JPH01282921A - Overcurrent protection driving circuit for igbt - Google Patents

Overcurrent protection driving circuit for igbt

Info

Publication number
JPH01282921A
JPH01282921A JP63111970A JP11197088A JPH01282921A JP H01282921 A JPH01282921 A JP H01282921A JP 63111970 A JP63111970 A JP 63111970A JP 11197088 A JP11197088 A JP 11197088A JP H01282921 A JPH01282921 A JP H01282921A
Authority
JP
Japan
Prior art keywords
voltage
emitter
gate
igbt
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63111970A
Other languages
Japanese (ja)
Other versions
JPH0810821B2 (en
Inventor
Yasuji Seki
関 保治
Hiroshi Miki
広志 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63111970A priority Critical patent/JPH0810821B2/en
Publication of JPH01282921A publication Critical patent/JPH01282921A/en
Publication of JPH0810821B2 publication Critical patent/JPH0810821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches

Landscapes

  • Electronic Switches (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PURPOSE:To prevent destruction of a component due to latchup by providing a circuit short-circuiting the gate and emitter if a collector-emitter voltage exceeds a prescribed voltage at its conductive state. CONSTITUTION:If a collector-emitter voltage of an IGBT(Insulated Gate Bipolar Transistor) 11 exceeds a voltage being the subtraction of a voltage of a reverse bias power supply 5b from the sum of the Zener voltage of a Zener diode 7 and a forward voltage drop of a diode formed between the emitter and base of an NPN transistor(TR) 8, the TR 8 is conductive. Then the gate and emitter of the IGBT 11 are short-circuited by the TR 8 and a diode 6b. Since a switch 10b is turned on at normal turn-off, a voltage of the power supply 5b is applied between the collector and emitter of the TR inversely to protect the TR 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スイッチング用半導体素子の一種であるI 
GB T (Insulated Gate  Bip
olar Transis Lot )素子の過電流保
護機能を有する駆動回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an I
GB T (Insulated Gate Bip)
The present invention relates to a drive circuit having an overcurrent protection function for a polar transistor element.

〔従来の技術〕[Conventional technology]

I GBT素子はバイポーラトランジスタの有する高耐
圧、大容量化が容易であるという長所と、パワーMO3
FETの有する高速なスイッチングが可能で、ドライブ
も容易であるという長所とをあわせもった新しいデバイ
スとして注目されている。
IGBT elements have the advantages of bipolar transistors, such as high breakdown voltage and easy increase in capacity, and the power MO3
It is attracting attention as a new device that combines the advantages of FETs, such as being capable of high-speed switching and being easy to drive.

第2図にNチャネルI GBTの等価回路を示す。FIG. 2 shows an equivalent circuit of an N-channel IGBT.

NチャネルMO3FETI、NPN)ランジスタ2、P
NP)ランジスタ3、及びトランジス2のベース・エミ
ッタ間短絡用抵抗4からなり、MO3FETIのドレー
ン・ソース間とトランジスタ2のエミッタ・コレクタ間
を並列接続し、トランジスタ2.3はサイリスク回路を
形成するものとして表すことができる。
N-channel MO3FETI, NPN) transistor 2, P
NP) Consisting of a transistor 3 and a short-circuiting resistor 4 between the base and emitter of the transistor 2, the drain and source of the MO3FETI and the emitter and collector of the transistor 2 are connected in parallel, and the transistor 2.3 forms a silice circuit. It can be expressed as

前記NチャネルのI GBTをオンさせる時は、ゲート
・エミッタ間(G−E間)に順バイアス電圧をかける。
When turning on the N-channel IGBT, a forward bias voltage is applied between the gate and emitter (between G and E).

その結果、MO3FETIにチャネルが形成され、該M
O3FETIが導通状態になり、PNP トランジスタ
3のエミッタ・ベース間が順バイアスされることにより
導通が開始する。
As a result, a channel is formed in MO3FETI, and the M
O3FETI becomes conductive, and the emitter-base of PNP transistor 3 is forward biased, thereby starting conduction.

逆に、本素子をOFFさせる時はゲート・エミッタ間に
逆バイアス電圧をかける。この結果、MO3FETIは
オフになり、PNP )ランジスタ3のベース電流が流
れなくなり、該トランジスタがオフし、その結果IGB
Tがオフする。
Conversely, when turning off this element, a reverse bias voltage is applied between the gate and emitter. As a result, MO3FETI is turned off, the base current of PNP transistor 3 stops flowing, the transistor is turned off, and as a result, IGB
T turns off.

ところで、本素子は前記のようにトランジスタ2.3に
よる寄生サイリスクを有する。そのためコレクタ電流が
所定値以上になるとラッチアップ現象(寄生サイリスタ
がターンオンしてしまう現象)を生じ、電流が遮断でき
なくなってしまう場合がある。
By the way, as mentioned above, this element has a parasitic Si risk due to the transistor 2.3. Therefore, when the collector current exceeds a predetermined value, a latch-up phenomenon (a phenomenon in which a parasitic thyristor turns on) occurs, and the current may not be interrupted.

このラッチアップ現象はI GBTの素子破壊に連結す
るので、これを生じないようにすることが必要となる。
Since this latch-up phenomenon leads to element destruction of the IGBT, it is necessary to prevent this from occurring.

IGBTの過電流保護を行う場合は、電流レベルをラッ
チアップ電流以下に抑えなければならない。また、熱破
壊に至る前にコレクタ電流を遮断することが必要である
When protecting an IGBT from overcurrent, the current level must be kept below the latch-up current. Furthermore, it is necessary to cut off the collector current before thermal breakdown occurs.

第2図において、I GETにオフゲート信号を与える
とまずNチャネルMO3FETIがターンオフする。過
負荷時にはコレクタ電流が急には減少できないためにP
NP l−ランジスタ3の電流が増加する。このためタ
ーンオフ時はターンオン状態より小さなコレクタ電流で
ラッチアップすることになる。また、ターンオフ時にコ
レクタ・エミッタ間に印加されるdv/dtによる接合
容量の充電電流もラッチアップ電流を低下させる。この
ため過電流時のターンオフはゆるやかに行われなければ
ならない。
In FIG. 2, when an off-gate signal is applied to I GET, first the N-channel MO3FETI is turned off. During overload, the collector current cannot decrease suddenly, so P
The current in the NP l-transistor 3 increases. For this reason, latch-up occurs with a smaller collector current in the turn-off state than in the turn-on state. Further, the charging current of the junction capacitance due to dv/dt applied between the collector and emitter at the time of turn-off also reduces the latch-up current. For this reason, turn-off at the time of overcurrent must be performed slowly.

このようなIGBTの駆動回路で、過電流保護の機能を
持たせた従来例を第3図に示す。
FIG. 3 shows a conventional example of such an IGBT drive circuit equipped with an overcurrent protection function.

直列接続した順バイアス電源5aと逆バイアス電源5b
との接続中点がIGBTIIのエミッタに接続され、こ
れら電源5a、5bにスイッチ10a。
Forward bias power supply 5a and reverse bias power supply 5b connected in series
The midpoint of the connection is connected to the emitter of IGBTI II, and a switch 10a is connected to these power supplies 5a and 5b.

10bが直列接続され、該スイッチ10a、10bの接
続中点は抵抗9aを介してIGBTIIのゲートに接続
される。
10b are connected in series, and the connection midpoint of the switches 10a and 10b is connected to the gate of IGBTII via a resistor 9a.

NPN l−ランジスタ8のコレクタが抵抗9Cを介し
て抵抗9aとIGBTIIのゲートとの接続中点に、エ
ミッタが逆バイアス電源5bの負極とスイッチ10bと
の接続中点に接続され、該トランジスタ8のベースはツ
ェナーダイオード7及び抵抗9bを介してスイッチ10
a、10bの接続中点と抵抗9aに接続され、抵抗9b
とツェナーダイオード7との接続中点はダイオード6を
介してIGBTllのコレクタに接続される。
The collector of the NPN l-transistor 8 is connected to the midpoint between the resistor 9a and the gate of IGBTII via the resistor 9C, and the emitter is connected to the midpoint between the negative electrode of the reverse bias power supply 5b and the switch 10b. The base is connected to a switch 10 via a Zener diode 7 and a resistor 9b.
a, 10b is connected to the connection midpoint and resistor 9a, and resistor 9b
The midpoint of the connection between the zener diode 7 and the zener diode 7 is connected to the collector of the IGBTll via the diode 6.

通常時の動作としては、順バイアス時はスイッチ10a
をONL、スイッチ10bをOFFする。よって順バイ
アス電源5aの電圧がスイッチ10a1抵抗9aを介し
てI G B Tllのゲート・エミッタ間に順バイア
ス電圧として印加される。一方、逆バイアス時はスイッ
チ10aを0FFL、、スイッチ10bをONする。よ
って逆バイアス電源5bの電圧が抵抗9a、スイッチ1
0bを介してIGBTIIのゲート・エミッタ間に逆バ
イアス電圧として印加される。
In normal operation, switch 10a during forward bias.
ONL and switch 10b is turned OFF. Therefore, the voltage of the forward bias power supply 5a is applied as a forward bias voltage between the gate and emitter of the IGBTll via the switch 10a1 and the resistor 9a. On the other hand, during reverse bias, the switch 10a is set to 0FFL, and the switch 10b is turned on. Therefore, the voltage of the reverse bias power supply 5b is applied to the resistor 9a and the switch 1.
It is applied as a reverse bias voltage between the gate and emitter of IGBTII via 0b.

一方、過電流時の動作は、次のようになる。On the other hand, the operation at the time of overcurrent is as follows.

順バイアス時にIGBTIIのコレクタ・エミッタ間電
圧が、ツェナーダイオード7のツェナー電圧とNPN 
l−ランジスタ8のベース・エミッタ間ダイオードの順
バイアス電圧降下分の和から逆バイアス電源5bの電圧
をひいた電圧を越えると、NPN)ランジスタ8のベー
ス・エミッタ間には電R5aの電圧が、スイッチ10a
、抵抗9b、ツェナーダイオード7を介して印加され、
その結果ベース・エミッタ間は順バイアスされ、該トラ
ンジスタ8は導通する。このため、IGBTIIのゲー
ト・エミッタ間には逆バイアス電源5bの電圧が該トラ
ンジスタ8及び抵抗9cを介して逆バイアス電圧として
印加される。そのため、IGBTllのコレクタ電流は
遮断される。
During forward bias, the collector-emitter voltage of IGBTII is equal to the Zener voltage of Zener diode 7 and NPN
When the voltage exceeds the voltage obtained by subtracting the voltage of the reverse bias power supply 5b from the sum of the forward bias voltage drops of the diodes between the base and emitter of the NPN transistor 8, the voltage of R5a between the base and emitter of the NPN transistor 8 becomes switch 10a
, applied via the resistor 9b and the Zener diode 7,
As a result, the base-emitter region is forward biased, and the transistor 8 becomes conductive. Therefore, the voltage of the reverse bias power supply 5b is applied as a reverse bias voltage between the gate and emitter of the IGBTI via the transistor 8 and the resistor 9c. Therefore, the collector current of IGBTll is cut off.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし前記第3図に示すような従来の駆動回路では、過
電流遮断時にゲート・エミッタ間に逆バイアス電圧を印
加することになりターンオフが速(なり、ターンオフ時
のラッチアップによる素子破壊のおそれがある。
However, in the conventional drive circuit as shown in Fig. 3, a reverse bias voltage is applied between the gate and emitter when overcurrent is cut off, resulting in fast turn-off (and the risk of device destruction due to latch-up at turn-off). be.

本発明の目的は前記従来例の不都合を解消し、ターンオ
フ時のラッチアップによる素子破壊を防ぐことができる
I GBTの過電流保護駆動回路を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide an overcurrent protection drive circuit for an IGBT that can eliminate the disadvantages of the conventional example and prevent element destruction due to latch-up during turn-off.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記目的を達成するため、I GBTの通常の
ターンオフ時にはゲート・エミッタ間に逆電圧を印加す
る駆動回路において、コレクタ・エミッタ間が導通時に
所定の電圧を越えた場合、ゲート・エミッタ間を短絡さ
せる回路を設けたことを要旨とするものである。
In order to achieve the above object, the present invention has a drive circuit that applies a reverse voltage between the gate and emitter during normal turn-off of an IGBT, and when the voltage between the collector and emitter exceeds a predetermined voltage when conductive, the voltage between the gate and emitter is The gist is that a circuit is provided to short-circuit the .

〔作用〕[Effect]

本発明によれば、I GBTの過電流保護時にゲート・
エミッタ間を短絡させることにより、ゲート・エミッタ
間の接合容量からの蓄積電荷の放電を逆バイアスを印加
する場合に比しゆるやかにでき、これによりコレクタ電
流の過電流時の遮断をゆるやかに行い、遮断時のラッチ
アップを防ぐことができる。
According to the present invention, during overcurrent protection of IGBT, gate
By shorting the emitters, the accumulated charge from the junction capacitance between the gate and the emitter can be discharged more slowly than when applying a reverse bias, and this allows the collector current to be cut off more slowly in the event of an overcurrent. It can prevent latch-up when shutting off.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明のI GBTの過電流保護駆動回路の1
実施例を示す回路図で、前記従来例を示す第3図と同一
構成要素には同一参照符号を付したものである。
Figure 1 shows one of the IGBT overcurrent protection drive circuits of the present invention.
This is a circuit diagram showing an embodiment, and the same components as in FIG. 3 showing the conventional example are given the same reference numerals.

すなわち、直列接続した順バイアス電源5aと逆バイア
ス電源5bとの接続中点がIC;BTIIのエミッタに
接続され、これら電源5a、5bにスイッチ10a、1
0bが直列接続され、該スイッチ10a、1obの接続
中点は抵抗9aを介してI GBTllのゲートに接続
される。また、NPN )ランジスタ8のコレクタが抵
抗9cを介して前記抵抗9aとIGBTIIのゲートと
の接続中点に、エミッタがダイオード6bを介して順バ
イアス電源5aと逆バイアス電源5bとの接続中点に接
続され、該トランジスタ8のベースはツェナーダイオー
ド7及び抵抗9bを介してスイッチ10a、10bの接
続中点に接続され、抵抗9bとツェナーダイオード7と
の接続中点はダイオード6aを介してICBTIIのコ
レクタに接続される。
That is, the midpoint of the connection between the forward bias power supply 5a and the reverse bias power supply 5b connected in series is connected to the emitter of IC; BTII, and the switches 10a and 1 are connected to these power supplies 5a and 5b.
0b are connected in series, and the midpoint between the switches 10a and 1ob is connected to the gate of IGBTll via a resistor 9a. In addition, the collector of the NPN transistor 8 is connected to the midpoint between the resistor 9a and the gate of IGBTII via the resistor 9c, and the emitter is connected to the midpoint of the connection between the forward bias power source 5a and the reverse bias power source 5b through the diode 6b. The base of the transistor 8 is connected to the midpoint between the switches 10a and 10b via the Zener diode 7 and the resistor 9b, and the midpoint between the resistor 9b and the Zener diode 7 is connected to the collector of ICBTII via the diode 6a. connected to.

本発明は第1図に示すような駆動回路で、トランジスタ
8のエミッタをダイオード6bを介して逆バイアス電源
5bの正極に接続し、該トランジスタ8の導通時にI 
G B Tllのゲートとエミッタとを抵抗9cを介し
て接続する回路を形成した。
The present invention is a drive circuit as shown in FIG.
A circuit was formed to connect the gate and emitter of G B Tll via a resistor 9c.

次に、動作について説明する。Next, the operation will be explained.

順バイアス時はスイッチ10aをONL、、スイッチt
abをOjFする。よって順バイアス電15aの電圧が
スイッチ10a1抵抗9aを介してIGBTllのゲー
ト・エミッタ間に順バイアス電圧として印加される。
During forward bias, switch 10a is ONL, switch t
OjF ab. Therefore, the voltage of the forward bias voltage 15a is applied as a forward bias voltage between the gate and emitter of the IGBTll via the switch 10a1 and the resistor 9a.

一方、逆バイアス時はスイッチ10aを0FFL、スイ
ッチ10bをONする。よって逆バイアス電源5bの電
圧が抵抗9 a sスイッチ10bを介してIGBTI
Iのゲート・エミッタ間に逆バイアス電圧として印加さ
れる。
On the other hand, during reverse bias, the switch 10a is set to 0FFL and the switch 10b is turned on. Therefore, the voltage of the reverse bias power supply 5b is changed to IGBTI via the resistor 9a and the switch 10b.
It is applied as a reverse bias voltage between the gate and emitter of I.

ところで、順バイアス時にIGBTIIのコレクタ・エ
ミッタ間電圧が、ツェナーダイオード7のツェナー電圧
とNPN トランジスタ8のベース・エミッタ間ダイオ
ードの順バイアス電圧降下分の和から逆バイアス電源5
bの電圧をひいた電圧を越えると、NPN )ランジス
タ8のベース・エミッタ間には電[5aの電圧が、スイ
ッチ10a、抵抗9b、ツェナーダイオード7を介して
印加されそのためベース・エミッタ間は順バイアスされ
、該トランジスタ8は導通する。
Incidentally, during forward bias, the collector-emitter voltage of IGBTII is calculated from the sum of the Zener voltage of the Zener diode 7 and the forward bias voltage drop of the base-emitter diode of the NPN transistor 8.
When the voltage exceeds the voltage obtained by subtracting the voltage of NPN transistor 8, the voltage of 5a is applied between the base and emitter of the NPN transistor 8 via the switch 10a, the resistor 9b, and the Zener diode 7. Biased, the transistor 8 becomes conductive.

このとき、IGBTIIのゲート・エミッタ間は抵抗9
C、トランジスタ8、及びダイオード6bにより短絡さ
れる。このダイオード6bはトランジスタ8に対して逆
耐圧を持たせるものである。
At this time, a resistor 9 is connected between the gate and emitter of IGBTII.
C, transistor 8, and diode 6b. This diode 6b provides reverse breakdown voltage to the transistor 8.

すなわち、通常のターンオフ時はスイッチ10bがオン
となるため、トランジスタ8のコレクタ・エミッタ間に
対して電源5bの電圧が逆向きに加わる。一般にトラン
ジスタは逆耐圧が弱い。そこでダイオード6bのカソー
ド・アノード間に電源5bの電圧をもたせることにより
、トランジスタ8を保護するものである。
That is, since the switch 10b is turned on during normal turn-off, the voltage of the power supply 5b is applied between the collector and emitter of the transistor 8 in the opposite direction. Transistors generally have weak reverse breakdown voltage. Therefore, the transistor 8 is protected by applying the voltage of the power supply 5b between the cathode and anode of the diode 6b.

このように、ゲート・エミッタ間が短絡されるため、I
GBTIIのゲート・エミッタ間の電荷は逆電圧を印加
した場合に比較してゆるやかに放電され、その結果コレ
クタ電流のターンオフはゆっくりと行われ、電流遮断時
のラッチアップを起こすことなく過電流保護を行うこと
ができる。
In this way, since the gate and emitter are short-circuited, I
The charge between the gate and emitter of GBT II is discharged more slowly than when a reverse voltage is applied, and as a result, the collector current is turned off more slowly, allowing overcurrent protection without latch-up when the current is cut off. It can be carried out.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明のI CBTの過電流保護駆動
回路は、電流遮断時のラッチアップを起こすことなく過
電流保護を行うことができるので、T GBTがより広
範囲な用途に適用できるようになるものである。
As described above, the overcurrent protection drive circuit of the I CBT of the present invention can perform overcurrent protection without causing latch-up when current is cut off, so that the T GBT can be applied to a wider range of applications. It is what it is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のI GBTの過電流保護駆動回路の1
実施例を示す回路図、第2図はI GBTの等価回路図
、第3図は従来の過電流保護駆動回路を示す回路図であ
る。 1・・・NチャネルFET 2・・・NPN )ランジスタ 3・・・PNP )ランジスタ 4・・・抵抗      5a・・・順バイアス電源5
b・・・逆バイアス電源 6.6a、6b・・・ダイオード 7・・・ツェナーダイオード 8・・・NPN)ランジスタ 9 a、  9 b、  9 C−−−抵抗10a、1
0b・・・スイッチ 11・・・I GBT 第1図
Figure 1 shows one of the IGBT overcurrent protection drive circuits of the present invention.
FIG. 2 is an equivalent circuit diagram of an IGBT, and FIG. 3 is a circuit diagram showing a conventional overcurrent protection drive circuit. 1...N-channel FET 2...NPN) transistor 3...PNP) transistor 4...resistor 5a...forward bias power supply 5
b...Reverse bias power supply 6.6a, 6b...Diode 7...Zener diode 8...NPN) Resistor 9a, 9b, 9C---Resistance 10a, 1
0b...Switch 11...I GBT Figure 1

Claims (1)

【特許請求の範囲】[Claims] IGBTの通常のターンオフ時にはゲート・エミッタ間
に逆電圧を印加する駆動回路において、コレクタ・エミ
ッタ間が導通時に所定の電圧を越えた場合、ゲート・エ
ミッタ間を短絡させる回路を設けたことを特徴とするI
GBTの過電流保護駆動回路。
In a drive circuit that applies a reverse voltage between the gate and emitter during normal turn-off of the IGBT, a circuit is provided that shorts the gate and emitter if the voltage between the collector and emitter exceeds a predetermined voltage when conductive. I do
GBT overcurrent protection drive circuit.
JP63111970A 1988-05-09 1988-05-09 Overcurrent protection drive circuit for IGBT Expired - Lifetime JPH0810821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111970A JPH0810821B2 (en) 1988-05-09 1988-05-09 Overcurrent protection drive circuit for IGBT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111970A JPH0810821B2 (en) 1988-05-09 1988-05-09 Overcurrent protection drive circuit for IGBT

Publications (2)

Publication Number Publication Date
JPH01282921A true JPH01282921A (en) 1989-11-14
JPH0810821B2 JPH0810821B2 (en) 1996-01-31

Family

ID=14574702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111970A Expired - Lifetime JPH0810821B2 (en) 1988-05-09 1988-05-09 Overcurrent protection drive circuit for IGBT

Country Status (1)

Country Link
JP (1) JPH0810821B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348517A (en) * 1989-04-13 1991-03-01 Mitsubishi Electric Corp Driving circuit for igbt element
JPH09182275A (en) * 1995-12-12 1997-07-11 Samsung Electro Mech Co Ltd Circuit for protecting semiconductor transistor for power from overcurrent
US20090055664A1 (en) * 2007-08-20 2009-02-26 Funai Electric Co., Ltd. Communication Device
CN101777756A (en) * 2009-12-25 2010-07-14 天津市诺尔电气有限公司 Over-current protection circuit for insulated gate bipolar transistor
CN103500989A (en) * 2013-10-11 2014-01-08 济南诺顿科技有限公司 Protection circuit of IGBT (Insulated Gate Bipolar Transistor)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395724A (en) * 1986-10-13 1988-04-26 Fuji Electric Co Ltd Driving circuit for igbt gate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395724A (en) * 1986-10-13 1988-04-26 Fuji Electric Co Ltd Driving circuit for igbt gate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348517A (en) * 1989-04-13 1991-03-01 Mitsubishi Electric Corp Driving circuit for igbt element
JPH09182275A (en) * 1995-12-12 1997-07-11 Samsung Electro Mech Co Ltd Circuit for protecting semiconductor transistor for power from overcurrent
US20090055664A1 (en) * 2007-08-20 2009-02-26 Funai Electric Co., Ltd. Communication Device
US8214659B2 (en) * 2007-08-20 2012-07-03 Funai Electric Co., Ltd. Communication device having pull-up voltage supply circuit supplying pull-up voltage via one power supply during standby state and another power supply during power-on state
CN101777756A (en) * 2009-12-25 2010-07-14 天津市诺尔电气有限公司 Over-current protection circuit for insulated gate bipolar transistor
CN103500989A (en) * 2013-10-11 2014-01-08 济南诺顿科技有限公司 Protection circuit of IGBT (Insulated Gate Bipolar Transistor)

Also Published As

Publication number Publication date
JPH0810821B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US4366522A (en) Self-snubbing bipolar/field effect (biofet) switching circuits and method
JP2837054B2 (en) Insulated gate semiconductor device
US4949213A (en) Drive circuit for use with voltage-drive semiconductor device
US5091664A (en) Insulated gate bipolar transistor circuit with overcurrent protection
EP0065269B1 (en) Switching device and circuit
EP0505191A1 (en) Semiconductor device with low concentration n region to improve dV/dt capability
US7102864B2 (en) Latch-up-free ESD protection circuit using SCR
US5115369A (en) Avalanche stress protected semiconductor device having variable input impedance
US5221850A (en) Conductivity-modulating mosfet
JPH0786587A (en) Semiconductor device
EP0166390A2 (en) Semiconductor switch circuit
CN111030431B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP3414859B2 (en) Turn-off circuit device for overcurrent of semiconductor device
JPH0531323B2 (en)
JPH0767073B2 (en) Insulated gate element drive circuit
JPH01282921A (en) Overcurrent protection driving circuit for igbt
US3927332A (en) Drive circuit for controlling conduction of a semiconductor device
JP2913699B2 (en) Drive circuit for voltage-driven semiconductor devices
CA1064107A (en) Four-layered semiconductor switch
US4224654A (en) Relay driver circuit
US4602209A (en) Switch-off circuits for transistors and gate turn-off thyristors
KR950008424B1 (en) Semiconductor switching circuit
JP2002135973A (en) Overvoltage protective circuit
JP2973997B2 (en) Drive circuit for voltage-driven semiconductor devices
US5731729A (en) Voltage transient suppression circuit for preventing overvoltages in power transistor systems

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13