JPH01291223A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH01291223A
JPH01291223A JP11915288A JP11915288A JPH01291223A JP H01291223 A JPH01291223 A JP H01291223A JP 11915288 A JP11915288 A JP 11915288A JP 11915288 A JP11915288 A JP 11915288A JP H01291223 A JPH01291223 A JP H01291223A
Authority
JP
Japan
Prior art keywords
group
nonlinear optical
electron
optical material
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11915288A
Other languages
Japanese (ja)
Inventor
Hideji Ikeda
秀嗣 池田
Yutaka Kawabe
豊 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP11915288A priority Critical patent/JPH01291223A/en
Publication of JPH01291223A publication Critical patent/JPH01291223A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide an org. nonlinear optical material having high nonlinear optical characteristic by synthesizing a specified compd. having a structure wherein each substituent constituted of an electron donative group, a moiety of a conjugated bond chain and an electron acceptive group arranged in a specified order, is allowed to form line at adjacent substitution position of a benzene ring so as to locate each axis of dipole parallel to each other. CONSTITUTION:Said specified compd. is expressed by the formula I or II. In the formulas, each A and A' is an electron acceptive group; each D and D' is an electron donative group; B is a moiety of a conjugated bond chain; R is a 1-3C alkyl group; k is zero or 1; n is zero or an integer 1-4; (k+n) is <=4. By this constitution, a nonlinear effect of a crystal as a whole is enhanced. Moreover, the kind and combination of A, A', B, D, D' and R in the formulas can be selected suitably. Thus, a design of the material is executed appropriately depending on the use of the org. nonlinear optical material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機非線型光学材料に関し、より詳しくは、
光情報処理、光通信など光エレクトロニクス分野等に、
好適に利用することができ、しかも用途に応じて材料設
計が容易な実用性の高い有機非線型光学材料に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an organic nonlinear optical material, and more specifically,
For optical electronics fields such as optical information processing and optical communications,
The present invention relates to a highly practical organic nonlinear optical material that can be suitably used and can be easily designed depending on the application.

〔従来Φ技術〕[Conventional Φ technology]

有機系非線型光学材料は、この十年程かなり研究が進め
られているが、主として結晶状態の二次の非線型性を利
用した第二高調波発生素子用の材料を探索することを目
的としている。
Research into organic nonlinear optical materials has been progressing considerably over the past decade, with the main aim being to search for materials for second harmonic generation elements that utilize the second-order nonlinearity of the crystalline state. There is.

しかしながら、現在に至るまで実用に足るものは得られ
ていない。その理由として、高効率な第二高調波結晶で
は、結晶の単位セル内で分子の双極子軸がほぼ同じ方向
に整列しなければならないが、実際は反平行に並ぶこと
が多いからである。
However, to date, nothing that is of practical use has been obtained. The reason for this is that in highly efficient second harmonic crystals, the dipole axes of molecules must be aligned in approximately the same direction within the unit cell of the crystal, but in reality they are often aligned antiparallel.

この反平行に並ぶ理由は、一般に、電子供与基同士及び
電子受容基同士は、それぞれ互いに反発し、異種の間に
引力が働くため、単位セル内では双極子が打ち消すよう
に整列するからである。
The reason for this antiparallel arrangement is that electron-donating groups and electron-accepting groups generally repel each other, and an attractive force acts between different types, so that the dipoles align in a unit cell so that they cancel each other out. .

これを克服するために、キラル基を有する分子を用いた
り、置換基を導入することによって対称性を悪くする等
の試みがなされているが、必ずしも成功しているわけで
はない。
In order to overcome this, attempts have been made to use molecules with chiral groups or to introduce substituents to impair the symmetry, but these efforts have not always been successful.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記課題を解決し、同種もしくは同類の非線
型光学活性基を二個もしくは三個上記の意味で平行に整
列させ、結晶全体として非線型効果を増強させることを
可能にし、しかも、系統的に物質設計を行い得る新規な
化合物からなる実用上有利な有機非線型光学材料を提供
することを目的とするものである。
The present invention solves the above problems, makes it possible to align two or three of the same type or similar nonlinear optically active groups in parallel in the above sense, and enhance the nonlinear effect of the crystal as a whole, and furthermore, The object of the present invention is to provide a practically advantageous organic nonlinear optical material made of a novel compound that can be systematically designed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記課題を解決するために鋭意研究を重
ねた結果、ベンゼン環の隣接置換位置に同種もしくは同
類の、電子供与基と共役結合鎖部と電子受容基とを特定
の順序で整列させてなる非線型光学活性基を二個もしく
は三個有する特定の芳香族化合物からなる有機非線型光
学材料が前記目的を満足する実用上有利な有機非線型光
学材料であることを見出し、その知見に基づいて本発明
を完成するに至った。
As a result of extensive research in order to solve the above problems, the present inventors have found that the same or similar electron donating groups, conjugated bond chains, and electron accepting groups are placed in adjacent substitution positions of the benzene ring in a specific order. We have discovered that an organic nonlinear optical material consisting of a specific aromatic compound having two or three aligned nonlinear optically active groups is a practically advantageous organic nonlinear optical material that satisfies the above object, and The present invention was completed based on the findings.

すなわち、本発明は、 又は 〔但し、式〔1〕及び式〔2〕中のA及びA′は各々、
電子受容基であり、D及びD′は各々、電子供与基であ
り、Bは共役結合鎖部であり、Rは炭素数1〜3のアル
キル基であり、kは0または1であり、nは0〜4の整
数であり、但し、(k+ n)は4以下である。〕 で表される化合物からなることを特徴とする有機非線型
光学材料を提供するものである。
That is, the present invention provides: or [However, A and A' in formula [1] and formula [2] are each
is an electron-accepting group, D and D' are each an electron-donating group, B is a conjugated bond chain, R is an alkyl group having 1 to 3 carbon atoms, k is 0 or 1, and n is an integer from 0 to 4, provided that (k+n) is 4 or less. ] An organic nonlinear optical material characterized by comprising a compound represented by the following is provided.

式(1)中のDは、電子供与基であり、各種のものが使
用できるが、具体的には、たとえば、(ここで、p及び
mは、各々独立に、0〜3の整数を表す。)などを挙げ
ることができる。
D in formula (1) is an electron donating group, and various types can be used, but specifically, for example, (where p and m each independently represent an integer of 0 to 3) ), etc.

式〔2−〕中のD′は電子供与基であり、各種のものが
あるが、具体的にはたとえば、 (ここで、p及びmは、それぞれ前記同様の意味を表す
。)などを挙げることができる。
D' in formula [2-] is an electron donating group, and there are various types, but specific examples include (where p and m each represent the same meaning as above). be able to.

式〔1〕中のAは、電子受容基であり、各種のものがあ
るが、具体的にはたとえば、 (ここで、tは、0〜3の整数であり、X−は、CF、
Br−、I −、バラメチルスルホン酸イオンなどの、
陰イオンを表す。) 、−CO−1−O−CO−などを
挙げることができる。
A in formula [1] is an electron accepting group, and there are various types, but specifically, for example, (where t is an integer of 0 to 3, X- is CF,
Br-, I-, rosemethylsulfonate ions, etc.
Represents an anion. ), -CO-1-O-CO-, and the like.

式〔2〕中のA′は、電子受容基であり、各種のものが
あるが、具体的にはたとえば、(ここで、を及びχ−は
、それぞれ、前記同様の意味を表す。)、ニトロ基、シ
アノ基、アルコキシカルボニル基、2.4−ジニトロフ
ェニル基、4−シアノフェニル基、4−ニトロフェニル
基、ホルミル基、カルボキシル基などを挙げることがで
きる。
A' in formula [2] is an electron accepting group, and there are various types, but specifically, for example, (here, and χ- each represent the same meaning as above), Examples include a nitro group, a cyano group, an alkoxycarbonyl group, a 2,4-dinitrophenyl group, a 4-cyanophenyl group, a 4-nitrophenyl group, a formyl group, and a carboxyl group.

式〔1〕及び式〔2〕中のBは、共役結合鎖部であり、
芳香環及び/又は二重結合鎖などの各種のものがあるが
、具体的にはたとえば、1.4−フェニレン基などのア
リーレン基、−GCH=C)−F−(ここで、rは0か
ら3の整数を表す。)、−N=N−、−N=CI+−な
ど、あるいはそれらの組み合わ表ず。)などを挙げるこ
とができる。
B in formula [1] and formula [2] is a conjugated bond chain,
There are various types such as aromatic rings and/or double bond chains, and specifically, for example, arylene groups such as 1,4-phenylene group, -GCH=C)-F- (where r is 0 ), -N=N-, -N=CI+-, etc., or any combination thereof. ), etc.

なお、上記の芳香環はアルキル基等の置換基で置換され
ていてもよい。
Note that the above aromatic ring may be substituted with a substituent such as an alkyl group.

式〔1〕及び式[2]中のRの具体例としては、メチル
基、エチル基、n−プロピル基及びイソプロピル基を挙
げることができる。
Specific examples of R in formula [1] and formula [2] include methyl group, ethyl group, n-propyl group, and isopropyl group.

なお、該式中のnが2以上の場合、Rは同じであっても
よく、異なっていてもよい。
In addition, when n in this formula is 2 or more, R may be the same or different.

式〔1]または式〔2〕で表される化合物の具体例とし
てはたとえば、次のそれぞれの構造式で表される化合物
などを挙げることができる。
Specific examples of the compound represented by formula [1] or formula [2] include compounds represented by the following structural formulas.

本発明の有機非線型光学材料は、前記の式〔1〕または
式〔2〕で表される化合物を、結晶状態にせしめること
によって得ることができる。
The organic nonlinear optical material of the present invention can be obtained by bringing the compound represented by the above formula [1] or formula [2] into a crystalline state.

なお、該化合物は、通常は1種単独で用いられるが、所
望により2種以上を併用してもよい。
In addition, these compounds are usually used alone, but two or more types may be used in combination if desired.

また、必要に応じて、他の成分を添加して使用してもよ
い。
Further, other components may be added and used as necessary.

本発明の有機非線型光学材料は、式〔1〕又は式〔2〕
で示されるように、ベンゼン環の隣接する置換位置に、
電子供与基と共役結合鎖部と電子受容基とが、少なくと
も一対の電子供与基と少なくとも一対の電子受容基がそ
れぞれ隣接を強いられるように、特定の順序に整列され
ている特定な化合物よりなるものである。すなわち、電
子供与基と共役結合鎖部と電子受容基からなる二個もし
くは三個の置換基は、ベンゼン環に結合しているために
、分子内で双極子軸が互いに平行となるよう整列した二
量体もしくは三量体状になり易い。
The organic nonlinear optical material of the present invention has the formula [1] or the formula [2]
As shown, at the adjacent substitution position of the benzene ring,
consisting of a specific compound in which an electron donating group, a conjugated bond chain, and an electron accepting group are arranged in a specific order such that at least one pair of electron donating groups and at least one pair of electron accepting groups are forced to be adjacent to each other; It is something. In other words, since two or three substituents consisting of an electron-donating group, a conjugated bond chain, and an electron-accepting group are bonded to the benzene ring, their dipole axes are aligned in the molecule so that they are parallel to each other. It tends to form dimers or trimers.

しかも、該化合物はこの状態で容易に結晶化することが
できるので、結晶全体として高効率の二次もしくは高次
の非線型特性を容易に実現することができる。
Moreover, since the compound can be easily crystallized in this state, highly efficient second-order or higher-order nonlinear characteristics can be easily realized as a whole crystal.

さらに、本発明の有機非線型光学材料においては、前記
式〔1〕及び式〔2〕中のA、A′、B、D、D’及び
Rの種類、組み合わせ等を適宜選定することができるの
で、用途に応じて適切な材料設計を行うことができる。
Furthermore, in the organic nonlinear optical material of the present invention, the types, combinations, etc. of A, A', B, D, D', and R in the above formulas [1] and [2] can be selected as appropriate. Therefore, appropriate material design can be performed depending on the application.

本発明の、有機非線型光学材料は二次もしくは高次の優
れた非線型特性を有する実用上著しく優れた非線型光学
材料であり、光情報処理、光通信などの種々の光エレク
トロニクス分野をはじめとする様々な分野に好適に利用
することができる。
The organic nonlinear optical material of the present invention is a practically excellent nonlinear optical material having excellent second-order or higher-order nonlinear characteristics, and is used in various optical electronics fields such as optical information processing and optical communication. It can be suitably used in various fields.

〔実施例〕〔Example〕

(実施例1〜3及び比較例1) (1)化合物2の合成 α、α′−ジブロモー〇−キシレン5.4g(20ミリ
モル)、T−ピコリン19g(0,21モル)をトルエ
ン1(ldに溶かし1時間還流した。
(Examples 1 to 3 and Comparative Example 1) (1) Synthesis of Compound 2 5.4 g (20 mmol) of α, α'-dibromo The mixture was dissolved in water and refluxed for 1 hour.

室温まで放冷後、生じた結晶を濾別しエタノールで洗浄
して所望の下記の化合物2の白色結晶7.9g(収率8
8%)を得た。この化合物は、融点が、198°Cであ
り、’H−NMR(60MH2、HMDS/CD、OD
)などにより、その構造が下記の通りであることを確認
した。結果は第1表に示す。
After cooling to room temperature, the resulting crystals were filtered and washed with ethanol to obtain 7.9 g of white crystals of the desired compound 2 below (yield: 8
8%). This compound has a melting point of 198°C and 'H-NMR (60MH2, HMDS/CD, OD
), the structure was confirmed to be as follows. The results are shown in Table 1.

eda 第1表 δ値(ppm)   ***  帰属  積分比 理論比
2.70     s    a、   5.9  6
6.10     s    b    3.7  4
7.1〜7.6    m    c    4.0 
 47.89     d    d    3.9 
 48.80、    d    e    3.8 
 4(2)化合物lの合成 上記化合物2 1.4g(3,1ミリモル)、4−ジメ
チルアミノベンズアルデヒド0.9g(6,2ミリモル
)、ピペリジン0.1gをメタノール10dに溶かし、
1時間還流した。室温まで放冷して生じた結晶を濾別、
メタノールで洗浄して所望の下記の化合物1の青紫色パ
ウダー1.0g(収率45%)を得た。この化合物は、
融点が256°Cであす、その紫外分光スペクトル〔λ
max(ε)/MeOH:490nm (2,lX10
’ M−’CT11−’)〕及び’H−NMR(60M
H2:HMDS/DMSO−DA ”)などによりその
構造式が下記の通りであることを確認した。H’ −N
MRの結果は第2表に示す。
eda Table 1 δ value (ppm) Splitting Attribution Integral ratio Theoretical ratio 2.70 s a, 5.9 6
6.10 s b 3.7 4
7.1~7.6mc 4.0
47.89 d d 3.9
48.80, d e 3.8
4(2) Synthesis of Compound 1 1.4 g (3.1 mmol) of the above compound 2, 0.9 g (6.2 mmol) of 4-dimethylaminobenzaldehyde, and 0.1 g of piperidine were dissolved in 10 d of methanol.
It was refluxed for 1 hour. After cooling to room temperature, the crystals formed are separated by filtration.
After washing with methanol, 1.0 g (yield: 45%) of the desired blue-purple powder of Compound 1 below was obtained. This compound is
Its melting point is 256°C, and its ultraviolet spectrum [λ
max(ε)/MeOH: 490nm (2, lX10
'M-'CT11-')] and 'H-NMR (60M
H2:HMDS/DMSO-DA'') confirmed that its structural formula is as follows.H'-N
The MR results are shown in Table 2.

b     feddc     a 第2表 δ値(ppm)   ***  帰属  積分比 理論比
2.98     s    a   12.2  1
25、93     s    b    3.8  
 46、64     d    c    4.4 
  47.0〜7.8    m    d   13
.3  128、00     m    e    
4.6   48、60     m    f   
 4.0   4α、α′−ジブロモー〇−キシレン5
.4g(20ミリモル)、バニリン6.2g(41ミリ
モル)及び炭酸カリウム20g(0,145モル)にジ
オキサン100!eを加え10時間還流した。固体を濾
別し、濾液を濃縮して生じた固体を濾別しメタノールで
洗浄して、所望の下記の化合物3の白色固体4.1g(
収率50%)を得た。この化合物は、融点が150゛C
であり、’H−NMR(60MH2: TMS/CDC
I:+ )などにより下記の構造を有することが確認さ
れた。結果は、第3表に示す。1 化合物 3 第3表 δ値(ppm)   ***  帰属  積分比 理論比
3、80     s    a    6.5   
65、30     s    b    4.0  
 46、97     d    c    2.0 
  27、30     m    d    B、 
7   89、75     s    e    ’
4.0   2評11舛 上記合成例で得た 化合物1、化合物2、化合物3及び 比較例1として、次式 (Clh ” Ni CH3)  ・I−で表される化
合物のそれぞれの微結晶パウダーを試料として用い、下
記の要領で非線型性を測定した。
b feddc a Table 2 δ value (ppm) Splitting Attribution Integral ratio Theoretical ratio 2.98 s a 12.2 1
25, 93 s b 3.8
46, 64 d c 4.4
47.0-7.8 m d 13
.. 3 128,00 m e
4.6 48, 60 m f
4.0 4α, α′-dibromo〇-xylene 5
.. 4 g (20 mmol), vanillin 6.2 g (41 mmol) and potassium carbonate 20 g (0,145 mol) dioxane 100! E was added and the mixture was refluxed for 10 hours. The solid was separated by filtration and the filtrate was concentrated, and the resulting solid was separated by filtration and washed with methanol to obtain 4.1 g of a white solid of the desired compound 3 below (
A yield of 50% was obtained. This compound has a melting point of 150°C
'H-NMR (60MH2: TMS/CDC
I:+) etc., it was confirmed that it had the following structure. The results are shown in Table 3. 1 Compound 3 Table 3 δ value (ppm) Splitting Attribution Integral ratio Theoretical ratio 3, 80 s a 6.5
65, 30 s b 4.0
46, 97 dc 2.0
27, 30 m dB,
7 89, 75 s e'
4.0 2 Reviews 11 As Compound 1, Compound 2, Compound 3 obtained in the above synthesis example and Comparative Example 1, microcrystalline powders of the compounds represented by the following formula (Clh "Ni CH3) ・I- were used. It was used as a sample and nonlinearity was measured in the following manner.

結果は第4表に示す。The results are shown in Table 4.

第4表 1下記の説明を参照 班1U彫彫9」0【汰 上記各試料の非線型性の測定は第1図に略示した測定装
置を用いてS、に、KurtzとT、T、Perryに
よって考案されたJournal of Applie
d Physics、 39巻、3798ページ(19
68年)に所載の方法に基づいて行った。
Table 4 1 See the explanation below Group 1 U Carving 9'0 Journal of Applie invented by Perry
d Physics, Volume 39, Page 3798 (19
This was carried out based on the method described in 1968).

試料をメノウ製の乳鉢ですりつぶし、第1図に示すよう
に2枚の石英板の間にはさみ、レーザー発生源1(ラム
ダフィジクス社エキシマ励起色素レーザー、波長850
nm、エネルギー 1mJ/パルス、パルス巾10ns
)から入射レーザー光2を、レンズ3でゆるく絞って試
料12に照射し、この際試料より発生し各方向に散乱さ
れた第二高調波(SHO)4のうち前方に散乱された部
分を、集光レンズ5で集光し、425 nmの光をフィ
ルター7及び分光器8(日本分光製CT50)で基本波
と分離し光電子増倍管9(浜松ホトニクス製R92B)
で受け、アンプ(増幅器)10により電気的に増幅し、
オシロスコープ11によって電圧を測定し、その値を基
準物質の値と比較することにより非線型定数(d)を求
めた。
The sample was ground in an agate mortar, sandwiched between two quartz plates as shown in Fig.
nm, energy 1mJ/pulse, pulse width 10ns
), the incident laser beam 2 is loosely converged by a lens 3 and irradiated onto the sample 12, and at this time, among the second harmonics (SHO) 4 generated by the sample and scattered in each direction, the portion scattered forward is The light of 425 nm is collected by a condensing lens 5, separated from the fundamental wave by a filter 7 and a spectrometer 8 (CT50 manufactured by JASCO), and then separated from the fundamental wave by a photomultiplier tube 9 (R92B manufactured by Hamamatsu Photonics).
and is electrically amplified by an amplifier (amplifier) 10.
The voltage was measured using an oscilloscope 11, and the nonlinear constant (d) was determined by comparing the voltage with the value of the reference material.

なお、各試料の微結晶の粒径は、光学顕微鏡を用いて観
察した結果、いずれも5〜50μm程度であった。
In addition, as a result of observation using an optical microscope, the particle size of the microcrystals of each sample was approximately 5 to 50 μm.

剖1コ目り叫 材料の非線型光学特性は一般に下の様な式で表される。First autopsy cry The nonlinear optical properties of a material are generally expressed by the following formula.

P−χ(1)E十χ(21Et十χC1) E’十・・
・χ(2) は2次の非線型光学定数であり、χ(3)
 は3次の非線型光学定数である。これら、χ(2′ 
、χ(′  ・・・などの2次以上の係数が、非線型性
を表すものであるが、これらの相対的な大きさによって
も発現する物理現象はそれぞれ全く異なるので、2次の
材料、3次の材料も、それぞれ違ったものが用いられる
。(ただし、一般に2次の非線型光学定数が大ならば3
次のそれも大であるが、この逆は必ずしも成り立たない
。)したがって2次の非線型性を測定することによって
2次及び3次の非線型性を評価することが可能である。
P-χ(1)Etenχ(21EttenχC1) E'ten...
・χ(2) is a second-order nonlinear optical constant, and χ(3)
is a third-order nonlinear optical constant. These, χ(2′
, χ(′..., etc.) represent nonlinearity, but the physical phenomena that occur are completely different depending on their relative sizes. Different third-order materials are also used. (However, in general, if the second-order nonlinear optical constant is large, 3-order materials are used.
The following is also important, but the reverse is not necessarily true. ) Therefore, by measuring the second-order nonlinearity, it is possible to evaluate the second-order and third-order nonlinearity.

前記dは2次の非線型性を表す定数で、 d=1/2χ32)   の関係がある。このdは、圧
電テンソルからのアナロジ−に従って従来から一般に非
線型光学定数として使用されている記号である。
The above d is a constant representing second-order nonlinearity, and has the following relationship: d=1/2χ32). This d is a symbol conventionally generally used as a nonlinear optical constant according to an analogy with a piezoelectric tensor.

〔発明の効果〕〔Effect of the invention〕

本発明の、有機非線型光学材料は、ベンゼン環の隣接す
る置換位置に、電子供与基と共役結合鎖部と電子受容基
とを特定の順序で有する置換基を少なくとも二個、双極
子軸が互いに平行となるように強制的に整列させてなる
特定な化合物からなるので、二次もしくは三次の高い非
線型特性を有する実用上著しく優れた非線型光学材料で
ある。
The organic nonlinear optical material of the present invention has at least two substituents having an electron donating group, a conjugated bond chain part, and an electron accepting group in a specific order at adjacent substitution positions of a benzene ring, and the dipole axis is Since it is made of specific compounds that are forcibly aligned in parallel to each other, it is a practically excellent nonlinear optical material that has high nonlinear characteristics of second or third order.

また、本発明の有機非線型光学材料は、電子供与基、共
役結合鎖部、電子受容基、あるいは、ベンゼン環のアル
キル基の種類、組み合わせ等を適宜選定することによっ
てそれぞれの用途に適合させることができる。
Furthermore, the organic nonlinear optical material of the present invention can be adapted to each application by appropriately selecting the types and combinations of electron donating groups, conjugated bond chains, electron accepting groups, or alkyl groups on the benzene ring. I can do it.

すなわち、本発明によると、上記の実用上著しく有用な
新規な有機非線型光学材料を提供することができ、また
、二次もしくは高次の高効率の非線型特性を有する実用
性の高い各種の有機非線型光学材料を得るために有用な
物質設計の指針及び手段を提供することができる。
That is, according to the present invention, it is possible to provide the above-mentioned novel organic nonlinear optical material that is extremely useful in practice, and also to provide various highly practical organic nonlinear optical materials having highly efficient second-order or higher-order nonlinear characteristics. Guidelines and means for material design useful for obtaining organic nonlinear optical materials can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例において非線型性の測定に用いた装置
の略示図である。 符号の説明 1 レーザー発生源  2 入射レーザー光線3 レン
ズ      4 散乱第二高調波5 集光レンズ  
  6 集光第二高調波7 フィルター    8 分
光器 9 光電子増倍管  10 アンプ 11 オシロスコープ 12 試料
FIG. 1 is a schematic diagram of an apparatus used for measuring nonlinearity in Examples. Explanation of symbols 1 Laser source 2 Incident laser beam 3 Lens 4 Scattered second harmonic 5 Condensing lens
6 Focusing second harmonic 7 Filter 8 Spectrometer 9 Photomultiplier tube 10 Amplifier 11 Oscilloscope 12 Sample

Claims (1)

【特許請求の範囲】 1、下記の一般式 ▲数式、化学式、表等があります▼〔1〕 又は ▲数式、化学式、表等があります▼〔2〕 〔但し、式〔1〕及び式〔2〕中のA及び A′は各々、電子受容基であり、D及びD′は各々、電
子供与基であり、Bは共役結合鎖部であり、Rは炭素数
1〜3のアルキル基であり、kは0又は1であり、nは
0〜4の整数であり、但し、(k+n)は4以下である
[Claims] 1. The following general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [1] or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [2] [However, formula [1] and formula [2] ], A and A' are each an electron-accepting group, D and D' are each an electron-donating group, B is a conjugated chain, and R is an alkyl group having 1 to 3 carbon atoms. , k is 0 or 1, and n is an integer from 0 to 4, provided that (k+n) is 4 or less.
JP11915288A 1988-05-18 1988-05-18 Organic nonlinear optical material Pending JPH01291223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11915288A JPH01291223A (en) 1988-05-18 1988-05-18 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11915288A JPH01291223A (en) 1988-05-18 1988-05-18 Organic nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH01291223A true JPH01291223A (en) 1989-11-22

Family

ID=14754205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11915288A Pending JPH01291223A (en) 1988-05-18 1988-05-18 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH01291223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000631A1 (en) * 1999-06-28 2001-01-04 Nanoworks, Inc. New classes of high linear and nonlinear response compounds
US6500363B1 (en) 1999-06-28 2002-12-31 Syracuse University Classes of high linear and nonlinear response compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000631A1 (en) * 1999-06-28 2001-01-04 Nanoworks, Inc. New classes of high linear and nonlinear response compounds
US6500363B1 (en) 1999-06-28 2002-12-31 Syracuse University Classes of high linear and nonlinear response compounds

Similar Documents

Publication Publication Date Title
Leela et al. Studies on growth and characterization of nonlinear optical material 4-chloro-4′ methoxy benzylideneaniline: a Schiff base organic material
Priyadharshini et al. Synthesis, crystal growth, crystal structure, optical, thermal and NLO studies of Vanillin− 3, 5-Dinitrosalicylic acid (VDNS)-A novel organic material
Jothi et al. Synthesis, Growth and Characterization of Organic Nonlinear Optical Single Crystals of 4-Bromo-4’-Methyl Benzylidene Aniline
Jain et al. Optically non-linear organic materials
JPH01291223A (en) Organic nonlinear optical material
US5872256A (en) Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
JPH0440429A (en) Nonlinear optical material
Subashini et al. Synthesis, growth and characterization of benzylideneaniline compounds: N-(4-bromobenzylidene)-4-fluoroaniline and N-(4-bromobenzylidene)-4-methoxyaniline
JPH03112950A (en) Squarylium derivative and production thereof
JPH03112961A (en) Squarylium derivative and production thereof
JPH0371117A (en) Material for nonlinear optical element
JPH04202167A (en) Cyclobutenedione derivative and its production
CA2075342C (en) Nonlinear optical organic material comprising hydrazine compound
Mukhopadhyay et al. A new class of three dimensional D–π–A trigonal cryptand derivatives for second-order nonlinear optics
JPH0450930A (en) Nonlinear optical material
JP2530725B2 (en) Organic nonlinear optical material
JPH04199135A (en) Nonlinear optical element material
JPH02935A (en) Nonlinear optical material
JPH0442131A (en) Nonlinear optical material
JPH03266819A (en) Nonlinear optical material
JPH04202166A (en) Cyclobutenedione derivative and its production
Umezawa et al. Synthesis and crystal structures of fluorinated chromophores for second-order nonlinear optics
JPH04230739A (en) Organic nonlinear optical material
JPH0498225A (en) Nonlinear optical material
JPH04161932A (en) Non-linear optical material