JPH01292753A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH01292753A
JPH01292753A JP63119467A JP11946788A JPH01292753A JP H01292753 A JPH01292753 A JP H01292753A JP 63119467 A JP63119467 A JP 63119467A JP 11946788 A JP11946788 A JP 11946788A JP H01292753 A JPH01292753 A JP H01292753A
Authority
JP
Japan
Prior art keywords
discharge
lithium
electrolyte
secondary battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63119467A
Other languages
Japanese (ja)
Inventor
Hideo Yamada
山田 英男
Yuzuru Takahashi
譲 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP63119467A priority Critical patent/JPH01292753A/en
Publication of JPH01292753A publication Critical patent/JPH01292753A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase charge-discharge capacity, cycle performance, and high temperature stability by using a solution containing dioxolane as a solvent and lithium perchlorate as an electrolyte as an electrolyte of a secondary battery. CONSTITUTION:In a secondary battery having a lithium negative electrode capable of charge-discharge, a positive electrode capable of charge-discharge, and a separator impregnated with an organic electrolyte, a composite obtained by absorbing lithium in a molding of carbon fiber or carbon powder whose lattice facing in X-ray diffraction is 3.38-3.56Angstrom is used as the negative electrode. The organic electrolyte contains lithium perchlorate (LiClO4) as an electrolyte and at least dioxolane as a solvent. Charge-discharge capacity, cycle performance, and high temperature stability are increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非水電解質二次電池に関するものであり、さら
に詳細には、充放電容量、サイクル特性、および高温安
定性に優れた非水電解質二次電池に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte with excellent charge/discharge capacity, cycle characteristics, and high temperature stability. It is related to secondary batteries.

〔従来の技術、発明が解決しようとする問題点〕一般に
負極活物質として金属リチウムを用いた電池は高エネル
ギー密度、軽量小型、そして長期保存性などの利点を有
し、すでに多くの一次電池が実用化されている。しかし
ながら、この負極活物質を使用した二次電池において、
−次電池には無い新しい問題点がある。すなわち、金属
リチウムを負極とした二次電池は充放電サイクル寿命が
短く、また、充放電に際し、この充放電効率が低いこと
である。これは負極に析。
[Prior art and problems to be solved by the invention] In general, batteries using metallic lithium as the negative electrode active material have advantages such as high energy density, light weight and small size, and long shelf life, and many primary batteries have already been used. It has been put into practical use. However, in a secondary battery using this negative electrode active material,
-There are new problems not found in next-generation batteries. That is, a secondary battery using metallic lithium as a negative electrode has a short charge/discharge cycle life, and also has low charge/discharge efficiency during charge/discharge. This is separated into the negative electrode.

出する金属リチウムがデンドライト状(樹枝状)である
ことによるリチウム負極の劣化に起因する。
This is due to the deterioration of the lithium negative electrode due to the fact that the metallic lithium emitted is dendrite-like (dendritic).

本発明者らは、負極として金属リチウムを使用すること
の欠点を解消する手段として、ある特定の格子面間隔を
有する炭素繊維成型体に予めリチウムを吸蔵させた複合
体を二次電池用負極とする発明を完成した(特開昭62
−268058号)。この負極を用いた二次電池はデン
ドライトの発生もなく充放電サイクル寿命が長く、信頼
性が高く、シかも、軽量である等の優れた性質を有して
いる。
As a means to overcome the drawbacks of using metallic lithium as a negative electrode, the present inventors developed a composite in which lithium was occluded in advance in a carbon fiber molded body having a certain lattice spacing as a negative electrode for secondary batteries. completed the invention to
-268058). A secondary battery using this negative electrode has excellent properties such as no dendrite generation, long charge/discharge cycle life, high reliability, durability, and light weight.

一方、非水電解質系電池の有機電解液としては、ブーピ
レンカーボネートとジメトキシエタンの混合溶媒に、電
解質として過塩素酸リチウムや6フツ化リン酸リチウム
を溶解させたものが一般に使用されている。
On the other hand, as an organic electrolyte for a non-aqueous electrolyte battery, one in which lithium perchlorate or lithium hexafluorophosphate is dissolved as an electrolyte in a mixed solvent of boopylene carbonate and dimethoxyethane is generally used.

吸蔵させた複合体を負極とし二次電池を製造した際には
、プロピレンカーボネートとジメトキシエタンの混合溶
液を有機電解液の溶媒とし、電解質として過塩素酸リチ
ウムを使用した場合には、安定性にすぐれてはいるが、
充放電容量およびサイクル特性などの電池性能が充分で
は力? なく、実用に供し得ないものである二と尋判明した。
When manufacturing a secondary battery using the occluded composite as the negative electrode, when using a mixed solution of propylene carbonate and dimethoxyethane as the solvent for the organic electrolyte and using lithium perchlorate as the electrolyte, stability may be affected. Although it is excellent,
Is the battery performance sufficient, such as charge/discharge capacity and cycle characteristics? It turned out to be impossible to put it to practical use.

また、電解質として6フツ化リン酸リチウムを使用すれ
ば、この電解液を使用した2次電池は、電池として充分
な性能を示すものの、特に高温下において不安定であり
、6フフ化リン酸リチウムの分解によって電解液が固化
して電池性能が著しく劣化するという問題のあることが
わかった。
In addition, if lithium hexafluoride phosphate is used as an electrolyte, a secondary battery using this electrolyte will show sufficient performance as a battery, but it is unstable, especially at high temperatures, and lithium hexafluoride phosphate It was found that there was a problem in that the electrolyte solidified due to the decomposition of the battery, resulting in a significant deterioration of battery performance.

〔問題を解決するための手段、作用〕[Means and actions for solving problems]

本発明者らは、ある特定の格子面間隔を有する炭素繊維
または炭素粉末を使用した成型体(以下、両者を一括し
て 炭素成型体 と記することある)に、予めリチウム
を吸蔵させた複合よび高温安定性に優れた二次電池を開
発するたくともジオキンランを含む有機電解液を使用す
ることにより、充放電容量、サイクル特性および高温安
定性に優れた二次電池が得られることを見い出し、この
新知見に基づいて本発明を完成するに至った。
The present inventors have developed a composite body in which lithium is occluded in advance in a molded body using carbon fiber or carbon powder having a specific lattice spacing (hereinafter both may be collectively referred to as a "carbon molded body"). We have discovered that by using an organic electrolyte containing dioquinrane, a secondary battery with excellent charge/discharge capacity, cycle characteristics, and high temperature stability can be obtained. Based on this new knowledge, we have completed the present invention.

すなわち、本発明は充放電可能なリチウム系負極、充放
電可能な正極および有機電解液を含浸させたセパレータ
ーを有する二次電池において、負極がX線回折における
格子面間隔(d o 02)カ3 、38〜3.56X
の炭素繊維または炭素粉末を使用した成型体に予めリチ
ウムを吸蔵させた複合体であり、有機電解液が電解質と
して過塩酸リチウム(Li(JO4)を含み、かつ、有
機溶媒として少なくともジオキンランを含むことを特徴
とする二次電池である。
That is, the present invention provides a secondary battery having a chargeable/dischargeable lithium-based negative electrode, a chargeable/dischargeable positive electrode, and a separator impregnated with an organic electrolyte, in which the negative electrode has a lattice spacing (d o 02) in X-ray diffraction. , 38~3.56X
It is a composite in which lithium is occluded in advance in a molded body using carbon fiber or carbon powder, and the organic electrolyte contains lithium perchlorate (Li (JO4)) as an electrolyte and at least dioquinrane as an organic solvent. This is a secondary battery characterized by:

本発明の炭窒成型体に使用される炭素繊維および炭素粉
末のそれぞれの格子面間隔(dooz)は、3.38〜
3.56A、好ましくは3.40〜3 、50Aである
The lattice spacing (dooz) of each of the carbon fiber and carbon powder used in the carbonitride molded body of the present invention is 3.38 to 3.38.
3.56A, preferably 3.40-3.50A.

なお、この炭素繊維および炭素粉末をそれぞれ使用した
成型体は、その格子面間隔(d O(12)は、使用さ
れた炭素(ぺ維および炭素粉末のそれぞれの格子面間隔
に由来して3.38〜3.56A、好ましくは3.40
〜a、5oXOものである。
The molded body using these carbon fibers and carbon powder, respectively, has a lattice spacing (dO(12)) of 3.5 mm, which is derived from the lattice spacing of the carbon fibers and carbon powder used. 38-3.56A, preferably 3.40
~a, 5oXO.

3.56Aをこえる格子面間隔(dooz)を有ると、
電池電圧が低すぎ、また放電開始と同時に放電電圧が急
激に低下する。また一方、3゜本発明において、格子面
間隔(d o O2)は、X線としてCuK+1を用い
、標準物質として高純度シリコンを使用する方法によっ
て測定された値である。なお、この方法は、たとえば[
炭素「へ炭素繊維成を体に使用される炭素繊維は、その
原料、製法に何ら制限はないが、実用的な原料の代表例
として、ピッチ、ポリアクリrxニトリルおよびレーヨ
ン等があげられる。炭素繊維の繊維径には特に制限はな
いが、実用上0.01〜100μm、好ましくは0 、
1〜50 umのものが使用される。
If the lattice spacing (dooz) exceeds 3.56A,
The battery voltage is too low, and the discharge voltage drops rapidly at the same time as discharge starts. On the other hand, in the present invention, the 3° lattice spacing (d o O2) is a value measured by a method using CuK+1 as the X-ray and high-purity silicon as the standard material. Note that this method, for example, [
Carbon fiber composition There are no restrictions on the raw material or manufacturing method for the carbon fiber used in the body, but representative examples of practical raw materials include pitch, polyacrylic RX nitrile, and rayon.Carbon fiber There is no particular restriction on the fiber diameter, but in practice it is 0.01 to 100 μm, preferably 0.
1 to 50 um is used.

本発明で使用される炭素粉末は、たとえば、前記の格子
面間隔Gio O2)を有する炭素繊維および炭素ブロ
ックなどを粉砕、分級して得られる。
The carbon powder used in the present invention is obtained, for example, by crushing and classifying carbon fibers and carbon blocks having the above-mentioned lattice spacing Gio O2).

炭素粉末の平均粒子径は一般に0.1〜30μm1好ま
しくは0.5〜20μmである。
The average particle diameter of the carbon powder is generally 0.1 to 30 μm, preferably 0.5 to 20 μm.

本発明において、炭素粉末の平均粒子径は、ストークス
の沈降式による液相沈降法によって、光透過法で測定し
て得られた粒度分布から、累積分布が、50%に相当す
る粒子径としてもとめられた値である。これには、たと
えば、「堀場製作所株製、遠心式自動粒度分布測定装置
」が好適に使用される。
In the present invention, the average particle size of the carbon powder is determined as the particle size corresponding to 50% of the cumulative distribution based on the particle size distribution measured by a light transmission method using a liquid phase sedimentation method using the Stokes sedimentation method. is the value given. For example, a "centrifugal automatic particle size distribution analyzer manufactured by Horiba, Ltd." is suitably used for this purpose.

本発明で使用される炭素繊維の成型体は炭素1維をバイ
ンダーを使用し、または使用しないで、実用上、たとえ
ば板、網、織布、不織布および抄紙などの形態に成型し
たものであるが必ずしもこれらに限定されるものではな
い。また、炭素粉末の成型体は、通常はバインダーを使
用し、−船釣には板状あるいはシート状に成型されたも
のである。
The carbon fiber molded body used in the present invention is formed by molding carbon 1 fibers into a form such as a plate, net, woven fabric, non-woven fabric, or paper making material, with or without a binder. It is not necessarily limited to these. In addition, the carbon powder molded body usually uses a binder and is molded into a plate or sheet shape for boat fishing.

0wt%、特に好ましくは5〜20wt% とされる。0 wt%, particularly preferably 5 to 20 wt%.

炭素成型体の厚さは所望される電池容量および電池の形
状などによって異なり一概に特定し得ないが、実用上、
通常は0.05〜5Q+u1好ましくは0.1〜20+
111程度とされる。また、炭素成型体は一枚でもよい
が数枚重ねて使用することもできる。
The thickness of the carbon molded body varies depending on the desired battery capacity and battery shape, and cannot be determined unconditionally, but in practice,
Usually 0.05-5Q+u1 preferably 0.1-20+
It is said to be around 111. Moreover, although the carbon molded body may be used in one piece, it is also possible to use several pieces stacked together.

本発明における負極は、前記の炭素成型体にリチウムを
吸蔵させた複合体(以下、複合体と記すこともある)で
ある。前記の炭素成型体そのものを負極とした場合には
、エネルギー密度が低く、充放電サイクル寿命が短い等
の難点を有する。
The negative electrode in the present invention is a composite (hereinafter also referred to as a composite) in which lithium is occluded in the above-mentioned carbon molded body. When the carbon molded body itself is used as a negative electrode, it has disadvantages such as low energy density and short charge/discharge cycle life.

炭素成型体にリチウムを吸蔵させる方法には特に制限は
ないが、通常は電気化学的方法または物理的方法があげ
られる。すなわち、たとえば、電気化学的方法としては
、リチウムを吸収させるべき炭素成型体および金属リチ
ウムをそれぞれ電極とし、リチウム塩を含む有機電解液
中で両電極間に電流を流す方法または両電極間を導体で
短絡させる方法などがあげられる。
There are no particular restrictions on the method for occluding lithium in the carbon molded body, but electrochemical methods or physical methods are usually used. For example, as an electrochemical method, a carbon molded body to which lithium is to be absorbed and metallic lithium are used as electrodes, respectively, and a current is passed between the two electrodes in an organic electrolyte containing a lithium salt, or a conductor is used between the two electrodes. For example, there is a method of short-circuiting.

このときの有機電解液としては、通常は、従来の二次電
池に使用される有機電解液と同組成のものを使用するの
が好ましい。
As the organic electrolyte at this time, it is usually preferable to use one having the same composition as the organic electrolyte used in conventional secondary batteries.

両電極間に外部端子を通じて直流電流を流す方法として
は、例えば、外部直流電源のプラス物理的方法としては
、たとえば炭素成型体を2枚の金属リチウム板で挟持し
、または1枚の金属リチウム板と接触させて重ねた積層
体を前記のようなリチウム化合物の有機溶媒溶液中に浸
漬するなどにより、金属リチウムと炭素成型体とを接触
させる方法があげられる。
As a method for passing a direct current between both electrodes through an external terminal, for example, as a positive physical method for an external direct current power source, for example, a carbon molded body is sandwiched between two metal lithium plates, or a single metal lithium plate is used. An example of a method is to bring metallic lithium into contact with the carbon molded body, such as by immersing a layered body in contact with a lithium compound in an organic solvent solution of a lithium compound as described above.

前記リチウムの吸蔵は水分が実質的に少なくしかも酸素
が少ないはど好ましいが、特に好ましくは水分が実質的
に存在しない雰囲気中で、しかも特に好ましくは、さら
に酸素が実質的に存在しない雰囲気中で行なわれる。
The lithium occlusion is preferably performed in an atmosphere that contains substantially less water and less oxygen, particularly preferably in an atmosphere that is substantially free of water, and particularly preferably in an atmosphere that is substantially free of oxygen. It is done.

本発明の二次電池に使用される正極としては、充放電可
能なものであればよく、たとえば遷移金属のカルコゲン
化合物、共役高分子化合物、あるいは活性炭素などがあ
るが、これら−こ限定されるものではない。
The positive electrode used in the secondary battery of the present invention may be any material as long as it can be charged and discharged, and examples thereof include chalcogen compounds of transition metals, conjugated polymer compounds, and activated carbon, but are not limited to these. It's not a thing.

遷移金属のカルコゲン化合物としては、TiO2、Cr
 aos s V2O5、MnO6、MnO2およびM
o30等の酸化物、Ti5z 、VSz、FeS  お
よびMo5s等の硫化物ならびにNbSe 3などのセ
レン化合物があげられる。また、共役高分子化合物とし
ては、ポリアセチレン、ポリパラフェニレン、ポリピロ
ール、ポリチオフェンおよびポリアニリンなどを用いる
ことができる。
As chalcogen compounds of transition metals, TiO2, Cr
aos s V2O5, MnO6, MnO2 and M
Examples include oxides such as O30, sulfides such as Ti5z, VSz, FeS and Mo5s, and selenium compounds such as NbSe3. Further, as the conjugated polymer compound, polyacetylene, polyparaphenylene, polypyrrole, polythiophene, polyaniline, etc. can be used.

これら正極は一般tこ膜状の、もしくは板状の形態で使
用されるが、正極としての成型体を得る方法としては、
粉末状の正極材を必要tこ応じ導電剤−たとえばグラフ
ァイト、カーポンプラックなどの粉末−およびバインダ
ー−たとえばポリエチレン、ポリプロピレンおよびポリ
テトラフルオロエチレンなどの粉末−を加え、金型内で
加圧する方法、ロールで圧延する方法などがあげられる
が、これらに限定されるものではない。
These positive electrodes are generally used in the form of a film or a plate, but the method of obtaining a molded body as a positive electrode is as follows:
A method of adding a conductive agent (for example, a powder such as graphite or carbon black) and a binder (for example, a powder such as polyethylene, polypropylene, and polytetrafluoroethylene) to a powdered positive electrode material and pressurizing it in a mold; Examples include, but are not limited to, methods of rolling with rolls.

本発明の二次電池に使用される有機電解液は、電解質と
して過塩素酸リチウムと、これを溶解しうる有機溶媒と
して、少なくともジオキソランとを含む有機電解液であ
る。過塩素酸リチウムは精製、脱水したものが使用され
る。この精製、脱水は常法によって行なわれる。
The organic electrolyte used in the secondary battery of the present invention is an organic electrolyte containing lithium perchlorate as an electrolyte and at least dioxolane as an organic solvent capable of dissolving the lithium perchlorate. Lithium perchlorate is used after being purified and dehydrated. This purification and dehydration are carried out by conventional methods.

本発明において用いられるジオキソランとしては、1,
3−ジオキンラン、4−メチル−1゜3−ジオキソラン
、2−メチル−1,3−ジオキソラン、4−プロピル−
1,3−ジオキソランおよび4−メチル−5−プロピル
−1,3−ジオキソランなどが挙げられるが、前王者が
好ましい。ジオキンランは、単独で使用することもでき
るし、また他の有機溶媒と併用することもできる。他の
有機溶媒としては、たとえば、ブービレツカ−ボネート
、エチレンカーボネート、スルホランおよびγ−ブチロ
ラクトンなどが好適ぬ使用される。他の有機溶媒を併用
する場合には、この有機溶媒の使用量は、その種類およ
びジオキソランの種類などにより異り、−概に特定しえ
ないが、実用上、一般には、ジオキンランに対して好ま
しくは3容量倍以下、特に好ましくは0.5〜2容量倍
程度とされる。
The dioxolane used in the present invention includes 1,
3-dioquinrane, 4-methyl-1゜3-dioxolane, 2-methyl-1,3-dioxolane, 4-propyl-
Examples include 1,3-dioxolane and 4-methyl-5-propyl-1,3-dioxolane, with the former champion being preferred. Dioquinrane can be used alone or in combination with other organic solvents. As other organic solvents, for example, boubilets carbonate, ethylene carbonate, sulfolane and γ-butyrolactone are preferably used. When using other organic solvents in combination, the amount of this organic solvent to be used varies depending on the type of organic solvent and the type of dioxolane, and cannot be generally specified, but in general, it is preferable for dioxolane in practical terms. is 3 times or less by volume, particularly preferably about 0.5 to 2 times by volume.

ジオキソラ/と他の有機溶媒を併用した場合tこは一般
?こは二次電池の電解液の安定性が向上する。
Is this common when using Dioxola/ with other organic solvents? This improves the stability of the electrolyte in the secondary battery.

有機電解液中のリチウム塩の濃度は、通常は0 、1〜
5 、0 mol/1.好ましくは0.5〜1゜5mo
l/l程度とされる。
The concentration of lithium salt in the organic electrolyte is usually between 0 and 1.
5,0 mol/1. Preferably 0.5-1゜5mo
It is said to be about l/l.

セパレータとしては、合成樹脂繊維製の不織布および織
布、ガラス繊維製の不織布および織歪ならびに天然繊維
製の不織布および織布が使用される。この合成樹脂とし
ては、たとえばポリエチレン、ポリプロピレンおよびポ
リテトラフルオロエチレンなどがある。セパレータの厚
さは、−概に特定しえないが、必要量の有機電解液を含
有保持することができ、かつ、正極と負極との短絡を防
ぐに必要な厚さであればよく、実用上、通常は0.01
〜lQmm、好ましくは0.03〜51程度とされる。
As the separator, nonwoven fabrics and woven fabrics made of synthetic resin fibers, nonwoven fabrics and strained fabrics made of glass fibers, and nonwoven fabrics and woven fabrics made of natural fibers are used. Examples of this synthetic resin include polyethylene, polypropylene, and polytetrafluoroethylene. The thickness of the separator cannot be generally specified, but it is sufficient to contain and hold the required amount of organic electrolyte and to prevent short circuits between the positive and negative electrodes. Above, usually 0.01
~lQmm, preferably about 0.03 to 51.

従来の電池と同様に集電体を使用することができ、かつ
好ましい。集電体は従来の電池で使用されている集電体
を使用しうる。すなわち、電解液ならびに正極および負
極のそれぞれに対し、電気化学的に不活性な導体が用い
られる。
A current collector can be used, and is preferred, as in conventional batteries. As the current collector, a current collector used in conventional batteries can be used. That is, an electrochemically inert conductor is used for each of the electrolyte and the positive and negative electrodes.

たとえば、ニッケル、チタン、ステンレス鋼などの金属
を板、箔および網の形態で使用することができる。正極
集電体と負極集電体とは互いに異なる材質でもよく、ま
た同じ材質でもよい。
For example, metals such as nickel, titanium, stainless steel can be used in the form of plates, foils and meshes. The positive electrode current collector and the negative electrode current collector may be made of different materials or may be made of the same material.

またその厚さは0.001〜10!1171程度、好ま
しくは0.01〜5 =、mとされる。
Further, its thickness is about 0.001 to 10!1171 m, preferably 0.01 to 5 m.

〔実施例〕〔Example〕

以下の実施例tこより、本発明をさらに具体的に説明す
る。本発明は、これらの実施例に限定されるものではな
い。
The present invention will be explained in more detail with reference to the following example. The present invention is not limited to these examples.

実施例 l 格子面間隔(d o O2)が3.44Aのポリアクy
aニドyル系炭素繊維成型体(繊維径8μm1重量 2
5.0〜、直径 14朋、厚さ 0゜4a)と金属リチ
ウム円板(直径 18龍、厚さ 1.ト龍)とを、ガラ
ス繊維製不織布を介在させて、互いに対向させて配置し
、ステンレス板で両面から挟持して圧着した。これにブ
ーピレンカーボネートと1.3−ジオキソランとの混合
溶媒(1:1容量比)1温度が1.omol/ 1 t
−なるように過塩素酸リチウムを溶解した溶液を含浸さ
せた。つづいて、外部直流電源[北斗電工株製、電池充
放電装置、HJ−201BJ  (以下の実施例、比較
例でも同様)のプラス端子を金属リチウム側のステンレ
ス板tこ、マイナス端子を炭素繊維成型体側のステンレ
ス板に各々接続し、電流密度0.32W−の定電流で9
 、5 hrs  通電し、1.2Tvのリチウムを吸
蔵させた複合体を得た。
Example l Polyacrylic acid with lattice spacing (d o O2) of 3.44A
a Nidol-based carbon fiber molded body (fiber diameter 8 μm 1 weight 2
5.0 ~, diameter 14mm, thickness 0°4a) and a metal lithium disk (diameter 18mm, thickness 1mm) are placed facing each other with a glass fiber nonwoven fabric interposed. , they were clamped and crimped on both sides with stainless steel plates. Add to this a mixed solvent of boopylene carbonate and 1,3-dioxolane (1:1 volume ratio) at 1 temperature. omol/1 t
- impregnated with a solution of lithium perchlorate. Next, connect the positive terminal of the external DC power supply [manufactured by Hokuto Denko Co., Ltd., battery charging/discharging device, HJ-201BJ (the same applies to the following examples and comparative examples) to a stainless steel plate on the metal lithium side, and mold the negative terminal to carbon fiber. Connect each to the stainless steel plate on the body side and apply a constant current with a current density of 0.32W to 9.
, 5 hrs to obtain a composite in which 1.2 Tv of lithium was occluded.

このようにして得られた複合体を負極とし、五酸化バナ
ジウム 20重量部、導電剤としてアセチレンブラック
 10重量部、バインダーとしてポリテトラフルオロエ
チレン粉末 107を置部の混合物を使用した円板状の
成型体(重量100■、直径14朋)を正極とし、プロ
ピレンカーボネートと1,3−ジオキソランの混合溶媒
(1:1容量比)に、濃度が1.0mol/lIこなる
ように過塩素酸リチウムを溶解させり溶液を電解液とし
て含浸させたポリプロピレン製不織布をセパレータとし
て二次電池を作製した。この二次電池を、放電電圧が1
.50Vになるまで0.5mAの定電流放電を行なった
ところ、4.4mAhの放電容量が得られた。
The composite thus obtained was used as a negative electrode, and molded into a disk shape using a mixture of 20 parts by weight of vanadium pentoxide, 10 parts by weight of acetylene black as a conductive agent, and 107 parts of polytetrafluoroethylene powder as a binder. (weight: 100 mm, diameter: 14 mm) was used as a positive electrode, and lithium perchlorate was added to a mixed solvent of propylene carbonate and 1,3-dioxolane (1:1 volume ratio) at a concentration of 1.0 mol/lI. A secondary battery was produced using a polypropylene nonwoven fabric impregnated with a dissolved solution as an electrolyte as a separator. This secondary battery has a discharge voltage of 1
.. When a constant current discharge of 0.5 mA was performed until the voltage reached 50 V, a discharge capacity of 4.4 mAh was obtained.

さらに−0,5mAの定電流で下限電圧1.50■、上
限電圧を3.90Vとし、充放電サイクル試験を行なっ
たところ、40サイクル目および120サイクル目の電
流効率は98.0%以上と可逆性良好な充放電特性を示
した。
Furthermore, when we conducted a charge/discharge cycle test using a constant current of -0.5mA with a lower limit voltage of 1.50V and an upper limit voltage of 3.90V, the current efficiency at the 40th and 120th cycles was over 98.0%. It exhibited charge and discharge characteristics with good reversibility.

また、60℃、20日間保存した後、放電電圧が1.5
Vになるまで0.5mAh  の定電流放電をおこなっ
たところ自己放電率10%以下と、優れた自己放電特性
、高温安定性を示した。
In addition, after storage at 60℃ for 20 days, the discharge voltage was 1.5.
When a constant current discharge of 0.5 mAh was performed until the voltage reached V, the self-discharge rate was 10% or less, showing excellent self-discharge characteristics and high-temperature stability.

実施例 2 二次電池の電解液として、1,3−ジオキソランに、濃
度が1 、0 mol/Iになる様に過塩素酸リチウム
を溶解した溶液を使用した以外は実施例1と同様にして
二次電池を作製した。
Example 2 The procedure was repeated in the same manner as in Example 1, except that a solution of lithium perchlorate dissolved in 1,3-dioxolane at a concentration of 1.0 mol/I was used as the electrolyte for the secondary battery. A secondary battery was produced.

この二次電池を、放電電圧が1.50Vになるまで0.
5mAの定電流放電を行なったところ、4.4mAh 
 の放電容量が得られた。
This secondary battery was operated at 0.0V until the discharge voltage reached 1.50V.
When 5mA constant current discharge was performed, 4.4mAh
A discharge capacity of .

さらに、0.5mAの定電流で下限電圧1゜50v1上
限電圧を3.90Vとし、充放電サイクル試験を行なっ
たところ、40サイクル目および120サイクル目の電
流効率は98.0%以上と可逆性良好な充放電特性を示
した。
Furthermore, when we performed a charge/discharge cycle test using a constant current of 0.5 mA with a lower limit voltage of 1°50 V and an upper limit voltage of 3.90 V, the current efficiency at the 40th and 120th cycles was 98.0% or more, indicating reversibility. It showed good charge/discharge characteristics.

また、60°Cl2O日間保存した後、放電電圧が1.
5Vになるまで0 、5 mAh  の定電流放電をお
こなったところ自己放電率109に以下と、優れた自己
放電特性、高温安定性を示した。
Furthermore, after storage at 60°CCl2O for days, the discharge voltage was 1.
When a constant current discharge of 0.5 mAh was performed until the voltage reached 5 V, the self-discharge rate was 109 or less, showing excellent self-discharge characteristics and high-temperature stability.

実施例 3 二次電池の電解液として、プロピレンカーボネートと1
.3−ジオキソランとの混合溶媒(l;2容量比)に、
濃度が1 、0 mol/Hこなる様tこ過塩素酸リチ
ウムを溶解した溶液を使用した以外は実施例1と同様に
して二次電池を作製した。
Example 3 Propylene carbonate and 1
.. In a mixed solvent (l; 2 volume ratio) with 3-dioxolane,
A secondary battery was produced in the same manner as in Example 1, except that a solution containing lithium perchlorate at a concentration of 1.0 mol/H was used.

この二次電池を放電電圧が1.50Vになるまで0.5
mAの定電流放電を行なったところ、4.4mAh  
の放電容量が得られた。
0.5V until the discharge voltage reaches 1.50V.
When mA constant current discharge was performed, 4.4mAh
A discharge capacity of .

さらに、0.5mAの定電流で下限電圧1゜50v1上
限電圧を3.90Vとし、充放電サイクル試験をおこな
りたところ40サイクル目および120サイクル目の電
流効率は98.0%以上と可逆性良好な充放電特性を示
した。
Furthermore, when we conducted a charge/discharge cycle test using a constant current of 0.5 mA with a lower limit voltage of 1°50 V and an upper limit voltage of 3.90 V, the current efficiency at the 40th and 120th cycles was 98.0% or more, indicating reversibility. It showed good charge/discharge characteristics.

また、60℃、20日間保存した後、放電電圧が1.5
Vr乙なるまで0 、5 mAhの定電流放電をおこな
ったところ自己放電率10%以下と、優れた自己放電特
性、高温安定性を示した。
In addition, after storage at 60℃ for 20 days, the discharge voltage was 1.5.
When a constant current discharge of 0.5 mAh was performed until Vr was reached, the self-discharge rate was 10% or less, showing excellent self-discharge characteristics and high-temperature stability.

実施例 4 二次電池の電解液として、プロピレンカーボネートと1
.3−ジオキソランとの混合溶媒(2;1容量比)に、
濃度が1 、0 mol/I K−なる様に過塩素酸リ
チウムを溶解した溶液を使用した以外は実施例1と同様
にして二次電池を作製した。
Example 4 Propylene carbonate and 1
.. In a mixed solvent with 3-dioxolane (2:1 volume ratio),
A secondary battery was produced in the same manner as in Example 1, except that a solution in which lithium perchlorate was dissolved at a concentration of 1.0 mol/I K- was used.

この二次電池を放電電圧が1.50Vになるまで0.5
mAの定電流放電を行なったところ、4.3mAhの放
電容量が得られた。
0.5V until the discharge voltage reaches 1.50V.
When constant current discharge of mA was performed, a discharge capacity of 4.3 mAh was obtained.

さらに、0.5mAの定電流で下限電圧1゜50■、上
限電圧を3.90Vとし、充放電サイクル試験をおこな
ったところ40サイクル目および120サイクル目の電
流効率は98゜O%以上と可逆性良好な充放電特性を示
した。
Furthermore, when we conducted a charge/discharge cycle test using a constant current of 0.5 mA with a lower limit voltage of 1°50V and an upper limit voltage of 3.90V, the current efficiency at the 40th and 120th cycles was reversible and was over 98°O%. It showed good charging and discharging characteristics.

また、60℃、20日間保存した後、放電電圧が1.5
vになるまで0.5mAh  の定電流放電をおこなっ
たところ自己放電率10%以下と、優れた自己放電特性
、高温安定性を示した。
In addition, after storage at 60℃ for 20 days, the discharge voltage was 1.5.
When a constant current discharge of 0.5 mAh was performed until the voltage reached V, the self-discharge rate was 10% or less, showing excellent self-discharge characteristics and high-temperature stability.

実施例 5 二次電池の電解液として、プロピレンカーボネートと4
−メチル−1,3−ジオキンランとの混合溶媒(1:1
容量比)に、濃度が1.0mol/lになる様に過塩素
酸リチウムを溶解した溶液を使用した以外は実施例1と
同様にして二次電池を作製した。
Example 5 As an electrolyte for a secondary battery, propylene carbonate and 4
-Mixed solvent with methyl-1,3-dioquinrane (1:1
A secondary battery was produced in the same manner as in Example 1, except that a solution in which lithium perchlorate was dissolved at a concentration of 1.0 mol/l (capacity ratio) was used.

この二次電池を放電電圧が1.50Vになるまで0.5
mAの定電流放電を行なったところ、4.4mAh の
放電容量が得られた。
0.5V until the discharge voltage reaches 1.50V.
When constant current discharge of mA was performed, a discharge capacity of 4.4 mAh was obtained.

さらに、Q、5mAの定電流で下限電圧1゜50V、上
限電圧を3.90Vとし、充放電サイクル試験をおこな
ったところ40サイクル目および120サイクル目の電
流効率は98.0%以上と可逆性良好な充放電特性を示
した。
Furthermore, when we conducted a charge/discharge cycle test with a constant current of Q, 5mA, a lower limit voltage of 1°50V, and an upper limit voltage of 3.90V, the current efficiency at the 40th and 120th cycles was 98.0% or more, indicating reversibility. It showed good charge/discharge characteristics.

また、60℃、20日間保存した後、放電電圧が1.5
vになるまで0 、5 mAhの定電流放電をおこなっ
たところ自己放電率IOに以下と、優れた自己放電特性
、高温安定性を示した。
In addition, after storage at 60℃ for 20 days, the discharge voltage was 1.5.
When a constant current discharge of 0.5 mAh was performed until the voltage reached V, the self-discharge rate IO was as follows, showing excellent self-discharge characteristics and high-temperature stability.

実施例 6 実施例1と同様にして得られた複合体を負極とし、セル
ロースを原料とした活性炭機維の粉末80重量部と、バ
インダーとしてポリテトラフルオロエチレン 20重量
部とを混練したのち、加圧成形で重量200■、直径1
5朋、厚さ1.5朋の成型体を正極とした他は、実施例
1と同様にして二次電池を作製した。
Example 6 A composite obtained in the same manner as in Example 1 was used as a negative electrode, and 80 parts by weight of activated carbon fiber powder made from cellulose and 20 parts by weight of polytetrafluoroethylene as a binder were kneaded, and then processed. Weight: 200cm, diameter: 1
A secondary battery was produced in the same manner as in Example 1, except that a molded body of 1.5 mm and 1.5 mm thick was used as the positive electrode.

この二次電池を、下限電圧2.OOV、上限電圧を3.
OOVとし、充放電すIクル試験を行なったところ、1
50サイクル目および700サイクル目の電流効率は、
ともに99.8%と可逆性良好な充放電特性を示した。
This secondary battery has a lower limit voltage of 2. OOV, upper limit voltage 3.
When I conducted an I-cycle test of charging and discharging with OOV, 1
The current efficiency at the 50th cycle and the 700th cycle is
Both exhibited charge and discharge characteristics with good reversibility of 99.8%.

また、60℃、20日間保存した後、放電電圧が1.5
■になるまで0 、5 mAhの定電流放電をおこなっ
たところ自己放電率10に以下と、優れた自己放電特性
、高温安定性を示した。
In addition, after storage at 60℃ for 20 days, the discharge voltage was 1.5.
When a constant current discharge of 0.5 mAh was performed until the discharge rate reached (2), the self-discharge rate was less than 10, showing excellent self-discharge characteristics and high-temperature stability.

実施例 7 格子面間隔(d o O2)が3.41Aの炭素ブロッ
ク「日本カーボン株製、5EG−RBJを粉砕して炭素
粉末にした。この炭素粉末の平均粒子径を自動粒度分布
測定器[堀場製作所株製、CAPA−500Jで測定し
たところ3.5μmであった。この炭素粉末90重量部
とポリテトラフルオロエチレン粉末10重量部とを混練
したのち、加圧成形で重量50■、直径15門、厚さ0
.18’l11の炭素粉末成型体を得た。
Example 7 A carbon block with a lattice spacing (d o O2) of 3.41A, "5EG-RBJ, manufactured by Nippon Carbon Co., Ltd., was ground into carbon powder. The average particle diameter of this carbon powder was measured using an automatic particle size distribution analyzer [ When measured with CAPA-500J manufactured by Horiba, Ltd., it was 3.5 μm. After kneading 90 parts by weight of this carbon powder and 10 parts by weight of polytetrafluoroethylene powder, it was press-molded to give a weight of 50 μm and a diameter of 15 μm. Gate, thickness 0
.. A carbon powder molded body of 18'l11 was obtained.

得られた炭素粉末成型体と金属リチウム円板(直径18
mm、厚さi、sm2)トを、カ5スill。
The obtained carbon powder molded body and metallic lithium disk (diameter 18
mm, thickness i, sm2).

雄部不織布を介在させて、互いに対向させて配置し、ス
テンレス板で両面から挟持して圧着した。これにプロピ
レンカーボネートと1,3−ジオキソランとの混合溶媒
(1:1容量比)に、濃度が1 、0 mol/1  
になるように過塩素酸リチウムを溶解させた溶液を含浸
させ、炭素粉末成型体をマイナス極とし、一方の金属リ
チウムをプラス極として外部直流電源に接続し、電流密
度1.3mA/−の定電流で7.0hrsi電し、4.
1#のリチウムを吸蔵させた複合体を得た。
They were placed facing each other with the male nonwoven fabric interposed between them, and were sandwiched and crimped from both sides between stainless steel plates. To this, a mixed solvent of propylene carbonate and 1,3-dioxolane (1:1 volume ratio) was added at a concentration of 1.0 mol/1.
Impregnated with a solution of lithium perchlorate so that 7.0hrsi electric current, 4.
A composite in which 1# of lithium was occluded was obtained.

このようにして得られた複合体を負極とし、実施例1と
同様にして二次電池を作製した。
A secondary battery was produced in the same manner as in Example 1 using the composite thus obtained as a negative electrode.

この二次電池を、放電電圧が2.00Vになるまで1.
0mAの定電流放電を行なったところ、3.7mAhの
放電容量であった。さらに1゜0mAの定電流で下限電
圧1.50V、上限電圧を3.90Vとし、充放電サイ
クル試験を行なったところ40サイクル目および140
サイクル目の電流効率は、ともに98.0%以上と可逆
性良好な充放電特性を示した。
This secondary battery was heated until the discharge voltage reached 2.00V.
When a constant current discharge of 0 mA was performed, the discharge capacity was 3.7 mAh. Furthermore, a charge/discharge cycle test was conducted with a constant current of 1°0 mA, a lower limit voltage of 1.50 V, and an upper limit voltage of 3.90 V.
The current efficiencies of both cycles were 98.0% or higher, indicating good reversibility in charging and discharging characteristics.

また、60°Cl2O日間保存した後、放電電圧が1.
5VFこなるまで0.5mAhの定電流放電をおこなっ
たところ、自己放電率109イ以下と優れた自己放電特
性、高温安定性を示した。
Furthermore, after storage at 60°CCl2O for days, the discharge voltage was 1.
When a constant current discharge of 0.5 mAh was performed until 5 VF was reached, the self-discharge rate was 109 A or less, showing excellent self-discharge characteristics and high-temperature stability.

比較例 に 二次電池の電解液として、ブーピレンカーボネートと1
,2−ジメトキシエタンとの混合溶媒(1:l容量比)
に、濃度が1 、0 mol/lになるように過塩素酸
リチウムを溶解した溶液を使用した以外は、実施例1と
同様rこして二次電池を作製した。
In a comparative example, boopylene carbonate and 1 were used as electrolytes for secondary batteries.
, 2-dimethoxyethane (1:l volume ratio)
A secondary battery was prepared in the same manner as in Example 1, except that a solution in which lithium perchlorate was dissolved at a concentration of 1.0 mol/l was used.

この二次電池を放電電圧が1.50Vになるまで、0.
5mAの定電流放電を行なったところ、4.0mAh 
 の放電容量が得られた。さらrこ、0.5mAの定電
流で下限電圧1.50■、上限電圧を3.90Vとし、
充放電す比較例 2 プロピレンカーボネートと1,3−ジオキソランとの混
合溶媒(1:1容量比)に、濃度が1 、0 mol/
Iになる様に67フ化リン酸リチウムを溶解したところ
、その直轟液が固化したため電解液としての使用は不可
能であった。
This secondary battery was operated at 0.0V until the discharge voltage reached 1.50V.
When 5mA constant current discharge was performed, 4.0mAh
A discharge capacity of . Furthermore, the lower limit voltage is 1.50V and the upper limit voltage is 3.90V at a constant current of 0.5mA.
Comparative example of charging and discharging 2 A mixed solvent of propylene carbonate and 1,3-dioxolane (1:1 volume ratio) was added at a concentration of 1.0 mol/
When 67 lithium fluorophosphate was dissolved to give I, the direct boiling solution solidified and could not be used as an electrolyte.

比較例 3 二次電池の電解液としてプロピレンカーボネートと1.
2−ジメトキシエタンとの混合溶媒(l:1容量比)に
、濃度が1 、0 mol/1になる様に67フ化リン
酸リチウムを溶解した溶液を使用した以外は、実施例1
と同様にして二次電池を作製した。
Comparative Example 3 Propylene carbonate and 1.
Example 1 except that a solution of 67 lithium fluorophosphate dissolved in a mixed solvent (l:1 volume ratio) with 2-dimethoxyethane at a concentration of 1.0 mol/1 was used.
A secondary battery was produced in the same manner as above.

この二次電池を60℃、20日間保存した後、放電電圧
が1.50Vrこなるまで0.5mAの定電流放電をお
こなったところ、自己放電率は20%以上であった。
After storing this secondary battery at 60° C. for 20 days, constant current discharge of 0.5 mA was performed until the discharge voltage reached 1.50 Vr, and the self-discharge rate was 20% or more.

〔発明の効果〕〔Effect of the invention〕

溶媒および電解液として、それぞれジオキソランおよび
過塩素酸リチウムを含有する溶液を二次電池の電解液と
して使用することによって、充放電容量、伊イクル特性
、および高温安定性に優れた非水電解質二次電池を提供
することが可能となる。
By using a solution containing dioxolane and lithium perchlorate as a solvent and an electrolyte, respectively, as an electrolyte for a secondary battery, a non-aqueous electrolyte secondary with excellent charge/discharge capacity, cycle characteristics, and high temperature stability can be created. It becomes possible to provide batteries.

特許出願人  三菱瓦斯化学株式会社 代表者長野和吉Patent applicant: Mitsubishi Gas Chemical Co., Ltd. Representative Kazuyoshi Nagano

Claims (1)

【特許請求の範囲】[Claims]  充放電可能なリチウム系負極、充放電可能な正極およ
び有機電解液を含浸させたセパレーターを有する二次電
池において、負極がX線回折における格子面間隔(do
o2)が3.38〜3.56Aの炭素繊維または炭素粉
末を使用した成型体に予めリチウムを吸蔵させた複合体
であり、有機電解液が電解質として過塩素酸リチウムを
含み、かつ、有機溶媒として少なくともジオキソランを
含むことを特徴とする二次電池。
In a secondary battery having a chargeable/dischargeable lithium-based negative electrode, a chargeable/dischargeable positive electrode, and a separator impregnated with an organic electrolyte, the negative electrode has a lattice spacing (do
O2) is a composite in which lithium is occluded in advance in a molded body using carbon fiber or carbon powder with an A of 3.38 to 3.56A, and the organic electrolyte contains lithium perchlorate as an electrolyte, and an organic solvent A secondary battery comprising at least dioxolane.
JP63119467A 1988-05-18 1988-05-18 Secondary battery Pending JPH01292753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119467A JPH01292753A (en) 1988-05-18 1988-05-18 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119467A JPH01292753A (en) 1988-05-18 1988-05-18 Secondary battery

Publications (1)

Publication Number Publication Date
JPH01292753A true JPH01292753A (en) 1989-11-27

Family

ID=14762057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119467A Pending JPH01292753A (en) 1988-05-18 1988-05-18 Secondary battery

Country Status (1)

Country Link
JP (1) JPH01292753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461747A (en) * 1990-06-28 1992-02-27 Nippon Steel Corp Negative electrode for lithium secondary battery
JPH04206342A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Battery
WO1993024967A1 (en) * 1992-05-25 1993-12-09 Nippon Steel Corporation Negative electrode material for lithium secondary cell, its manufacture method, and lithium secondary cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461747A (en) * 1990-06-28 1992-02-27 Nippon Steel Corp Negative electrode for lithium secondary battery
JPH04206342A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Battery
WO1993024967A1 (en) * 1992-05-25 1993-12-09 Nippon Steel Corporation Negative electrode material for lithium secondary cell, its manufacture method, and lithium secondary cell
US5851697A (en) * 1992-05-25 1998-12-22 Nippon Steel Corporation Negative electrode material for lithium secondary cell, method for its production, and lithium secondary cell

Similar Documents

Publication Publication Date Title
CA1296766C (en) Secondary battery
US5851504A (en) Carbon based electrodes
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
WO2002039523A1 (en) Positive electrode material and cell comprising the same
JP2001110447A (en) Lithium secondary battery
US20040045818A1 (en) Electrochemical device
WO2005078849A1 (en) Electrochemical device
JP2001217008A (en) Lithium polymer secondary battery
JP4830207B2 (en) battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP4354723B2 (en) Method for producing graphite particles
JPS63102166A (en) Secondary battery
JP3786273B2 (en) Negative electrode material and battery using the same
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP3367060B2 (en) Negative electrode for lithium secondary battery
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
JP2940015B2 (en) Organic electrolyte secondary battery
JP2002175836A (en) Nonaqueous electrolyte battery
JPH01292753A (en) Secondary battery
JP2002134111A (en) Carbon material for lithium ion secondary battery negative electrode and lithium ion secondary battery
KR20220113449A (en) cathode active material
JP4643165B2 (en) Carbon material, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP3558751B2 (en) Non-aqueous solvent secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery