JPH01293877A - Preparation of artificial bone material - Google Patents

Preparation of artificial bone material

Info

Publication number
JPH01293877A
JPH01293877A JP63124900A JP12490088A JPH01293877A JP H01293877 A JPH01293877 A JP H01293877A JP 63124900 A JP63124900 A JP 63124900A JP 12490088 A JP12490088 A JP 12490088A JP H01293877 A JPH01293877 A JP H01293877A
Authority
JP
Japan
Prior art keywords
tricalcium phosphate
density
bone
artificial
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63124900A
Other languages
Japanese (ja)
Inventor
Tooru Nonami
亨 野浪
Sachiko Sakae
寒河江 幸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP63124900A priority Critical patent/JPH01293877A/en
Publication of JPH01293877A publication Critical patent/JPH01293877A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply prepare an artificial bone material excellent in bio-compatibility and having good processability or workability in an industrially profitable manner, by a method wherein a mixture containing porous hydroxyapatite and tricalcium phosphate in a specific ratio is used and the molding pressure of said mixture is changed within a specific range at the time of molding to adjust the density of tricalcium phosphate to a definite range. CONSTITUTION:Porous hydroxyapatite and tricalcium phosphate are mixed in a ratio of 1:10-10:1 on a wt. basis and the molding pressure of the obtained mixture is changed within a range of 5-1000kg/cm<2> to set the density of tricalcium phosphate to a range of 1.10-1.80g/cm<3>. When the density of tricalcium phosphate exceeds 1.80g/cm<3>, a molded body becomes excessively high in its density and also becomes hard to adsorb within a living body as an artificial bone material and the bio- compatibility thereof such as bone conductivity is lowered. When said density is below 1.10g/cm<3>, mechanical strength such as compression strength is deteriorated and processability or workability is lowered. When molding pressure becomes higher than 1000kg/cm<2>, the molded body becomes excessively high in its density to be lowered in bio-compatibility and, when said pressure is lower than 5kg/cm<2>, the mechanical strength of the molded body is lowered.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は人工骨材の製造方法に関する。さらに詳しくは
多孔質水酸アパタイトとリン酸三カルシウムの混合物の
成形時に成形圧を制御し、骨伝導能に優れ、かつ加工性
や作業性が良好な人工骨材を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing artificial aggregate. More specifically, the present invention relates to a method of controlling the molding pressure during molding of a mixture of porous hydroxyapatite and tricalcium phosphate to produce an artificial aggregate with excellent bone conductivity and good processability and workability.

従来の技術 従来、歯科治療においては、抜歯後歯槽骨が吸収される
歯槽骨萎縮症により入れ歯なとの固定が不十分になると
いう問題があり、また口腔外科や整形外科治療において
は、例えば交通事故や骨腫ようなどの疾患による骨の損
傷部、欠損部、空隙部等を補てつ、補填するために、患
者自身の他の部分の骨、すなわち自家骨の移植、嵌植、
埋入、インブラントなどが試みられているが、損傷個所
以外の骨組織を切除することから、患者に肉体的心理的
負担を強いることになり、また広範な骨欠損部を充填す
るに足る十分量の自家骨を採取できないという問題があ
った。
Conventional Technology Conventionally, in dental treatment, there has been a problem in which the fixation of dentures becomes insufficient due to alveolar bone atrophy, in which the alveolar bone is resorbed after tooth extraction, and in oral surgery and orthopedic treatment, for example, Transplantation, implantation, etc. of bone from other parts of the patient, i.e., autologous bone, are used to replace or compensate for damaged, defective, or void areas in the bone due to accidents or diseases such as bone tumors.
Attempts have been made to use implants, implants, etc., but they require removal of bone tissue other than the damaged area, which imposes a physical and psychological burden on the patient, and they do not have enough bone tissue to fill a wide range of bone defects. There was a problem in that it was not possible to collect a large amount of autologous bone.

このような事情の下で、近年人工骨材に関する研究が盛
んに行われるようになってきた。ところで、これらの人
工骨の材料については、毒性がなく安全で、骨欠損部に
適合した形状に成形して賦形したり、また生体内に嵌植
、埋入するに際して、十分な機械的強度を有し、かつ生
体組織と結合しやすいものを選ぶことが必要とされ、さ
らに生体内て自然にスムースに消失して新生骨と置換さ
れるものか好ましいとされている。
Under these circumstances, research on artificial aggregates has been actively conducted in recent years. By the way, these artificial bone materials are non-toxic and safe, and have sufficient mechanical strength to be molded into a shape that fits the bone defect, and to be implanted in a living body. It is necessary to select a material that has the following characteristics and is easily bonded to living tissue. Furthermore, it is preferable to choose a material that naturally and smoothly disappears in the living body and is replaced by new bone.

このようなものとしては、こ4tまて、リン酸三カル/
ラム、水酸アバタイI・又は特殊なアパタイト型結晶構
造すン酸三カル/ウム化合物の焼結体を用いた人工骨、
人工関節、人工歯根等か開発されてきた。例えは、人工
骨や人工歯根を体内に埋入したときに、生体組織と結合
しやすくするには、これを多孔質にして、生体組織が細
孔に入り込み、これを固定しうるようにすることか必要
であり、このようなものとして、これまで多孔質リン酸
三カルシウム系焼結体を用いることか提案されている(
特開昭86−119389号公報、特開昭57−785
6号公報)。
As such, 4t, trical phosphate/
Artificial bone using a sintered body of ram, hydroxyl abatai I or a trical/umium sulfate compound with a special apatite type crystal structure,
Artificial joints, artificial tooth roots, etc. have been developed. For example, when an artificial bone or tooth root is implanted into the body, in order to make it easier to bond with living tissue, it is necessary to make it porous so that the living tissue can enter the pores and fix it. This is necessary, and the use of porous tricalcium phosphate sintered bodies has been proposed as such (
JP-A-86-119389, JP-A-57-785
Publication No. 6).

しかしなから、この多孔質リン酸三カルシウム系焼結体
から成る人工骨材は、硬くてもろいなと、機械的強度か
十分てないという欠点かあり、また素材かち密質である
ため、生体内における吸収や新生骨の置換なとに関して
必ずしも満足しうるものではない。
However, this artificial aggregate made of porous tricalcium phosphate-based sintered material has drawbacks such as being hard and brittle and lacking sufficient mechanical strength, and also because the material is dense. Absorption in the body and replacement of new bone are not always satisfactory.

さらに、結晶粒径か50人〜10μmのアバタイ[・型
結晶構造すン酸三カルンウム化合物の粉粒体に生理食塩
水なとを加えて流動状態または可塑状態とした骨欠損部
充てん利も知られている(特開昭56−548i1号公
報)。しかしなから、この充てん利においては、使用す
るリン酸三カルシウム化合物か微粉状であるため、この
ものを骨欠損部に充てんして、縫合する際に、該微粉状
物か皮膚創傷面に伺着して縫合か困難であるという欠点
かある。
In addition, it is also known that a powder of Abatai tricarunium sulfate compound with a crystal grain size of 50 to 10 μm can be added to physiological saline to form a fluid or plastic state for filling bone defects. (Japanese Unexamined Patent Publication No. 56-548i1). However, in this filling technique, the tricalcium phosphate compound used is in the form of a fine powder, so when the bone defect is filled with this compound and sutured, the fine powder may not be present on the surface of the skin wound. The disadvantage is that it is difficult to wear and suture.

他方、人工骨材として、多孔質水酸アパタイト100重
量部とび一リン酸三カルシウム10〜100重量部との
混合物に水を加え70〜100°Cにおいて硬化させた
のち加熱処理をしてβ−リン酸三カルノウムに転化させ
て得た複合材料も提案されている。
On the other hand, as an artificial aggregate, water is added to a mixture of 100 parts by weight of porous hydroxyapatite and 10 to 100 parts by weight of tricalcium monophosphate, the mixture is cured at 70 to 100°C, and then heat treated to obtain β- Composite materials obtained by converting tricarnoum phosphate have also been proposed.

しかしなから、この複合材料は、骨伝導能を有する多孔
質水酸アパタイトの混合比を大きくして十分な骨伝導能
を持たせようとすると強度か非常に低下し、また実用上
十分な強度を持たせるためにα−リン酸三力ルンウムの
配合比を高めると骨形成か十分てはなく、骨形成能と強
度を任意にコントロールすることかできないという欠点
かある。
However, when trying to increase the mixing ratio of porous hydroxyapatite, which has osteoconductive properties, to give this composite material sufficient osteoconductive properties, the strength of this composite material decreases significantly, and the strength is insufficient for practical use. If the blending ratio of α-phosphoric acid triphosphate is increased in order to have this effect, bone formation may not be sufficient, and there is a drawback that bone formation ability and strength cannot be controlled arbitrarily.

発明か解決しようとする課題 本発明は、従来のこのような欠点を克服し、骨伝導能等
の生体親和性に優れ、かつ加工性や作業性の良い人工骨
材を簡単に、かつ工業的に有利に製造する方法を提供す
ることを目的をしてなされたものである。
Problems to be Solved by the Invention The present invention overcomes these conventional drawbacks and makes it possible to easily and industrially produce an artificial aggregate that has excellent biocompatibility such as bone conduction ability, and has good processability and workability. The purpose of this invention is to provide an advantageous manufacturing method for.

課題を解決するだめの手段 本発明者らは、工業的に有利な人工骨材の製造方法を開
発するため種々研究を重ねた結果、多孔質水酸アバタイ
]・とリン酸三カル/ラムの特定割合の混合物を用い、
その成形時に成形圧を特定範囲内で変化させて、リン酸
三カルシウムの密度を一定範囲に調整することにより、
上記目的を達成しうろことを見出し、本発明を完成する
に至った。
Means to Solve the Problems The present inventors have conducted various studies to develop an industrially advantageous method for producing artificial aggregates, and as a result, they have developed a method for producing porous hydroxyl abatai and trical phosphate/lamb. Using a mixture of specific proportions,
By changing the molding pressure within a certain range during molding and adjusting the density of tricalcium phosphate within a certain range,
The inventors have found a way to achieve the above object and have completed the present invention.

すなわち、本発明は、多孔質水酸アパタイトとリン酸三
カルシウムの混合物を加圧成形するに当り、多孔質水酸
アパタイトとリン酸三カルシウムとを重量比1:1:1
01で混合したものを用い、かつ成形圧を5〜100O
JB/cm2の範囲内で変えることにより、リン酸三カ
ルシウムの密度を1.10〜1 、80 g/ cm’
の範囲になるように調整することを特徴とする人工骨材
の製造方法を提供するものである。
That is, in the present invention, when pressure-molding a mixture of porous hydroxyapatite and tricalcium phosphate, the weight ratio of porous hydroxyapatite and tricalcium phosphate is 1:1:1.
Use a mixture of 01 and molding pressure of 5 to 100O.
By varying the density of tricalcium phosphate within the range of 1.10 to 1.80 g/cm'
The purpose of the present invention is to provide a method for producing artificial aggregate, which is characterized in that the material is adjusted to fall within the range of .

本発明で用いる多孔質水酸アバタイ]・とじては、乾式
法又は湿式法による合成アバタイI・でもよいし、各種
を椎動物の骨、歯から回収された生体アパタイトでもよ
い。例えは、乾式法としては、900〜130000の
高温下の水蒸気気流中でリン酸カルシウムと過剰のCa
Oを反応させる方法等か挙げられる。この多孔質水酸ア
パタイトは一般に顆粒状で用いられるか、粉状のもので
も差し支えない。顆粒状の場合の粒径は、0.1〜5.
0mm程度か適当である。
The porous hydroxyl apatite used in the present invention may be synthetic apatite I by a dry or wet method, or may be a variety of biological apatites recovered from bones and teeth of vertebrates. For example, in the dry method, calcium phosphate and excess Ca are
Examples include a method of reacting with O. This porous hydroxyapatite is generally used in the form of granules, or may be in the form of powder. In the case of granules, the particle size is 0.1 to 5.
Approximately 0 mm is appropriate.

また、この多孔質水酸アパタイトは細孔を有し、細孔径
5〜200μm1気孔率20〜50%の範囲のものか好
ましい。
The porous hydroxyapatite preferably has pores with a pore diameter of 5 to 200 μm and a porosity of 20 to 50%.

本発明で用いるリン酸三カルシウムとしては、α−リン
酸三カル/ウムか好ましいが、β−リン酸三カルシウム
でも差し支えない。このものは通常粒径0.2mm以下
の粉状で用いられる。
The tricalcium phosphate used in the present invention is preferably α-tricalcium/um phosphate, but β-tricalcium phosphate may also be used. This product is usually used in powder form with a particle size of 0.2 mm or less.

この多孔質水酸アパタイトとリン酸三カルシウムとの配
合比は、通常、重量比でlO・1〜1−10の範囲のも
のであり、lニア〜7:1特に1:1〜7:1が好まし
い。これよりも多孔質水酸アパタイトの量か多くなると
気孔率が高くなりすきで強度か不十分となるし、また、
これよりも少なくなると気孔率が低下し多孔質アパタイ
トセラミンクスの望ましい性質、例えば人工骨材として
の生体同化能か低下するのを免れない。
The mixing ratio of this porous hydroxyapatite and tricalcium phosphate is usually in the range of 1 to 1-10 by weight, especially 1 to 7:1, especially 1:1 to 7:1. is preferred. If the amount of porous hydroxyapatite is greater than this, the porosity will increase and the strength will be insufficient, and
When the amount is less than this, the porosity decreases and the desirable properties of porous apatite ceramics, such as bioassimilation ability as an artificial aggregate, inevitably decrease.

本発明においては、この多孔質水酸アパタイトとリン酸
三カルシウムとの混合物を、成形後のリン酸三カルシウ
ム密度が1.10−1.80g/cm3、好ましくは1
.40−1.70 g/cm3になるように、成形圧を
5〜1000kg/cm2の範囲内で選択しながら、加
圧成形することが必要である。
In the present invention, the mixture of porous hydroxyapatite and tricalcium phosphate has a tricalcium phosphate density of 1.10 to 1.80 g/cm3, preferably 1.
.. It is necessary to perform pressure molding while selecting a molding pressure within the range of 5 to 1000 kg/cm2 so that the weight is 40-1.70 g/cm3.

このリン酸三カルシウム密度が1.80 g7cm3を
越えると、成形体が高密度になりすぎて人工骨材とした
ときに生体内に吸収されにくくなり、骨伝導能等の生体
親和性か低下するし、また、該密度が1.1097cm
3未満では、圧縮強度等の機械的強度が劣化し、加工性
や作業性が低下するという不利かある。
If this tricalcium phosphate density exceeds 1.80 g7cm3, the molded product becomes too dense and becomes difficult to absorb into the body when used as an artificial aggregate, resulting in a decrease in biocompatibility such as bone conduction ability. Also, the density is 1.1097 cm
If it is less than 3, mechanical strength such as compressive strength deteriorates, and there is a disadvantage that processability and workability decrease.

また、この成形圧が1000kg/cm2よりも高くな
ると成形体が高密度になりすぎて生体親和性が低下する
し、また、5kg/cm2よりも低くなると機械的強度
が低下する。
Furthermore, if the molding pressure is higher than 1000 kg/cm2, the density of the molded product becomes too high and the biocompatibility is lowered, and if it is lower than 5 kg/cm2, the mechanical strength is lowered.

このように、成形体密度を一定範囲内に保つことにより
、全体として、骨伝導能等の生体親和性、強度、加工性
等のバランスのとれた優れた品質の人工骨材を得ること
かできる。
In this way, by keeping the density of the compact within a certain range, it is possible to obtain an artificial aggregate of excellent quality with a well-balanced overall biocompatibility such as bone conductivity, strength, workability, etc. .

このような成形方法としては、例えば、水酸アパタイト
とリン酸三カルシウムとの種々の配合比の配合体を円筒
型、角型等の金型を用いて賦形したのち、金型を取り除
き、加圧成形するなどの、ラバープレス法など通常使用
されている成形法が用いられる。
Such a molding method includes, for example, forming a mixture of hydroxyapatite and tricalcium phosphate in various mixing ratios using a cylindrical or square mold, and then removing the mold. A commonly used molding method such as a rubber press method such as pressure molding is used.

さらに、本発明は、これらの多孔質水酸アバタフ−イ ト おいて、両者の配合比を各層毎に変化させて多層構造と
し、複合体化した人工骨材の製造にも適用しうる。
Furthermore, the present invention can also be applied to the production of composite artificial aggregates in which the blending ratio of these porous hydroxyl avatafits is varied for each layer to form a multilayer structure.

発明の効果 本発明の方法によれば、骨伝導能等の生体親和性に優れ
、加工性や作業性の良い人工骨材を得ることができると
いう顕著な効果を奏する。
Effects of the Invention According to the method of the present invention, it is possible to obtain an artificial aggregate that has excellent biocompatibility such as bone conduction ability, and has good processability and workability.

このように、本発明の方法で得られた人工骨材は、賦形
性に優れ、かつ十分な機械的強度を有する上、セラミッ
クスが本来有する望ましい性質をそのまま維持していて
、生体内に嵌植すると容易に新生骨と置換しうるので、
補綴用骨材などの人工骨材、人工歯根、人工関節材など
として整形外科や歯科や口腔外科の治療用に広く適用す
ることかできる。
As described above, the artificial aggregate obtained by the method of the present invention has excellent formability and sufficient mechanical strength, and also maintains the desirable properties originally possessed by ceramics, and is able to fit into living organisms. When implanted, it can be easily replaced with new bone,
It can be widely applied to orthopedics, dentistry, and oral surgery treatments as artificial aggregates such as prosthetic aggregates, artificial tooth roots, and artificial joint materials.

実施例 次に実施例によって本発明をさらに詳細に説明する。な
お、各例中のリン酸三カルシウム密度は次のようにして
測定した。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples. In addition, the tricalcium phosphate density in each example was measured as follows.

リン酸三カルシウムのみを各偶で用いた成形圧により加
圧成形し、各偶と同一の条件下で硬化させて得た測定用
試料について、その重量及び容積を測定し、その値に基
づいて密度を求めた。
Measure the weight and volume of the measurement samples obtained by pressure-molding only tricalcium phosphate using the molding pressure used in each case and curing under the same conditions as each case, and based on the values. The density was determined.

実施例1 多孔質水酸アパタイト顆粒(粒径:0.6〜1,Omm
,かさ密度: 0 、 7 y/ cm3)とα−リン
酸三カルシウム粉末(粒径:0.105mm以下)とを
重量比で1:4の割合で混合し、所定の金型に流し込み
、5 0 0 hg/ cm2で、1分間加圧成形した
のち、80°Cで3時間加温して硬化させ、ブロック状
人工骨を製造した。このものの圧縮強度及びリン酸三カ
ルシウム密度を第1表に示す。
Example 1 Porous hydroxyapatite granules (particle size: 0.6-1, Omm
, bulk density: 0,7 y/cm3) and α-tricalcium phosphate powder (particle size: 0.105 mm or less) at a weight ratio of 1:4, poured into a predetermined mold, and After pressure molding at 0.0 hg/cm2 for 1 minute, the material was heated and hardened at 80°C for 3 hours to produce a block-shaped artificial bone. The compressive strength and tricalcium phosphate density of this product are shown in Table 1.

比較例1 20〜50μmの気孔を有する水酸アパタイト顆粒(粒
径:1mm、かさ密度: 0 、 7 g/ cm3)
に200メツシユ(74μm)のふるいを通過させたα
−リン酸三カルシウム粉末を重量比で4:lの割合で配
合した。次にこの混合物に、等重量の水を加えてスラリ
ー状とし金型に流し込み成形圧を加えずに実施例1と同
じように処理しブロック状人工骨を製造した。このもの
の圧縮強度及びリン酸三カルシウム密度を第1表に示す
Comparative Example 1 Hydroxyapatite granules with pores of 20 to 50 μm (particle size: 1 mm, bulk density: 0.7 g/cm3)
α passed through a 200 mesh (74 μm) sieve
- Tricalcium phosphate powder was blended in a weight ratio of 4:1. Next, an equal weight of water was added to this mixture to form a slurry, which was poured into a mold and processed in the same manner as in Example 1 without applying molding pressure to produce a block-shaped artificial bone. The compressive strength and tricalcium phosphate density of this product are shown in Table 1.

実施例2 金型に流し込む代わりにラバープレスを用いて実施例1
と同し水酸アパタイト顆粒粉末とα−リン酸三カルシウ
ム粉末を重量比で4.1の割合で混合した粉末混合物を
5kg/cm2で加圧成形し、ブロック状人工骨を製造
した。このものの圧縮強度及びリン酸三カルシウム密度
を第1表に示す。
Example 2 Example 1 using a rubber press instead of pouring into a mold
A powder mixture prepared by mixing the same hydroxyapatite granule powder and α-tricalcium phosphate powder at a weight ratio of 4.1 was press-molded at 5 kg/cm 2 to produce a block-shaped artificial bone. The compressive strength and tricalcium phosphate density of this product are shown in Table 1.

実施例3〜8 成形圧を第1表に示すように変える以外は全て実施例2
と同しようにしブロック状人工骨を製造した。このもの
の圧縮強度及びリン酸三カルシウム密度を第1表に示す
Examples 3 to 8 All the same as Example 2 except that the molding pressure was changed as shown in Table 1.
A block-shaped artificial bone was manufactured in the same manner. The compressive strength and tricalcium phosphate density of this product are shown in Table 1.

比較例2 実施例2と同様の粉末混合物を成形圧21100kg/
cm2で成形し、実施例2と同様にしてブロック状人工
骨を製造した。このものの圧縮強度及びリン酸三カルシ
ウム密度を第1表に示す。
Comparative Example 2 The same powder mixture as in Example 2 was molded at a pressure of 21,100 kg/
cm2, and produced a block-shaped artificial bone in the same manner as in Example 2. The compressive strength and tricalcium phosphate density of this product are shown in Table 1.

適用例1 実施例8で得た人工骨(リン酸三カルシウム密度1 、
80 g/cm3)、実施例7で得た人工骨(リン酸三
カルシウム密度1 、7597cm3)、実施例5で得
た人工骨(リン酸三カルシウム密度1.509/cm3
)及び比較例2で得た人工骨(リン酸三カルシウム密度
1 、90 g/cm3)を、それぞれウサギの生体骨
内に埋入し、12週間経過したのち、それぞれのリン酸
三カルシウム(TCP)の吸収、新生骨の生成状況を観
察した。その結果を第2表に示す。
Application example 1 Artificial bone obtained in Example 8 (tricalcium phosphate density 1,
80 g/cm3), the artificial bone obtained in Example 7 (tricalcium phosphate density 1, 7597 cm3), the artificial bone obtained in Example 5 (tricalcium phosphate density 1.509/cm3)
) and the artificial bone obtained in Comparative Example 2 (tricalcium phosphate density 1, 90 g/cm3) were each implanted into the living bone of a rabbit, and after 12 weeks, each tricalcium phosphate (TCP ) resorption and new bone formation were observed. The results are shown in Table 2.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質水酸アパタイトとリン酸三カルシウムの混合
物を加圧成形するに当り、多孔質水酸アパタイトとリン
酸三カルシウムとを重量比1:10ないし10:1で混
合したものを用い、かつ成形圧を5〜1000kg/c
m^2の範囲内で変えることにより、リン酸三カルシウ
ムの密度が1.10〜1.80g/cm^3になるよう
に調整することを特徴とする人工骨材の製造方法。
1. When press-molding a mixture of porous hydroxyapatite and tricalcium phosphate, a mixture of porous hydroxyapatite and tricalcium phosphate at a weight ratio of 1:10 to 10:1 is used, and Molding pressure 5-1000kg/c
A method for producing artificial aggregate, which comprises adjusting the density of tricalcium phosphate to 1.10 to 1.80 g/cm^3 by changing the density within a range of m^2.
JP63124900A 1988-05-24 1988-05-24 Preparation of artificial bone material Pending JPH01293877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63124900A JPH01293877A (en) 1988-05-24 1988-05-24 Preparation of artificial bone material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63124900A JPH01293877A (en) 1988-05-24 1988-05-24 Preparation of artificial bone material

Publications (1)

Publication Number Publication Date
JPH01293877A true JPH01293877A (en) 1989-11-27

Family

ID=14896887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63124900A Pending JPH01293877A (en) 1988-05-24 1988-05-24 Preparation of artificial bone material

Country Status (1)

Country Link
JP (1) JPH01293877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211152A (en) * 1988-06-29 1990-01-16 Mitsubishi Mining & Cement Co Ltd Artificial bone
WO1998054089A1 (en) * 1997-05-30 1998-12-03 Rolf Ewers Hydroxylapatite gel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211152A (en) * 1988-06-29 1990-01-16 Mitsubishi Mining & Cement Co Ltd Artificial bone
WO1998054089A1 (en) * 1997-05-30 1998-12-03 Rolf Ewers Hydroxylapatite gel

Similar Documents

Publication Publication Date Title
Nilsson et al. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute
Costantino et al. Synthetic bone graft substitutes
EP2252338B1 (en) Bone graft material and uses thereof
JPS6330020B2 (en)
US20120207839A1 (en) Mineralized Collagen/Bioceramic Composite and Manufacturing Method Thereof
Kurashina et al. Experimental cranioplasty and skeletal augmentation using an α-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement: a preliminary short-term experiment in rabbits
JP6813716B1 (en) Bone substitute material
US4863974A (en) Bone growth matrix and process for making it
CN111773432A (en) Magnesium-based amorphous-calcium phosphate/calcium silicate composite filler and preparation and application thereof
JP2021118906A (en) Bone substitute material
WO2004112856A1 (en) Medical bone prosthetic material and process for producing the same
KR102636183B1 (en) Collagen matrix or granulated blend of bone substitute materials
JPS6179464A (en) Composition for artificial bone material
JPH01293877A (en) Preparation of artificial bone material
JP2012500693A (en) Bone substitute based on porous bioglass and calcium sulfate
El-Maghraby et al. Preparation, structural characterization, and biomedical applications of gypsum-based nanocomposite bone cements
JPH0575427B2 (en)
JPH0588623B2 (en)
JPS6179463A (en) Composite apatite artificial bone material
TWI805355B (en) Moldable orthopedic composition with anti-washout property
JP3808112B2 (en) Bioabsorbable curing material and its manufacturing method
JPS63294864A (en) Preparation of artificial bone material
JPH01188335A (en) Multi-layer composite molded body
JPH0722596B2 (en) Block-shaped artificial bone
JPH0753616B2 (en) Block-shaped composite material and method for producing the same