JPH01284476A - Device for cleaning molten metal - Google Patents

Device for cleaning molten metal

Info

Publication number
JPH01284476A
JPH01284476A JP63326000A JP32600088A JPH01284476A JP H01284476 A JPH01284476 A JP H01284476A JP 63326000 A JP63326000 A JP 63326000A JP 32600088 A JP32600088 A JP 32600088A JP H01284476 A JPH01284476 A JP H01284476A
Authority
JP
Japan
Prior art keywords
molten metal
gas
bubbling
floating
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63326000A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
俊夫 石井
Yutaka Okubo
豊 大久保
Shuzo Fukuda
福田 脩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63326000A priority Critical patent/JPH01284476A/en
Publication of JPH01284476A publication Critical patent/JPH01284476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To execute the efficient ultra-cleaning of a molten metal by bubbling a gas soluble in the molten metal in the communicating part of the bottom of a U-shaped vessel at the time of continuously charging the molten metal into the vessel from one port thereof and taking out the molten metal from the other port. CONSTITUTION:The device for cleaning the molten metal is constituted of the U-shaped vessel 1, the one aperture at the top end of which is used as the continuous feed port 2 for the molten metal X and the aperture at the other top end as a taking out port 4 of the molten metal X. The molten metal X is charged continuously from the feed port 2 into the vessel and is fed through a downward pressurizing flow passage 3, the communicating path 6 and a floating reduced pressure flow passage 5 to the take-out port 2. The soluble gas is bubbled into the molten metal X from a bubbling part 7 provided to the communicating path 6. The molten metal X arriving at the bottom side is, therefore, sufficiently pressurized and a large volume of the gas is dissolved in the molten metal in the path 6. The molten metal is rapidly reduced in pressure during the rise in the flow passage 5. The gas dissolved therein forms the fine gaseous bubbles which float by trapping the inclusions thereon. The inclusions are removed by the take-out port 4. The ultra-cleaning of the molten metal X is thereby efficiently executed.

Description

【発明の詳細な説明】 【産業上の利用分野〕 この発明は、溶融金属中に浮遊する介在物を除去する溶
融金属の清浄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molten metal cleaning device for removing inclusions floating in molten metal.

〔従来の技術〕[Conventional technology]

溶融金属中に浮遊する介在物(例えば溶鋼中のアルミナ
系介在物)は、製品品質欠陥の原因となるため、その低
減・除去方法が種々提案されている。
Inclusions floating in molten metal (for example, alumina inclusions in molten steel) cause product quality defects, and various methods have been proposed to reduce and remove them.

その中で比較的効率が良いとして多用されている方法に
、常圧下で容器の底から溶融金属中に不活性ガスをバブ
リングすることにより、ガス気泡に介在物をトラップさ
せ、浮上後これを除去する方法がある。
Among these, a method that is often used as it is relatively efficient is to bubble inert gas into the molten metal from the bottom of the container under normal pressure to trap inclusions in the gas bubbles and remove them after floating. There is a way to do it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

高級材製造を目的とした場合、溶鋼中のトータル酸素量
は15ppm以下に抑える必要がある。
If the purpose is to manufacture high-grade materials, the total amount of oxygen in molten steel must be suppressed to 15 ppm or less.

しかし5.上記の方法によってはこのような溶融金属の
超清浄化の要請を達成し得ないという問題があり、新た
な手段の開発が望まれていた。
But 5. There is a problem in that the above-mentioned methods cannot meet the requirement for ultra-cleaning of molten metal, and it has been desired to develop a new method.

即ち、従来のガスバブリング法では、バブリング領域が
容器底面のガス吹込み口から上方にすり鉢状に広がる領
域だけであり、しかも吹込み方法の制約から容器全域か
らバブリングすることは難しいという問題があった。又
バブリングによりできる気泡の大きさが大きいというこ
とが原因となり、該気泡が浮上する際、溶融金属はその
周りを迂回するように流れ、その流れといっしょに微細
介在物は気泡を避けて移動するため、微細介在物は気泡
にトラップされにくいといった問題もある。
That is, in the conventional gas bubbling method, the bubbling region is limited to a cone-shaped region extending upward from the gas inlet at the bottom of the container, and furthermore, there is a problem in that it is difficult to bubble from the entire region of the container due to restrictions on the blowing method. Ta. Another cause is that the bubbles formed by bubbling are large, and when the bubbles float up, the molten metal flows around them, and the fine inclusions move along with the flow, avoiding the bubbles. Therefore, there is also the problem that fine inclusions are difficult to be trapped by air bubbles.

そのため本発明者等は、本件出願と略同時に、上記の問
題を解決するための提案を行なった。
Therefore, the present inventors made a proposal to solve the above problem almost at the same time as filing the present application.

その提案の内容は、加圧状態にした溶融金属を、それに
可溶なガスでバブリングして該溶融金属中にガスを溶解
せしめ、その後急速に減圧して溶融金属ギに微細ガス気
泡を発生させ、溶融金属中に浮遊する介在物をバブリン
グによるガス気泡及び減圧により発生した微細ガス気泡
にトラップせしめて、浮上後これを除去するというもの
である。
The proposal involved bubbling pressurized molten metal with a soluble gas to dissolve the gas in the molten metal, and then rapidly reducing the pressure to generate fine gas bubbles in the molten metal. In this method, inclusions floating in molten metal are trapped in gas bubbles caused by bubbling and fine gas bubbles generated by reduced pressure, and are removed after floating.

溶融金属中の通常の介在物は最初のバブリングでトラッ
プされて浮上せしめられることになる。他方、このバブ
リングは加圧した溶融金属に対して行なわれるため、バ
ブリングガスが多量に溶融金属中に溶け込むことになる
。その後の急速な減圧で、溶融金属中に溶け込んでいた
ガスが微細なガス気泡となって溶融金属全域から発生す
る。この時、微細な介在物は該ガス気泡にトラップされ
て浮上する。
Normal inclusions in the molten metal will be trapped and brought to the surface by the initial bubbling. On the other hand, since this bubbling is performed on pressurized molten metal, a large amount of bubbling gas dissolves into the molten metal. Due to the subsequent rapid depressurization, the gas dissolved in the molten metal becomes fine gas bubbles and is generated from the entire area of the molten metal. At this time, fine inclusions are trapped by the gas bubbles and float up.

このような加圧減圧法による介在物除去効率は非常に高
いものであるが、−旦加圧状態にした上でバブリングを
行っているため、ガス溶解量が多く、減圧後溶融金属中
にバブリングガスの一部は溶け残ってしまうといった問
題が残る。
The efficiency of inclusion removal using this pressurization and depressurization method is very high, but since bubbling is performed after the pressure is first applied, a large amount of gas is dissolved, and after depressurization, bubbles are generated in the molten metal. The problem remains that some of the gas remains undissolved.

従って一定時間放置後、脱ガス処理を別途行う必要が生
ずる。そこで加圧減圧法による介在物除去より。多少効
率が低下しても減圧差が加圧減圧法より小さいために脱
ガス処理を別工程として行う必要がない、次のような減
圧法による溶融金属の清浄化処理技術が創案された。即
ち、大気圧もしくはそれ以下の状態で溶融金属をそれに
可溶なガスでバブリングして該溶融金属中にガスを溶解
せしめ、その後急速に減圧して溶融金属中に微細ガス気
泡を発生させると共に。
Therefore, after being left for a certain period of time, it becomes necessary to perform a separate degassing treatment. Therefore, we decided to remove inclusions using the pressurization and depressurization method. The following technology for cleaning molten metal using the reduced pressure method has been devised, which eliminates the need for degassing as a separate process because the difference in pressure reduction is smaller than that of the pressurized/reduced method even if the efficiency is reduced to some extent. That is, the molten metal is bubbled with a soluble gas at atmospheric pressure or lower to dissolve the gas in the molten metal, and then the pressure is rapidly reduced to generate fine gas bubbles in the molten metal.

該溶融金属中に溶けて残っているガスの脱ガスを併せて
行い、溶融金属中に浮遊する介在物をバブリングによる
ガス気泡及び減圧により発生した微細ガス気泡にトラッ
プせしめて、浮上後これを除去するものである。
The gas remaining dissolved in the molten metal is also degassed, and inclusions floating in the molten metal are trapped in gas bubbles caused by bubbling and fine gas bubbles generated by depressurization, and removed after floating. It is something to do.

このように溶融金属中の介在物を除去するには、極めて
効率の良い優れた方法ではあるが、その実施に当っては
密閉容器等を用いてバッチ処理で行なうことになるため
、処理効率が悪く、多量の溶融金属の処理には不向きで
あった。
Although this is an excellent and extremely efficient method for removing inclusions from molten metal, it is carried out in a batch process using a closed container, which reduces processing efficiency. It was unsuitable for processing large amounts of molten metal.

本発明は、上記の問題を解決するためなされたもので、
′そのような方法を連続的に実施できる装置を提供し、
効率よく溶融金属の超清浄化を達成できるようにするも
のである。
The present invention was made to solve the above problems, and
'Providing an apparatus capable of carrying out such a method continuously;
This makes it possible to efficiently achieve ultra-cleaning of molten metal.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明は、次のような構成からなる溶融金属の
清浄化装置を提供するものである。
Therefore, the present invention provides a molten metal cleaning apparatus having the following configuration.

即ち、本装置は第1図に示すように、U字型の容器(1
)から構成され、一の上端開口を溶融金属Xの連続投入
口(2)としてこれにつながる容器垂直部を溶融金mX
の下降加圧流路(3)とし。
That is, as shown in FIG.
), the top opening of one is a continuous inlet port (2) for molten metal
The downward pressure flow path (3) is defined as the downward pressure flow path (3).

他方の上端開口を溶融金属Xの取出し口(4)としてこ
れにつながる容器垂直部を該溶融金属Xの浮上減圧流路
(5)とすると共に、前記下降加圧流路(3)と浮上減
圧流路(5)とを連絡する容器(1)底部の連通路(6
)に、溶融金属Xに可溶なガスをバブリングするバブリ
ング部(7)を設けたものである。
The other upper end opening is used as a take-out port (4) for the molten metal A communication passage (6) at the bottom of the container (1) that communicates with the passage (5).
) is provided with a bubbling section (7) for bubbling gas soluble in the molten metal X.

又、第2発明装置は、前記装置構成と同一の構成のほか
、浮上減圧流路(5)出側の取出し口(4)に、溶融金
属X中の脱ガスを行なう真空貯溜槽を連設せしめたもの
である。
In addition, the second invention device has the same configuration as the device configuration described above, and also includes a vacuum storage tank for degassing the molten metal It was forced upon me.

更に、本願第3発明は減圧法により連続処理を行う清浄
化装置の構成であって、以下のようになる。
Furthermore, the third invention of the present application is a cleaning apparatus that performs continuous processing using a reduced pressure method, and is configured as follows.

即ち、第3図に示すように、U字型の容器(1a)から
構成され、一の上端開口を溶融金属Xの連続投入口(2
a)としてこれにつながる容器垂直部(ここでは溶融金
属Xの加圧を予定していないため浅いものでもよい)を
溶融金属Xの下降流路(3a)とし、他方の上端開口を
溶融金属Xの取出し口(4a)としてこれにつながる容
器垂直部を該溶融金属Xの浮上流路(5a)とすると共
に、前記下降流路(3a)と浮上流路(5a)とを連絡
する容器底部の連通路(6a)に、溶融金属Xに可溶な
ガスのバブリングを行うバブリング部(7a)を設け、
更に前記浮上流路(5a)出側の取出し口(48)に、
該流路(5a)を浮上してくる溶融金属Xを減圧せしめ
て溶けたガスを再び微細ガス気泡として発生させると共
に、該溶融金属X中に溶け残ったバブリングガスの脱ガ
スを行う減圧槽(8)を連設した′ものである。
That is, as shown in FIG.
As a), the vertical part of the container connected to this (a shallow one is fine here as we do not plan to pressurize the molten metal X) is the downward flow path (3a) for the molten metal The vertical part of the container connected to the outlet (4a) is used as the floating channel (5a) for the molten metal A bubbling part (7a) for bubbling a gas soluble in the molten metal X is provided in the communication path (6a),
Further, at the outlet (48) on the outlet side of the floating channel (5a),
A depressurizing tank (depressurizing the molten metal 8).

〔作  用〕[For production]

前記連続投入口(2)より溶融金属Xを連続的に投入せ
しめると、該溶融金属Xは下降加圧流路(3)を下降す
る間にその自重により次第に加圧される。底部側に達し
た溶融金属Xは十分に加圧された状態にあり、そこへ連
通路(6)のバブリング部(7)より該溶融金属Xに可
溶なガスのバブリングが行なわれ、多量のガスがそこで
溶け込むことになる。そして溶融金属Xの流れはこの連
通路(6)から浮上減圧流路(5)にかわり、該浮上減
圧流路(5)を上昇する間に溶融金属Xは急速に減圧さ
れる。この減圧により溶融金属Xに溶け込んでいたガス
は微細ガス気泡となって現われ、介在物をトラップしな
がら浮上する。
When the molten metal X is continuously introduced through the continuous input port (2), the molten metal X is gradually pressurized by its own weight while descending through the downward pressurizing channel (3). The molten metal X that has reached the bottom side is in a sufficiently pressurized state, and a soluble gas is bubbled into the molten metal The gas will dissolve there. Then, the flow of the molten metal X changes from this communication path (6) to the floating pressure reducing channel (5), and the pressure of the molten metal X is rapidly reduced while rising through the floating pressure reducing channel (5). Due to this pressure reduction, the gas dissolved in the molten metal X appears as fine gas bubbles, which float up while trapping inclusions.

従って取出し口(4)側に浮いた介在物を除去しながら
、そこから連続的に溶融金属Xを取り込む。
Therefore, while removing inclusions floating on the extraction port (4) side, molten metal X is continuously taken in from there.

又、第2発明では、取出し口(4)側に設けた真空貯溜
槽内で、溶融金属X中に未だ溶け込んでいるガス(前述
したガスバブリングにより溶け込んだガス)の脱ガスを
行ない、溶融金属Xのより完全な清浄化を達成している
Further, in the second invention, the gas still dissolved in the molten metal A more complete cleaning of X has been achieved.

更に、第3発明の場合は、上記のような装置構成によっ
て減圧法による連続処理を実施することができる。即ち
、前記連続投入口(2a)より連続的に投入された溶融
金属Xは、バブリング部(7a)で上記のようなガスの
バブリングがなされると、加圧状態になくてもそこで溶
け込むことになる。該溶融金属Xの流れは該通路(6a
)から浮上流路(5a)にかわるが、取出し口(4a)
側に上記減圧槽(8)が設けられているため、そこから
吸引力が働いてその流れが上方に流れると共に、溶融金
属又は急速に減圧される。この減圧により溶融金属Xに
溶け込んでいたガスは微細ガス気泡となって現われ、介
在物をトラップしながら浮上する。これと同時にこの減
圧下では溶融金属X中に溶け残っていたバブリングガス
の脱ガスもいっしょに行われることになる。従って、こ
の場合には介在物の除去と共に溶融金属Xの脱ガス作業
もいっしょになされることになる。
Furthermore, in the case of the third aspect of the invention, continuous processing using a reduced pressure method can be carried out using the apparatus configuration as described above. That is, when the above-mentioned gas bubbling occurs in the bubbling section (7a), the molten metal X continuously introduced from the continuous inlet (2a) melts there even if it is not in a pressurized state. Become. The flow of the molten metal
) changes to the floating channel (5a), but the outlet (4a)
Since the pressure reduction tank (8) is provided on the side, a suction force acts from there and the flow flows upward, and the molten metal is rapidly reduced in pressure. Due to this pressure reduction, the gas dissolved in the molten metal X appears as fine gas bubbles, which float up while trapping inclusions. At the same time, under this reduced pressure, the bubbling gas remaining dissolved in the molten metal X is also degassed. Therefore, in this case, the removal of inclusions and the degassing operation of the molten metal X will be performed at the same time.

〔実施例〕〔Example〕

以下本発明の具体的実施例につき説明する。 Specific examples of the present invention will be described below.

第2図は本願第2発明の一実施例に係る装置の概要を示
しており、容器全体が三つの部分から構成され、全体と
してU字型に形成されている。
FIG. 2 shows an outline of an apparatus according to an embodiment of the second invention of the present application, in which the entire container is composed of three parts and is formed into a U-shape as a whole.

図中左側に形成された部分は、内径1m、高さ5mの槽
(10)で構成され、その上端開口部を鋼浴等の溶融金
属の投入口(20)としており、そこより下の部分は投
入された溶融金属の下降加圧流路(30)とされる。
The part formed on the left side of the figure consists of a tank (10) with an inner diameter of 1 m and a height of 5 m, the upper end opening of which serves as an input port (20) for molten metal such as a steel bath, and the part below it is a downward pressurizing flow path (30) for the input molten metal.

又、その槽(10)の底部より水平方向に、内径50a
8、長さ6mの管体からなる連通路(60)が延出して
おり、更に前記槽(10)の底面からこの連通路(60
)の一部にかけて溶融金属中にガスバブリングを行なう
バブリング部(70)が設けられている。このバブリン
グ部(70)を過ぎた辺りにある連通路(60)の途中
には、ガス溜り室(61)が形成されており、バブリン
グ部(70)でバブリングされたガスの一部をここで抜
いてやることにより、後述する浮上減圧流路(50)を
浮上するガス気泡(バブリングによるガス気泡及び減圧
により発生するガス気泡)の粒径があまり大きくならな
いようにしている。
Also, in the horizontal direction from the bottom of the tank (10), the inner diameter is 50a.
8. A communication path (60) made of a tubular body with a length of 6 m extends, and this communication path (60) is further extended from the bottom of the tank (10).
) is provided with a bubbling section (70) for bubbling gas into the molten metal. A gas reservoir chamber (61) is formed in the middle of the communication path (60) past this bubbling section (70), and a part of the gas bubbled in the bubbling section (70) is stored here. By removing the gas bubbles, the particle size of gas bubbles (gas bubbles caused by bubbling and gas bubbles generated by depressurization) floating in the floating depressurization channel (50), which will be described later, is prevented from becoming too large.

更に、この連通路(60)の終端から上方に向けては、
内径30am、高さ5mの管体からなる浮上減圧流路(
50)が形成されている。このように該流路(50)を
細くすることにより、そこを流れる溶融金属のスピード
をアップさせ、該溶融金属の急激な減圧ができるように
している。又、該浮上減圧流路(50)の上端は溶融金
属の取出し口(40)として、そこに内径2mの真空貯
溜槽(41)が作られ、この貯溜槽(41)に溜った溶
融金属の脱ガスを行なう、この真空貯溜槽(41)は、
バブリング及び減圧により発生したガス気泡の脱取、更
にこのガス気泡にトラップされて浮上してくる介在物の
脱取のほか、常圧でも溶け込んでいるガスをここで抜い
てしまう目的のために設けられるも初である。そしてこ
の真空貯溜槽(41)の底面には1次工程に清浄化され
た溶融金属を運び出すための内径30aIlの通路(4
2)が連結されている。
Furthermore, upward from the terminal end of this communication path (60),
A floating depressurization flow path consisting of a tube with an inner diameter of 30 am and a height of 5 m
50) is formed. By narrowing the flow path (50) in this way, the speed of the molten metal flowing through it is increased, and the pressure of the molten metal can be rapidly reduced. Further, the upper end of the floating decompression channel (50) serves as a molten metal outlet (40), and a vacuum storage tank (41) with an inner diameter of 2 m is created there, and the molten metal accumulated in this storage tank (41) is This vacuum storage tank (41) that performs degassing is
It is designed to remove gas bubbles generated by bubbling and depressurization, and to remove inclusions that are trapped in these gas bubbles and float up, as well as to remove gas that is dissolved even under normal pressure. It is also the first time. The bottom of this vacuum storage tank (41) has a passage (4
2) are connected.

上記装置では前記投入口(20)より溶鋼等の溶融金属
を連続的に投入し、バブリング部(70)より該溶融金
属に可溶なガスをバブリングすることで、取出し口(4
0)より真空貯溜槽(41)内に取出された溶融金属は
極めて清浄化されたものとなる。即ち、投入口(20)
より投入された溶融金属は下降加圧流路(30)を下降
する間にその自重により加圧される。そしてバブリング
部(70)よりバブリングされたガスは溶融金属中に多
量に溶け込む。同時に普通の大きさの介在物はバブリン
グガスにトラップされ連通路(60)内を流れる。又、
その一部はガス溜り室(61)内に入りそこから外部へ
取り出される。その後連通路(60)の終端から浮上減
圧流路(50)に入り、そこを上昇する間に急激な減圧
が起こる。すると溶融金属中に溶け込んでいたガスが微
細なガス気泡となって現われ、該溶融金属中の微細介在
物をトラップせしめて浮上することになる。取出し口(
40)より真空貯溜槽(41)内に取り出された溶融金
属は、バブリングによるガス気泡及び減圧により発生し
た微細ガス気泡に介在物をトラップせしめ、これらをそ
の界面に浮上せしめる。溶け込ませていた可溶なガスを
取り除くために真空貯溜槽(41)で脱ガスも行なわれ
る。このようにして可溶なガスを取り除き、清浄化され
た溶融金属は通路(42)から取り出される。
In the above device, molten metal such as molten steel is continuously inputted from the input port (20), and gas soluble in the molten metal is bubbled from the bubbling section (70).
The molten metal taken out into the vacuum storage tank (41) from 0) becomes extremely clean. That is, the input port (20)
The molten metal introduced is pressurized by its own weight while descending through the downward pressurizing channel (30). A large amount of the gas bubbled from the bubbling section (70) dissolves into the molten metal. At the same time, normal-sized inclusions are trapped by the bubbling gas and flow through the communication path (60). or,
A part of it enters the gas reservoir chamber (61) and is taken out from there to the outside. Thereafter, it enters the floating depressurization channel (50) from the end of the communication path (60), and a rapid depressurization occurs while rising there. Then, the gas dissolved in the molten metal appears as fine gas bubbles, which trap fine inclusions in the molten metal and float to the surface. Take-out port (
The molten metal taken out from 40) into the vacuum storage tank (41) traps inclusions in gas bubbles caused by bubbling and fine gas bubbles generated by reduced pressure, and causes these to float to the interface. Degassing is also performed in the vacuum reservoir (41) to remove dissolved soluble gases. The soluble gases are thus removed and the cleaned molten metal is removed from the passageway (42).

本発明者等は、当該装置を用いて、トータル酸素量80
ppmの溶鋼を実際に処理する実験を行なった。この時
、前記バブリング部(70)よりパブリンクするガスと
して、Arガス:60%、H2ガス:40%の混合ガス
を用い、200 Q /winの吹込み速度で吹込んだ
。上記溶鋼は投入口(20)より250t/hrで連続
投入され、真空貯溜槽(41)側でトータル酸素量12
ρp@どなって、250t/hrの割合で取り出される
こととなった。尚、ガス溜り室(61)のガス抜きは調
圧弁(図示なし)により、又、真空匠溜槽(41)の排
気は真空ポンプ(図示なし)により行なった。
The inventors used this device to achieve a total oxygen content of 80
An experiment was conducted to actually process ppm molten steel. At this time, a mixed gas of 60% Ar gas and 40% H2 gas was used as the gas to be bubbled from the bubbling section (70), and was blown at a blowing rate of 200 Q/win. The above molten steel is continuously introduced from the input port (20) at a rate of 250 t/hr, and the total amount of oxygen is 12 on the vacuum storage tank (41) side.
ρp@, and it was decided that it would be extracted at a rate of 250t/hr. The gas reservoir chamber (61) was degassed by a pressure regulating valve (not shown), and the vacuum tank (41) was vented by a vacuum pump (not shown).

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明の装置によれば、加圧減圧法又は減
圧法による溶融金属の超清浄化処理を連続的に行なうこ
とができ、多量の溶融金属の処理を効率良く行なうこと
ができるという優れた効果を有している。
According to the apparatus of the present invention described in detail above, it is possible to continuously carry out ultra-cleaning treatment of molten metal by the pressurization and depressurization method or the depressurization method, and it is possible to efficiently process a large amount of molten metal. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の構成を示す説明図、第2図は本発
明の一実施例に係る装置構成の概要を示す説明図、第3
図は本願第3発明装置の構成を示す説明図である。 図中、(1)(la)はU字型容器、(2) (2a)
 (20)は投入口、(3)(30)は下降加圧流路、
 (3a)は下降流路、(4) (4a) (40)は
取出し口、(5) (50)は浮上減圧流路、(5a)
は浮上流路、(6) (6a) (60)は連通路、(
7) (7a) (70)はバブリング部を各示す。 第1図
FIG. 1 is an explanatory diagram showing the configuration of the device of the present invention, FIG. 2 is an explanatory diagram showing the outline of the device configuration according to an embodiment of the present invention, and FIG.
The figure is an explanatory diagram showing the configuration of the third invention device of the present application. In the figure, (1) (la) is a U-shaped container, (2) (2a)
(20) is the input port, (3) and (30) are the descending pressurization channels,
(3a) is the descending flow path, (4) (4a) (40) is the outlet, (5) (50) is the floating decompression flow path, (5a)
(6) (6a) (60) is the communication path, (
7) (7a) and (70) each indicate a bubbling section. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)U字型の容器からなり、一の上端開口を溶融金属
の連続投入口としてこれにつながる容器垂直部を溶融金
属の下降加圧流路とし、他方の上端開口を溶融金属の取
出し口としてこれにつながる容器垂直部を該溶融金属の
浮上減圧流路とすると共に、前記下降加圧流路と浮上減
圧流路とを連絡する容器底部の連通路に、溶融金属に可
溶なガスのバブリングを行なうバブリング部を設けたこ
とを特徴とする溶融金属の清浄化装置。
(1) Consisting of a U-shaped container, one upper end opening serves as a continuous inlet for molten metal, the vertical part of the container connected to this serves as a descending pressure flow path for molten metal, and the other upper end serves as an outlet for molten metal. The vertical part of the container connected to this is used as a floating and depressurizing flow path for the molten metal, and a communication path at the bottom of the container that connects the descending pressurizing flow path and the floating depressurizing flow path is provided with bubbling of gas that is soluble in the molten metal. A molten metal cleaning device comprising a bubbling section for bubbling.
(2)U字型の容器からなり、一の上端開口を溶融金属
の連続投入口としてこれにつながる容器垂直部を溶融金
属の下降加圧流路とし、他方の上、端開口を溶融金属の
取出し口としてこれにつながる容器垂直部を該溶融金属
の浮上減圧流路とすると共に、前記下降加圧流路と浮上
減圧流路とを連絡する容器底部の連通路に、溶融金属に
可溶なガスのバブリングを行なうバブリング部を設け、
更に前記浮上減圧流路出側の取出し口に、溶融金属中の
脱ガスを行なう真空貯溜槽を連設したことを特徴とする
溶融金属の清浄化装置。
(2) Consisting of a U-shaped container, one upper end opening serves as a continuous inlet for molten metal, the vertical part of the container connected to this serves as a descending pressurized flow path for molten metal, and the other upper end opening serves as an outlet for taking out molten metal. The vertical part of the container connected to this as an opening is used as a floating and depressurizing flow path for the molten metal, and a communication path at the bottom of the container that connects the descending pressurizing flow path and the floating depressurizing flow path is provided with a gas soluble in the molten metal. A bubbling section is provided to perform bubbling,
The apparatus for purifying molten metal is further characterized in that a vacuum storage tank for degassing the molten metal is connected to an outlet on the outlet side of the floating decompression channel.
(3)U字型の容器からなり、一の上端開口を溶融金属
の連続投入口としてこれにつながる容器垂直部を溶融金
属の下降流路とし、他方の上端開口を溶融金属の取出し
口としてこれにつながる容器垂直部を該溶融金属の浮上
流路とすると共に、前記下降流路と浮上流路とを連絡す
る容器底部の連通路に、溶融金属に可溶なガスのバブリ
ングを行なうバブリング部を設け、更に前記浮上流路出
側の取出し口に、該流路を浮上してくる溶融金属を減圧
せしめて溶けたガスを微細ガス気泡として発生させると
共に、該溶融金属中に溶け残ったバブリングガスの脱ガ
スを行う減圧槽を連設したことを特徴とする溶融金属の
清浄化装置。
(3) Consisting of a U-shaped container, one upper end opening serves as a continuous inlet for molten metal, the vertical part of the container connected to this serves as a downward flow path for molten metal, and the other upper end opening serves as an outlet for molten metal. A vertical part of the container connected to the molten metal is used as a floating channel for the molten metal, and a bubbling section for bubbling soluble gas into the molten metal is provided in a communication path at the bottom of the container that connects the descending channel and the floating channel. Further, the molten metal floating through the flow path is depressurized at the outlet on the outlet side of the floating flow path to generate molten gas as fine gas bubbles, and the bubbling gas remaining dissolved in the molten metal is removed. A molten metal cleaning device characterized by having a vacuum tank connected to degas the molten metal.
JP63326000A 1988-01-12 1988-12-26 Device for cleaning molten metal Pending JPH01284476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63326000A JPH01284476A (en) 1988-01-12 1988-12-26 Device for cleaning molten metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP311388 1988-01-12
JP63-3113 1988-01-12
JP63326000A JPH01284476A (en) 1988-01-12 1988-12-26 Device for cleaning molten metal

Publications (1)

Publication Number Publication Date
JPH01284476A true JPH01284476A (en) 1989-11-15

Family

ID=26336623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63326000A Pending JPH01284476A (en) 1988-01-12 1988-12-26 Device for cleaning molten metal

Country Status (1)

Country Link
JP (1) JPH01284476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6276437B1 (en) 1995-12-22 2001-08-21 Corus Staal Bv Method and apparatus for the manufacture of formable steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6276437B1 (en) 1995-12-22 2001-08-21 Corus Staal Bv Method and apparatus for the manufacture of formable steel

Similar Documents

Publication Publication Date Title
EP0430904B1 (en) Process for treating waste water with high concentration ozone water
FI88727B (en) FOERFARANDE OCH ANLAEGGNING FOER RENING AV SMAELTA, SOM JAEMTE EN ELLER FLERA FOERORENINGAR INNEHAOLLER VAESENTLIGEN LAETTMETALL, I SYNNERHET ALUMINIUM
JPH01284476A (en) Device for cleaning molten metal
KR930005067B1 (en) Method for refining molten steel in a vacuum
JP2601379B2 (en) Gas deodorization and oxidation treatment method, liquid ozone oxidation treatment method, and pretreatment method for aerobic biological treatment
JPH0765120B2 (en) Method and apparatus for refining molten metal by ultrasonic wave
JP4096635B2 (en) Molten metal refining apparatus and method, and fine bubble generating apparatus
KR930005065B1 (en) Method for cleaning molten metal and apparatus therefor
JP3654181B2 (en) Method for refining molten metal
JP2610573B2 (en) Dissolved oxygen reduction method and apparatus
JP2718097B2 (en) Vacuum cleaning method for molten metal using two-tiered container
Hasegawa et al. Production of clean steel by pressure elevating and reducing method
RU2164825C1 (en) Method of separating multicomponent mixture by flotation
AU655245B2 (en) Method for cleaning molten metal
RU2145979C1 (en) Method of preparing spongy titanium
JP2000107512A (en) Method for reducing dissolved oxygen and device therefor
RU2092275C1 (en) Method of steel treatment in process of continuous casting
JPH055575B2 (en)
JPH0299263A (en) Method for cleaning molten metal under reduced pressure
JPH05171311A (en) Method for melting aluminum and aluminum alloy
JP2712402B2 (en) Method for cleaning molten metal using closed container with variable inner volume
JPS62202070A (en) Method for removing inclusion from molten metal for hot dipping
JPH0742524B2 (en) Method for cleaning molten metal
JPH01181953A (en) Apparatus for cleaning molten metal
JP3821109B2 (en) Method for refining molten metal