en) 1988-05-25 1988-05-25 Electrode for electrolysis

Publications (2)

Publication Number Publication Date
JPH01298189A true JPH01298189A (en) 1989-12-01
JPH0572478B2 JPH0572478B2 (en) 1993-10-12

Family

ID=14923849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63125984A Granted JPH01298189A (en) 1988-05-25 1988-05-25 Electrode for electrolysis

Country Status (1)

Country Link
JP (1) JPH01298189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246177A (en) * 1995-03-08 1996-09-24 Agency Of Ind Science & Technol Production of hydride for transporting and storing hydrogen and device therefor
JP2009102676A (en) * 2007-10-22 2009-05-14 Japan Carlit Co Ltd:The Corrosion-resistant conductive-coated material and its use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749636A (en) * 1980-09-10 1982-03-23 Asahi Chem Ind Co Ltd Water-dispersed composition
JPS57192281A (en) * 1981-05-19 1982-11-26 Permelec Electrode Ltd Durable electrode for electrolysis and manufacture thereof
JPS6160147A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Processing request monitor system
JPS62134909A (en) * 1985-12-07 1987-06-18 Nissin Electric Co Ltd Surface treated magnetic substance and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749636A (en) * 1980-09-10 1982-03-23 Asahi Chem Ind Co Ltd Water-dispersed composition
JPS57192281A (en) * 1981-05-19 1982-11-26 Permelec Electrode Ltd Durable electrode for electrolysis and manufacture thereof
JPS6160147A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Processing request monitor system
JPS62134909A (en) * 1985-12-07 1987-06-18 Nissin Electric Co Ltd Surface treated magnetic substance and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246177A (en) * 1995-03-08 1996-09-24 Agency Of Ind Science & Technol Production of hydride for transporting and storing hydrogen and device therefor
JP2009102676A (en) * 2007-10-22 2009-05-14 Japan Carlit Co Ltd:The Corrosion-resistant conductive-coated material and its use

Also Published As

Publication number Publication date
JPH0572478B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
US3773555A (en) Method of making an electrode
US6217729B1 (en) Anode formulation and methods of manufacture
US6527939B1 (en) Method of producing copper foil with an anode having multiple coating layers
US4941953A (en) Durable electrodes having a plated tinor tin oxide intermediate layer for electrolysis and process for producing the same
JP3612365B2 (en) Active cathode and method for producing the same
JPH025830B2 (en)
SE457004B (en) ELECTROLYCLE ELECTRODE WITH AN INTERMEDIATE BETWEEN SUBSTRATE AND ELECTRIC COATING AND PROCEDURE FOR MANUFACTURING THE ELECTRODE
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
RU1838450C (en) Method of anode making
US5593556A (en) Highly durable electrodes for electrolysis and a method for preparation thereof
CN88102785A (en) Treating method for electrolytic etching of metal
JPH01298189A (en) Electrode for electrolysis
JP3430479B2 (en) Anode for oxygen generation
JP3676554B2 (en) Activated cathode
KR890003514B1 (en) Cathode for electrolysis and a process for making the said cathode
JPH0499294A (en) Oxygen generating anode and its production
JPH08199384A (en) Electrolyzing electrode and its production
JPH0343353B2 (en)
JPH02179891A (en) Anode for generate oxygen and production thereof
JPH08225977A (en) Electrode for electrolysis and its production
RU2425176C2 (en) Method to produce electrode, electrode (versions) and electrolytic cell (versions)
JPH02294494A (en) Anode for generating oxygen
JPH06128781A (en) High durable electrode for electrolysis
JPH0517890A (en) Electrolytic electrode material and its manufacture
JPH036234B2 (en)