JPH01282385A - Method for surface-treating carbon fiber - Google Patents

Method for surface-treating carbon fiber

Info

Publication number
JPH01282385A
JPH01282385A JP10911688A JP10911688A JPH01282385A JP H01282385 A JPH01282385 A JP H01282385A JP 10911688 A JP10911688 A JP 10911688A JP 10911688 A JP10911688 A JP 10911688A JP H01282385 A JPH01282385 A JP H01282385A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon fibers
organic compounds
carbon
electric current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10911688A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamazaki
拓 山崎
Noriaki Ito
紀明 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10911688A priority Critical patent/JPH01282385A/en
Publication of JPH01282385A publication Critical patent/JPH01282385A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material

Abstract

PURPOSE:To form a carbonized carbon film having excellent adhesion with carbon fiber by applying electric current to an electrolyte solution containing specific organic compounds and having conductivity using carbon fiber as an electrode so as to form polymerization layer of the above-mentioned organic compounds and then heat-treating the polymerization layer. CONSTITUTION:Electric current is applied to an electrolyte solution containing one or plural mixture of organic compounds, e.g., alcohols such as furfuryl alcohol, aromatic hydrocarbon such as benzene or toluene, phenol derivative, etc., and having conductivity using a carbon fiber as an electrode and the above- mentioned organic compound is polymerized and bonded to the surface of carbon fiber to form a coating layer and the carbon fiber is taken out from the solution and heated at >=100 deg.C to complete polymerization. Then the resultant polymer is burned at >=1000 deg.C to graphitize the polymer. In a composite material obtained from the surface-modified carbon fiber, tensile strength and fracture toughness is remarkably improved to provide a high-quality product.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカーボン繊維の表面改質法に係り、従来の酸化
法、表面塗布法と異なる高強度のカーボン繊維の製法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for surface modification of carbon fibers, and relates to a method for producing high-strength carbon fibers that is different from conventional oxidation methods and surface coating methods.

〔従来の技術〕[Conventional technology]

カーボン繊維の実用強度を高めるための表面改質法とし
ては、表面酸化法、表面塗布法が知られている。
As surface modification methods for increasing the practical strength of carbon fibers, surface oxidation methods and surface coating methods are known.

表面酸化法は酸素または酸素プラズマ等を利用してカー
ボン繊維の表面に酸化処理を施し表面を活性化する方法
であるが、酸化反応が制御困難で表面の微細構造により
ばらつくという短所を有している。
The surface oxidation method is a method of oxidizing the surface of carbon fibers using oxygen or oxygen plasma to activate the surface, but it has the disadvantage that the oxidation reaction is difficult to control and varies depending on the fine structure of the surface. There is.

一方、表面塗布法は種々の有機または無機化合物を表面
に塗布して表面を活性化する方法であるが、カーボン繊
維表面と塗布物の接触面の結合が侶り、厚さにむらを生
じて剥がれ易いという欠点を有している。
On the other hand, the surface coating method is a method in which various organic or inorganic compounds are applied to the surface to activate the surface, but the bond between the carbon fiber surface and the contact surface of the coating material is broken, resulting in uneven thickness. It has the disadvantage of being easy to peel off.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

カーボン繊維表面を酸素を酸化剤として改質する表面酸
化法は、酸素雰囲気中で加熱するという簡単な方法であ
るが、酸化反応の制御が極めて困難であり、被酸化体の
表面状態にむらを生じ、厳密な意味での均質化が困難で
あるからカーボン繊維の強度を向上させるための改質に
は適さず、高強度カーボン繊維等の製法には不向きであ
る。
The surface oxidation method, which modifies the surface of carbon fibers using oxygen as an oxidizing agent, is a simple method of heating in an oxygen atmosphere, but it is extremely difficult to control the oxidation reaction and may cause unevenness in the surface condition of the oxidized material. Since it is difficult to homogenize carbon fibers in a strict sense, it is not suitable for modification to improve the strength of carbon fibers, and is unsuitable for manufacturing methods such as high-strength carbon fibers.

また酸素プラズマを用いる表面酸化法は、酸化反応の制
御が比較的容易で高強度カーボン繊維の表面処理に用い
られているが、酸化処理による炭素減量が数%とやや大
きく、また酸化が一方向より起こるため、高価なプラズ
マ発生装置を用いるコスト高のネックの解消のためにも
新しい炭素繊維材料の強化法が必要である。
In addition, the surface oxidation method using oxygen plasma is used for surface treatment of high-strength carbon fibers because the oxidation reaction is relatively easy to control. Therefore, a new method for reinforcing carbon fiber materials is needed to overcome the high cost bottleneck of using expensive plasma generators.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、フルフリルアルコール等のアルコール類、ベ
ンゼン、°トルエン、キシレン等の芳香族炭化水素、フ
ェノール誘導体、ピレン等の多環芳香族炭化水素、グリ
コール類、糖類、五員環炭化水素、およびコールタール
、コールタールピッチ等からなる有機化合物類よりの一
つ、または複数の混合物を含む導電性の電解溶液に、電
極としてカーボン繊維を支持するとともに、電流を通じ
カーボン繊維の表面を陽極酸化しながら当該カーボン繊
維の表面に前記有機化合物を重合付着させて被覆層を形
成した後、当該カーボン繊維を電解液中より取り出して
加熱処理を行うことにより、カーボン繊維と極めて密着
性の良い炭化カーボン被膜を形成することができる。
The present invention is applicable to alcohols such as furfuryl alcohol, aromatic hydrocarbons such as benzene, toluene, and xylene, polycyclic aromatic hydrocarbons such as phenol derivatives, pyrene, glycols, sugars, five-membered ring hydrocarbons, and Carbon fibers are supported as electrodes in a conductive electrolytic solution containing one or a mixture of organic compounds such as coal tar, coal tar pitch, etc., and the surface of the carbon fibers is anodized through electric current. After polymerizing and adhering the organic compound to the surface of the carbon fiber to form a coating layer, the carbon fiber is taken out of the electrolyte and subjected to heat treatment to form a carbonized carbon film that has extremely good adhesion to the carbon fiber. can be formed.

微細部分にまで入って形成された質の良い炭化カーボン
被膜は、機械的特性、特に引張強度、破壊靭性に優れた
強化カーボン繊維を得ることができる。
A high-quality carbonized carbon film formed by penetrating into minute parts can provide reinforced carbon fibers with excellent mechanical properties, especially tensile strength and fracture toughness.

〔作用および実施例〕[Function and Examples]

第1図に示す如く、電極としてカーボン繊維(1)を用
い、95%の水溶媒電解液(2)にフルフリルアルコー
ル5%とKCI、1%を熔解し、電極に密度10A/d
iの電流を通し、常温で電解重合を行い、カーボン繊維
表面でフルフリルアルコールを重合させる。
As shown in Figure 1, carbon fiber (1) is used as an electrode, 5% furfuryl alcohol and 1% KCI are dissolved in a 95% aqueous electrolyte (2), and the electrode has a density of 10 A/d.
Electrolytic polymerization is performed at room temperature by passing a current of i, and furfuryl alcohol is polymerized on the surface of the carbon fiber.

重合物は、電極として用いたカーボン繊維(1)の微細
表面に堆積し、結合の良い良好な被膜を構成する。
The polymer is deposited on the fine surface of the carbon fiber (1) used as an electrode, forming a good film with good bonding.

当該被処理カーボン繊維(1)を電解液(2)より取り
出しフィラメントワインディング等の方法により成型を
した後に、温度ioo’c以上で加熱し、脱水を行うと
ともに重合を完遂させる。
The carbon fiber to be treated (1) is taken out of the electrolytic solution (2), molded by a method such as filament winding, and then heated at a temperature of ioo'c or higher to dehydrate and complete polymerization.

更に、温度1000″C以上で焼成を行うとともにカー
ボン繊維表面に堆積した重合物を黒鉛化する。
Furthermore, firing is performed at a temperature of 1000''C or more, and the polymer deposited on the carbon fiber surface is graphitized.

ここで使用したフルフリルアルコールの粘性は低く、9
5%程度の水溶媒を混合することで電気導通性も良くな
り、容易に陽極酸化効果が得られる。
The viscosity of the furfuryl alcohol used here is low, 9
By mixing about 5% water solvent, electrical conductivity is improved and an anodic oxidation effect can be easily obtained.

またこの電解重合は粘度調整用に他の有機化合物を組み
合わせ易い。
In addition, this electrolytic polymerization allows easy combination of other organic compounds for viscosity adjustment.

PAN系、ピッチ系等のカーボン繊維の材質を用いて、
有機化合物を選択すると、得られるカーボン繊維強化炭
素複合材料の機械的特性が向上する。
Using carbon fiber materials such as PAN and pitch,
The selection of organic compounds improves the mechanical properties of the resulting carbon fiber reinforced carbon composite material.

また、複合材料のニーズに合わせて繊維と、単独または
複数混合存機化合物を組み合わせることも可能である。
Furthermore, it is also possible to combine the fibers with one or more existing organic compounds in accordance with the needs of the composite material.

また電解重合工程において電解液中に有機化合物を共存
させることで最終炭化収率をより高くすることも可能で
ある。
Furthermore, it is also possible to further increase the final carbonization yield by coexisting an organic compound in the electrolytic solution in the electrolytic polymerization step.

繊維状に限らず線状等カーボン材料に応用して同等の改
質が達成される。
Equivalent modification can be achieved by applying it not only to fibrous materials but also to linear carbon materials.

更に第2図に示す如く、電解装置に複数のローラー(3
)を設けてカーボン繊維(1)を電解槽(4)中を移動
させ、連続的に電解重合を行うことにより、より生産効
率を高めることが可能である。
Furthermore, as shown in Figure 2, a plurality of rollers (3
) to move the carbon fibers (1) through the electrolytic cell (4) and perform electrolytic polymerization continuously, it is possible to further improve production efficiency.

〔発明の効果〕〔Effect of the invention〕

本発明のカーボン繊維の表面処理方法は、カーボン繊維
に安定且つ均質な表面被膜を形成し、当該カーボン繊維
を用いて製造した複合材料や等方性人造黒鉛は、その機
械的性質、特に引張強度、破壊靭性が大幅に向上し高品
位の製品となる。
The carbon fiber surface treatment method of the present invention forms a stable and homogeneous surface coating on carbon fibers, and composite materials and isotropic artificial graphite manufactured using the carbon fibers are improved in their mechanical properties, especially tensile strength. , the fracture toughness is significantly improved, resulting in a high-quality product.

また、本発明方法により製造された製品は不純物が表面
に滲出しないとともに、他物質と接触させても境界面に
強固な被膜層が介在するために交互作用が封じられ、特
に半扉体用治具材料に応用した場合には、石英ガラスと
の化学的反応性が大幅に減少し、好ましい結果を与える
In addition, the products manufactured by the method of the present invention do not allow impurities to seep out onto the surface, and even when they come into contact with other substances, a strong coating layer exists on the interface, so that interaction is suppressed. When applied to filling materials, the chemical reactivity with quartz glass is significantly reduced, giving favorable results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のカーボン繊維の表面処理方法に於いて
有機化合物を重合させる際に使用される電解装置の一実
施例を示す。 第2図は本発明のカーボン繊維の表面処理方法を連続的
に行う場合の一実施例を示す。 (1)カーボン繊維 (2)電解液 (3)ローラー (4)電解槽 出願人 東芝セラミックス株式会社
FIG. 1 shows an embodiment of an electrolytic device used for polymerizing organic compounds in the carbon fiber surface treatment method of the present invention. FIG. 2 shows an embodiment in which the carbon fiber surface treatment method of the present invention is carried out continuously. (1) Carbon fiber (2) Electrolyte (3) Roller (4) Electrolytic cell Applicant Toshiba Ceramics Corporation

Claims (1)

【特許請求の範囲】[Claims] フルフリルアルコール等のアルコール類、ベンゼン、ト
ルエン、キシレン等の芳香族炭化水素、フェノール誘導
体、ピレン等の多環芳香族炭化水素、グリコール類、糖
類、五員環炭化水素、およびコールタール、コールター
ルピッチ等からなる有機化合物類よりの一つ、または複
数の混合物を含む導電性の電解溶液に、電極としてカー
ボン繊維を支持するとともに電流を通じ、当該カーボン
繊維の表面に当該有機化合物を重合付着させて被覆層を
形成した後、当該カーボン繊維を電解液中より取り出し
て加熱処理を行いカーボン繊維の表面に密着性に優れた
炭化カーボン層を形成することを特徴とするカーボン繊
維の表面処理方法。
Alcohols such as furfuryl alcohol, aromatic hydrocarbons such as benzene, toluene, and xylene, phenol derivatives, polycyclic aromatic hydrocarbons such as pyrene, glycols, sugars, five-membered ring hydrocarbons, and coal tar. Carbon fibers are supported as electrodes in a conductive electrolyte solution containing one or a mixture of organic compounds such as pitch, and an electric current is applied to the surface of the carbon fibers to polymerize and adhere the organic compound to the surface of the carbon fibers. A method for surface treatment of carbon fibers, which comprises forming a coating layer, then taking out the carbon fibers from an electrolytic solution and subjecting them to heat treatment to form a carbonized carbon layer with excellent adhesion on the surface of the carbon fibers.
JP10911688A 1988-05-06 1988-05-06 Method for surface-treating carbon fiber Pending JPH01282385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10911688A JPH01282385A (en) 1988-05-06 1988-05-06 Method for surface-treating carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10911688A JPH01282385A (en) 1988-05-06 1988-05-06 Method for surface-treating carbon fiber

Publications (1)

Publication Number Publication Date
JPH01282385A true JPH01282385A (en) 1989-11-14

Family

ID=14501960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10911688A Pending JPH01282385A (en) 1988-05-06 1988-05-06 Method for surface-treating carbon fiber

Country Status (1)

Country Link
JP (1) JPH01282385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176499A (en) * 2019-07-05 2021-01-05 北京航空航天大学 Three-dimensional fabric reinforcement, preparation method thereof and polymer-based composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187622A (en) * 1983-04-05 1984-10-24 Agency Of Ind Science & Technol Graphite filament having high electrical conductivity and its preparation
JPS6157434A (en) * 1984-08-29 1986-03-24 Mitsubishi Electric Corp Multi-image display device
JPS6215380A (en) * 1985-07-08 1987-01-23 住友電気工業株式会社 Production of carbon fiber reinforced composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187622A (en) * 1983-04-05 1984-10-24 Agency Of Ind Science & Technol Graphite filament having high electrical conductivity and its preparation
JPS6157434A (en) * 1984-08-29 1986-03-24 Mitsubishi Electric Corp Multi-image display device
JPS6215380A (en) * 1985-07-08 1987-01-23 住友電気工業株式会社 Production of carbon fiber reinforced composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176499A (en) * 2019-07-05 2021-01-05 北京航空航天大学 Three-dimensional fabric reinforcement, preparation method thereof and polymer-based composite material

Similar Documents

Publication Publication Date Title
CN109956466B (en) Graphene-based composite film with high thermal conductivity in-plane direction and thickness direction and preparation method thereof
KR100503879B1 (en) Hollow carbon fiber and production method
JPH0210115B2 (en)
KR20100137621A (en) Producing method of low-dimensional carbon-contained composits and carbon block
JPH01282385A (en) Method for surface-treating carbon fiber
US5556608A (en) Carbon thread and process for producing it
WO2015198920A1 (en) Porous carbon material
Liu et al. Ultrafast deposition of polydopamine for high-performance fiber-reinforced high-temperature ceramic composites
US3594455A (en) Methods for manufacturing carbon and/or graphite materials
CN109982459A (en) A kind of graphene composite heating silk and preparation method thereof
CN109293894A (en) A kind of aromatic heterocyclic polymer film and its preparation method and application of high intensity UV resistant
JPS63312924A (en) Wire preform for carbon fiber reinforced aluminum composite material and production thereof
JP6442927B2 (en) Porous carbon material
JP4433676B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH01282111A (en) Production of carbonaceous raw material
KR20100137622A (en) Producing method of fuel cell separator using pure-carbon composite
JPH0247365A (en) Surface-treatment of formed carbon fiber
JP2007186828A (en) Method for producing carbon fiber
JPH01160868A (en) Production of high-density carbon fiber reinforced carbon composite material
JPS61231222A (en) Production of carbon fiber reinforced carbon composite material
Tomita et al. 4921687 Method of making highorientation sheet-like graphite by using laminar compound
Benton et al. 4923578 Graphite composites and process for the manufacture thereof
Bouix et al. 4921725 Process for coating carbon fibers with a carbide
Yagi et al. 4923637 High conductivity carbon fiber
JPH053428B2 (en)