JPH01297548A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH01297548A
JPH01297548A JP12927088A JP12927088A JPH01297548A JP H01297548 A JPH01297548 A JP H01297548A JP 12927088 A JP12927088 A JP 12927088A JP 12927088 A JP12927088 A JP 12927088A JP H01297548 A JPH01297548 A JP H01297548A
Authority
JP
Japan
Prior art keywords
gas
gas sensor
catalyst layer
oxidation catalyst
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12927088A
Other languages
Japanese (ja)
Inventor
Kazunari Kubota
窪田 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12927088A priority Critical patent/JPH01297548A/en
Publication of JPH01297548A publication Critical patent/JPH01297548A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the gas sensor which is not degraded in sensitivity to gaseous isobutane by forming an oxidation catalyst layer consisting of copper oxide on the surface of the gas sensitive body of the gas sensor formed by using a tin oxide semiconductor as the gas sensitive body. CONSTITUTION:The precipitate of the copper hydroxide formed by adding an aq. sodium hydroxide to an aq. copper nitrate soln. is well rinsed. This precipitate is dried in air and is then ground and is heat-treated to obtain the copper oxide powder. The copper oxide powder is further finely ground to fine particles and a binder and solvent are added to the particles to form paste. The paste is coated on the surface of the gas sensitive body 104 and is calcined at a prescribed temp. to form the oxidation catalyst layer 105 consisting of the copper oxide. The gas sensor which is not deteriorated in the sensitivity to the gaseous isobutane is obtd. by forming the oxidation catalyst layer 105 on the surface of the gas sensitive body 104.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は%LPガス用のガス漏れU綴器に用いられる
ガスセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas sensor used in a gas leak detection device for %LP gas.

〔従来の技術〕[Conventional technology]

酸化すず系半導体の電気抵抗値は、ガスによって変化す
る(電気伝導率かよくなる)ことが良く知られており、
この性寅を利用したガスセンサが多用されている。
It is well known that the electrical resistance value of tin oxide semiconductors changes depending on the gas (the electrical conductivity improves).
Gas sensors that utilize this characteristic are widely used.

第5図はLPガス検出用のガスセンサの構成を示す断面
図で、センサ基板(アルミナ基板)1の表面に一対の白
金電極2.3を設け、この両目金電極2,3に酸化すず
系半導体のガス感応体4を接続する。このガス感応体4
の表面には、エチルアルコールによる誤報を防止するた
めに白金を担持したアルミナ粉末を塗布して酸化触媒層
5を形成している。この酸化触媒層5はエチルアルコー
ルを酸化して二酸化炭素とし、酸化触媒層5内側の酸化
すず系半導体のガス感心体4に作用しないようにする機
能を有する。6.7は両目金電極2゜3の外部への引出
し用リード線である。センサ基板4の裏面には、酸化す
ず系半導体のガス感応体4を加熱するための電気ヒータ
8が設けられ、リード線9.10により電源に接続され
る1、酸化すず系半導体のガス感応体4を電気ヒータ8
で加熱する理由は、ガス感応体4を加熱することにより
酸化触媒層も加温され、その触媒活性が高められてエチ
ルアルコールの酸化が促進されるためであって、その温
度は400℃近辺が適当とされている。
FIG. 5 is a cross-sectional view showing the configuration of a gas sensor for detecting LP gas, in which a pair of platinum electrodes 2.3 are provided on the surface of the sensor substrate (alumina substrate) 1, and a tin oxide based semiconductor The gas sensitive body 4 is connected. This gas sensitive body 4
In order to prevent false alarms caused by ethyl alcohol, an oxidation catalyst layer 5 is formed by applying alumina powder supporting platinum to the surface of the electrode. This oxidation catalyst layer 5 has the function of oxidizing ethyl alcohol to carbon dioxide and preventing it from acting on the tin oxide based semiconductor gas sensing body 4 inside the oxidation catalyst layer 5. Reference numeral 6.7 denotes a lead wire for leading both eyelid electrodes 2.3 to the outside. An electric heater 8 for heating the gas sensitive body 4 made of a tin oxide based semiconductor is provided on the back side of the sensor substrate 4, and is connected to a power source by a lead wire 9.10. 4 to electric heater 8
The reason for heating is that by heating the gas sensitive body 4, the oxidation catalyst layer is also heated, increasing its catalytic activity and promoting the oxidation of ethyl alcohol, and the temperature is around 400°C. considered appropriate.

このようなガスセンサは第6図番こ示すように組立てら
れる。、第6図において、11はベースでありこのペー
ス11には4本のステム11〜14が植設され、ガスセ
ンサの白金電極2.3のリード線6.7および電気ヒー
タ8のリード線9 、10がML極用ステム11 、1
2およびヒータ用ステム13 、14に接続される。
Such a gas sensor is assembled as shown in FIG. , In FIG. 6, reference numeral 11 is a base, and four stems 11 to 14 are implanted in this pace 11, a lead wire 6.7 of a platinum electrode 2.3 of a gas sensor, a lead wire 9 of an electric heater 8, 10 is the stem for ML pole 11, 1
2 and heater stems 13 and 14.

上述したLPガス検出用のガスセンサを使用するときは
、電気ヒータ8のリード線9.lOが接続されたヒータ
用ステム13 、14をヒータ電源に接続して電気ヒー
タ8に通電し、白金に!2.3のリード線6.7が接続
された電極用ステム11 、12を検出用電源と負荷抵
抗器とを直列接続して検出回路を形成する。+*矧せん
とするガスが前記ガスセンサの酸化すず系半導体のガス
感応体4に接触すると半導体のtに気抵抗値が変化して
前記検出回路を流れる電流が変化するのでAil記負荷
抵抗器の端子間電圧の変化を捕えることによりガスを検
知することができる。
When using the above-described gas sensor for detecting LP gas, the lead wire 9 of the electric heater 8. The heater stems 13 and 14 to which lO is connected are connected to the heater power source, and the electric heater 8 is energized to produce platinum! A detection circuit is formed by connecting the electrode stems 11 and 12 to which the lead wires 6.7 of 2.3 are connected in series with a detection power source and a load resistor. +*When the gas to be released comes into contact with the gas sensing body 4 made of a tin oxide semiconductor of the gas sensor, the resistance value changes at t of the semiconductor, and the current flowing through the detection circuit changes. Gas can be detected by capturing changes in voltage between terminals.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この場合ガスセンサは、気温1周囲の状況その他の理由
ζこよりセンサ温度が高くなるとエチルアルコールと同
様にイソブタンガスも酸化してしまい、本来検知すべき
LPガスの主成分であるインブタンの検知感度を低下さ
せるという欠点があった。これを感ガス特性により説明
すると、ガスセンサ(酸化すず系半導体のガス感応体4
)の空気中における電気抵抗値を%、0.2%イソブタ
ンガス中または0.2%エチルアルコールガス中での電
気抵抗値を几gとしてRo / Rgをガス感度とする
In this case, if the sensor temperature rises due to ambient conditions or other reasons, the gas sensor will oxidize isobutane gas as well as ethyl alcohol, reducing the detection sensitivity of inbutane, which is the main component of LP gas that should be detected. It had the disadvantage of letting you do it. To explain this in terms of gas-sensitive characteristics, a gas sensor (a gas-sensitive material made of a tin oxide semiconductor)
) in air is expressed as %, and the electrical resistance value in 0.2% isobutane gas or 0.2% ethyl alcohol gas is expressed as g, and Ro/Rg is defined as gas sensitivity.

ガスセンサの温度は、赤外線放射温度計で測足し、電気
ヒータ8への印加電圧を調節して350℃−400℃−
450℃と変化させた。そのときのガスセンサの各温度
に対するガス感度を第7図に示す。
The temperature of the gas sensor is measured with an infrared radiation thermometer and adjusted to 350°C - 400°C by adjusting the voltage applied to the electric heater 8.
The temperature was changed to 450°C. FIG. 7 shows the gas sensitivity of the gas sensor at each temperature at that time.

曲線Pは0.2%エチルアルコールガスに対スルガス感
度(no / Rg )  であり、ガスセンサの温度
が400℃〜450℃の間においてガス感度(Ro /
 Rg )が低くなり酸化すず系半導体のガス感応体に
作用を及はさないという効果が得られるが、曲線Qで示
す0.2%イソブタンガスのガス感度(Ro/kLg)
はガスセンサの温度が低温のときはよいとしても温度が
400℃以上になると急激に低下し、そのためLPガス
の主成分であるイソブタンガスの検知が困難となる。
Curve P is the gas sensitivity (no/Rg) for 0.2% ethyl alcohol gas, and the gas sensitivity (Ro/Rg) when the gas sensor temperature is between 400°C and 450°C.
The effect is that the gas sensitivity of 0.2% isobutane gas (Ro/kLg) as shown by curve Q is lowered and the effect is not exerted on the gas sensitive body of the tin oxide semiconductor.
Although good when the gas sensor temperature is low, it rapidly decreases when the temperature reaches 400° C. or higher, making it difficult to detect isobutane gas, which is the main component of LP gas.

そこでこの発明は上述した事由に鑑み、広い温度範囲で
アルコール感度を低減しつつ、LPガスの主成分である
イソブタンガスに対するガス感度を低下せしめないよう
にガスセンサとくに酸化触媒層の構成を改良することを
目的とする。
Therefore, in view of the above-mentioned reasons, this invention aims to improve the structure of the gas sensor, especially the oxidation catalyst layer, so as to reduce the alcohol sensitivity over a wide temperature range while not reducing the gas sensitivity to isobutane gas, which is the main component of LP gas. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

上述した課題を解決するため本発明では実験結果に基づ
いて酸化触媒層を次のように構成した。
In order to solve the above-mentioned problems, in the present invention, the oxidation catalyst layer was configured as follows based on experimental results.

すなわちガス感応体の表面の酸化触媒層を酸化銅粉末を
ペースト状にして塗布し、焼成して形成したものである
That is, the oxidation catalyst layer on the surface of the gas sensitive body is formed by applying copper oxide powder in the form of a paste and firing it.

〔作用〕[Effect]

酸化すず系半導体のガス感応体表面に酸化銅から成る酸
化触媒層を設けると、この酸化触媒層により広い温度範
囲でエチルアルコールガスを酸化除去してエチルアルコ
ールガス感度を低減し、しかも酸化銅から成る酸化触媒
層によりイソブタンが酸化されずイソブタンガス感度は
低下することなく一定となる。
When an oxidation catalyst layer made of copper oxide is provided on the surface of a tin oxide-based semiconductor gas sensor, this oxidation catalyst layer oxidizes and removes ethyl alcohol gas over a wide temperature range, reducing the sensitivity to ethyl alcohol gas. Due to the oxidation catalyst layer, isobutane is not oxidized and the isobutane gas sensitivity remains constant without decreasing.

〔実施例〕〔Example〕

wc1図はこの発明の一実施例であるガスセンサの表面
図、第2図は同上ガスセンサの裏面図、第3図は第1図
のA−A矢視断面図である。図において101はセンサ
基板(アルミナ基板)、102゜103は一対の白金電
極、104は酸化すず系半導体のガス感応体、105は
酸化触媒層、106 、107は白金電極のリード線、
108は白金ヒータ、109゜110はヒータのリード
線である。
wc1 is a front view of a gas sensor according to an embodiment of the present invention, FIG. 2 is a back view of the same gas sensor, and FIG. 3 is a sectional view taken along the line A-A in FIG. In the figure, 101 is a sensor substrate (alumina substrate), 102 and 103 are a pair of platinum electrodes, 104 is a gas sensitive body made of a tin oxide semiconductor, 105 is an oxidation catalyst layer, 106 and 107 are lead wires of the platinum electrodes,
108 is a platinum heater, and 109° and 110 are heater lead wires.

このガスセンサは次のようにして製造される。This gas sensor is manufactured as follows.

まずセンサ基板(アルミナ基板)101の表面に白金電
極102 、103を、裏面に白金ヒータ108をそれ
ぞれ焼き付けにより形成し、この一対の白金電極102
 、103の表面に、すず蒸気と酸素とをアーク放電に
より反応させて生成した酸化すずJkを形成する。この
1秋化すず層がカス感応体104となる。
First, platinum electrodes 102 and 103 are formed on the front surface of a sensor substrate (alumina substrate) 101, and a platinum heater 108 is formed on the back surface of the sensor substrate (alumina substrate) 101.
, 103, tin oxide Jk is formed by reacting tin vapor and oxygen by arc discharge. This solidified tin layer becomes the waste sensitizer 104.

なおこの酸化すず層の形成は、他の方法たとえば岐化す
ず粉末をバインダーなどと混合してペースト状とし、こ
れを塗布して焼結させる方法で行なってもよい。
The tin oxide layer may be formed by other methods, such as mixing a branched tin powder with a binder to form a paste, applying the paste, and sintering the paste.

次にガス感応体104の表面を覆い被せる酸化触媒層1
05は次のようにして形成する。すなわち、硝酸調水溶
液に、水酸化す) IIウム水溶液を添加して生成した
水酸化銅の沈澱物をよく水洗いする。
Next, the oxidation catalyst layer 1 covers the surface of the gas sensitive body 104.
05 is formed as follows. That is, a copper hydroxide precipitate produced by adding a nitric acid aqueous solution to an aqueous nitric acid solution is thoroughly washed with water.

これを空気中において110”(’:で乾燥させた後5
〜10メ、シ、に粉砕し、さらに空気中において250
℃で熱処理して酸化$ (CuO)粉末を得る。
After drying this in the air at 110"(':
Grind to ~10 mm, then 250 mm in air.
Heat treatment at ℃ yields oxidized $(CuO) powder.

この酸化銅粉末をさらに細かく粉砕して325メ、シュ
以下の細粒子にし、この後パインダート溶剤を加えてペ
ースト状にしてガス感応体104の表面に塗布し、55
0℃で2)分間焼成して、厚さ0.1鶴の酸化銅から成
る酸化触媒層105を形成させる。
This copper oxide powder is further finely ground into fine particles of 325 mesh or less, and then a pin dart solvent is added to form a paste and applied to the surface of the gas sensitive body 104.
It is fired at 0° C. for 2 minutes to form an oxidation catalyst layer 105 made of copper oxide and having a thickness of 0.1 mm.

このようにして酸化触媒層105が形成された本発明の
一実施例であるガスセンサを前述した従来のガスセンサ
と同様のテスト方法、テスト条件によりガス感度を求め
ると、第4図に示す特性曲線図が得られる。図中曲線R
は0.2%エチルアルコールガスのカス感度(Ro/R
g )であり、第7図に示す従来の曲線Pと比較してエ
チルアルコールカス感度を低減する効果には大きな差は
ない。しかしながらイソブタンガス感度については第7
図の従来の曲線Qで示すようにガスセンサの温度が高く
なるとイソブタンガス感度が急に低下するが、第4図の
本発明によるガスセンサの曲線Sではガスセンサの温度
が高くなってもイソブタンガス感度はほとんど変化せず
一定である。
When the gas sensitivity of the gas sensor according to the embodiment of the present invention in which the oxidation catalyst layer 105 is formed in this manner is determined using the same test method and test conditions as the conventional gas sensor described above, the characteristic curve diagram shown in FIG. 4 is obtained. is obtained. Curve R in the figure
is the scum sensitivity of 0.2% ethyl alcohol gas (Ro/R
g), and there is no significant difference in the effect of reducing ethyl alcohol scum sensitivity compared to the conventional curve P shown in FIG. However, regarding isobutane gas sensitivity, the seventh
As shown by the conventional curve Q in the figure, the isobutane gas sensitivity suddenly decreases as the temperature of the gas sensor increases, but in the curve S of the gas sensor according to the present invention in Figure 4, the isobutane gas sensitivity decreases even if the gas sensor temperature increases. It remains constant with almost no change.

このような酸化銅から成る酸化触媒層を有するガスセン
サのイソブタンガス感度が温度に依存しないで一定であ
る理由は明らかでないが、酸化銅がエチルアルコールに
対して酸化活性が高く、イソブタンに対して不活性であ
るためと推察できる。
It is not clear why the isobutane gas sensitivity of a gas sensor having an oxidation catalyst layer made of copper oxide is constant regardless of temperature, but copper oxide has high oxidizing activity against ethyl alcohol and is insensitive to isobutane. It can be inferred that this is because it is active.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、酸化すず系半導体をガス感応体とし
たガスセンサにおいて、酸化銅から成る酸化触媒層をカ
ス感応体表面に形成することにより、エチルアルコール
ガス感度が低く、シかもイソブタンガス感度が温度に依
存しないで一定となり、エチルアルコールによる誤報を
防止し、かつLPガスの主成分であるイソブタンガス感
度が低下しないガスセンサを得ることができる。
According to the present invention, in a gas sensor using a tin oxide semiconductor as a gas sensor, by forming an oxidation catalyst layer made of copper oxide on the surface of the gas sensor, the sensitivity to ethyl alcohol gas is low and the sensitivity to isobutane gas is low. It is possible to obtain a gas sensor that is constant regardless of temperature, prevents false alarms due to ethyl alcohol, and does not reduce sensitivity to isobutane gas, which is the main component of LP gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例であるガスセンサの表面図
、第2図は同上ガスセンサの裏面図、第3図は第1図の
A−A矢視断面図、第4図は同上ガスセンサにおけるイ
ソブタンとエチルアルコールのガス感度の温度依存性を
示す特性曲線図、第5図は従来のガスセンサの断面図、
第6図はガスセンサの組立構成図、第7図は従来のガス
センサにおけるイソブタンとエチルアルコールのカス感
度の温度依存性を示す特性曲線図である。 101・・・センサ基板、102 、103・・・電極
、104・・・ガス感応体、105・・・酸化触媒層、
108・・・電気ヒー番1− 第2図 °1 秀S口
FIG. 1 is a front view of a gas sensor that is an embodiment of the present invention, FIG. 2 is a back view of the same gas sensor, FIG. 3 is a sectional view taken along the line A-A in FIG. A characteristic curve diagram showing the temperature dependence of gas sensitivity of isobutane and ethyl alcohol. Figure 5 is a cross-sectional view of a conventional gas sensor.
FIG. 6 is an assembled configuration diagram of a gas sensor, and FIG. 7 is a characteristic curve diagram showing the temperature dependence of the sensitivity of isobutane and ethyl alcohol residue in a conventional gas sensor. 101... Sensor substrate, 102, 103... Electrode, 104... Gas sensitive body, 105... Oxidation catalyst layer,
108...Electric heater number 1- Figure 2 °1 Hide S mouth

Claims (1)

【特許請求の範囲】[Claims] 1)センサ基板の表面に間隔をもって実装した一対の電
極に酸化すず系半導体のガス感応体を電気的に接続し、
このガス感応体の表面に酸化触媒層を形成し、前記セン
サ基板の裏面に前記ガス感応体を加熱するための電気ヒ
ータを設けたガスセンサにおいて、前記酸化触媒層を酸
化銅を主成分とする酸化触媒により形成したことを特徴
とするガスセンサ。
1) A gas sensitive material made of a tin oxide semiconductor is electrically connected to a pair of electrodes mounted at a distance on the surface of the sensor substrate,
In this gas sensor, an oxidation catalyst layer is formed on the surface of the gas sensitive body, and an electric heater for heating the gas sensitive body is provided on the back surface of the sensor substrate. A gas sensor characterized by being formed using a catalyst.
JP12927088A 1988-05-26 1988-05-26 Gas sensor Pending JPH01297548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12927088A JPH01297548A (en) 1988-05-26 1988-05-26 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12927088A JPH01297548A (en) 1988-05-26 1988-05-26 Gas sensor

Publications (1)

Publication Number Publication Date
JPH01297548A true JPH01297548A (en) 1989-11-30

Family

ID=15005432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12927088A Pending JPH01297548A (en) 1988-05-26 1988-05-26 Gas sensor

Country Status (1)

Country Link
JP (1) JPH01297548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2255849A (en) * 1991-05-15 1992-11-18 Alan Smith Gas sensor alarm system
CN110376253A (en) * 2019-07-26 2019-10-25 华中科技大学 A kind of humidity sensor, preparation method and wet sensitive type switch trigger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2255849A (en) * 1991-05-15 1992-11-18 Alan Smith Gas sensor alarm system
CN110376253A (en) * 2019-07-26 2019-10-25 华中科技大学 A kind of humidity sensor, preparation method and wet sensitive type switch trigger
CN110376253B (en) * 2019-07-26 2020-11-24 华中科技大学 Humidity sensor, preparation method and humidity-sensitive switch trigger

Similar Documents

Publication Publication Date Title
SE7906859L (en) SENSORS FOR MONITORING OF SOTHALS IN EXHAUST, IN PARTICULAR FROM DIESEL ENGINES
JPS6118854A (en) Oxygen concentration detecting element
JP3525532B2 (en) Oxygen concentration detector
JPH01297548A (en) Gas sensor
JPS605548B2 (en) Zirconia sintered body for oxygen sensor
JP4041228B2 (en) CFC gas sensor and manufacturing method thereof
JPS5734446A (en) Nultifunctional detecting element and multifunctional detector
JPH02208550A (en) Gas sensor
JP3106385B2 (en) High frequency detecting element and high frequency heating device using the same
JPH0221257A (en) Gas sensor
JPH03287056A (en) Gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JPH02206749A (en) Gas sensor
JPH04258751A (en) Gas sensor
JPH0220681Y2 (en)
JPH01197646A (en) Gas sensor
JPH04186148A (en) Gas sensor
JPH02263145A (en) Semiconductor type gas sensor
JPH07140101A (en) Incomplete combustion gas sensor
JP2819362B2 (en) Gas detection material
JP4165783B2 (en) CO2 sensor and manufacturing method thereof
JPS63279150A (en) Semiconductor type gas sensor
JPH0514861B2 (en)
JPH0473744B2 (en)