JPH01282152A - Silicon carbide-based reaction tube - Google Patents

Silicon carbide-based reaction tube

Info

Publication number
JPH01282152A
JPH01282152A JP63109211A JP10921188A JPH01282152A JP H01282152 A JPH01282152 A JP H01282152A JP 63109211 A JP63109211 A JP 63109211A JP 10921188 A JP10921188 A JP 10921188A JP H01282152 A JPH01282152 A JP H01282152A
Authority
JP
Japan
Prior art keywords
silicon carbide
reaction tube
reaction
iron
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63109211A
Other languages
Japanese (ja)
Inventor
Fukuji Matsumoto
松本 福二
Yoshio Tawara
俵 好夫
Norio Hayashi
典夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63109211A priority Critical patent/JPH01282152A/en
Priority to US07/346,736 priority patent/US4999228A/en
Priority to KR1019890006050A priority patent/KR890017767A/en
Priority to EP89108265A priority patent/EP0340802B1/en
Priority to DE89108265T priority patent/DE68909481T2/en
Publication of JPH01282152A publication Critical patent/JPH01282152A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the title reaction tube for a diffusion furnace for the heat treatment of a semiconductor without causing defects due to impurities in the semiconductor by forming the film of high-purity silicon carbide having an iron concn. lower than a specified value on the entire inner surface of the reaction tube consisting of the reaction-sintered silicon carbide with the iron concn. and density specified. CONSTITUTION:A reaction tube consisting of the reaction-sintered silicon carbide contg. <=20ppm iron and having >=3g/cm<3> density is prepared. The film of the high-purity silicon carbide contg. <=5ppm iron is formed on the entire inner surface of the reaction tube by vapor-phase synthesis, etc., preferably in thickness of about 200-1300mum. The obtained reaction tube is not deformed or devitrified even under high-temp. conditions, and has excellent strength. When a semiconductor is heat-treated in the diffusion furnace by using this reaction tube, the yield in the production of semiconductors can be improved without causing defects due to the presence of impurities in a silicon wafer.

Description

【発明の詳細な説明】 産呈上夏■凪分更 本発明は、特に半導体に熱処理を施す拡散炉に用いられ
る反応管に関し、更に詳述するとシリコンウェハーに不
純物の存在に起因する欠陥を生じさせるようなことのな
い炭化珪素質反応管に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reaction tube used in a diffusion furnace for heat-treating semiconductors. This invention relates to a silicon carbide reaction tube that does not cause any damage.

来の   び 口が ゛しよ゛とする6従来、半導体拡
散炉用の反応管としては、石英製、炭化珪素質製のもの
が使用されている。これら反応管を用いて半導体に熱処
理を施す場合、反応管に不純物が存在するとシリコンウ
ェハーに欠陥が生じ、結果として半導体の熱処理工程の
歩留まりを大きく低下させることになるため、これら反
応管の材料としては高純度の石英又は炭化珪素が要求さ
れ、これらの純度は高いほど良い。ここで、純度の点に
おいては石英が炭化珪素に優るため、一般に石英製の反
応管が多用されている。
6 Conventionally, reaction tubes for semiconductor diffusion furnaces have been made of quartz or silicon carbide. When heat-treating semiconductors using these reaction tubes, the presence of impurities in the reaction tube will cause defects in the silicon wafers, which will greatly reduce the yield of the semiconductor heat treatment process. requires high-purity quartz or silicon carbide, and the higher the purity, the better. Here, since quartz is superior to silicon carbide in terms of purity, generally reaction tubes made of quartz are often used.

しかし、石英でも未だ不純物の点に於いて満足できるも
のではなく、更に石英の場合、高温下では変形し易く、
その寿命が短いという欠点を有している。特に処理温度
が1200℃を超えると変形、失透等により消耗が激し
く、反応管を頻繁に交換しなければならず、一方処理温
度を下げると処理時間を大巾に延ばさなければならず、
いずれにしても半導体の製造コストを引き上げるという
不都合を生じる。
However, even quartz is still unsatisfactory in terms of impurities, and in the case of quartz, it is easily deformed at high temperatures.
It has the disadvantage of having a short lifespan. In particular, if the processing temperature exceeds 1200°C, the reaction tube will be severely consumed due to deformation, devitrification, etc., and the reaction tube will have to be replaced frequently.On the other hand, if the processing temperature is lowered, the processing time will have to be significantly extended.
In either case, the inconvenience of increasing semiconductor manufacturing costs arises.

これに対し、炭化珪素質の反応管は高温下でも変形しに
くく、また石英製反応管に見られるような失透現象を生
じることがなく、このため一つの反応管の使用可能期間
を石英製のものに比べて大巾に延ばすことができる。し
かし、純度の点に関しては、従来の技術では石英製のも
のに比べて劣るためにその使用に制限がある。
On the other hand, reaction tubes made of silicon carbide do not easily deform even under high temperatures, and do not cause the devitrification phenomenon seen in quartz reaction tubes. It can be extended much wider than the previous one. However, in terms of purity, conventional techniques are inferior to those made of quartz, which limits their use.

本発明は上記事情に鑑みなされたもので、高温下におい
ても変形、失透現象などの不都合を生じることがなく、
かつ不純物の存在に起因する欠陥をシリコンウェハーに
生じさせることもなく、更にその強度に優れ、高温条件
下においても長期間の使用が可能であり、半導体拡散炉
用として有効な炭化珪素質反応管を提供することを目的
とする。
The present invention was made in view of the above circumstances, and does not cause disadvantages such as deformation and devitrification even under high temperatures.
This silicon carbide reaction tube does not cause defects in silicon wafers due to the presence of impurities, has excellent strength, and can be used for long periods of time even under high temperature conditions, making it an effective silicon carbide reaction tube for use in semiconductor diffusion furnaces. The purpose is to provide

ナ  するための   嬶作刑 本発明者らは、上記目的を達成するため鋭意検討を重ね
た結果、反応焼結炭化珪素質反応管の炭化珪素基材を密
度3.0g/cJ以上、鉄濃度20ppm以下に制御し
、更に該反応管内面に鉄濃度5 pprB以下の高純度
炭化珪素膜を形成することが有効であることを見い出し
た。即ち、炭化珪素質反応管はSiCとSiとの複合材
料であり、不純物は高温下での拡散係数がSi中の方が
SiC中よりも遥かに大きいため主としてSi層中を通
過して反応管内に汚染をもたらすものであるが、反応管
内面に気相合成法などにより高純度の炭化珪素被膜を析
出させるなどの方法で鉄濃度5 ppm以下の高純度炭
化珪素膜を形成することにより、該暦によって反応管基
材及び外部から反応管内への不純物の拡散を遮断するこ
とができ、また反応管は密度3.0g/a+?以上の反
応焼結炭化珪素質からなるものであるので、高温下にお
いても変形したり、失透現象を生じるようなことがなく
、更にその強度に優れ、高温条件下においても長期間の
使用が可能であり、半導体拡散炉用として好適な反応管
とすることができることを知見し、本発明を完成するに
至ったものである。
As a result of extensive studies to achieve the above object, the inventors of the present invention have determined that the silicon carbide base material of the reaction sintered silicon carbide reaction tube has a density of 3.0 g/cJ or higher and an iron concentration of 3.0 g/cJ or more. It has been found that it is effective to control the iron content to 20 ppm or less and to form a high-purity silicon carbide film with an iron concentration of 5 pprB or less on the inner surface of the reaction tube. In other words, the silicon carbide reaction tube is a composite material of SiC and Si, and since the diffusion coefficient of impurities at high temperatures is much larger in Si than in SiC, impurities mainly pass through the Si layer and enter the reaction tube. However, by forming a high-purity silicon carbide film with an iron concentration of 5 ppm or less by depositing a high-purity silicon carbide film on the inner surface of the reaction tube using a vapor phase synthesis method, etc. The calendar can block the diffusion of impurities from the reaction tube base material and the outside into the reaction tube, and the reaction tube has a density of 3.0 g/a+? Since it is made of the above reaction sintered silicon carbide material, it does not deform or cause devitrification even under high temperatures, and has excellent strength and can be used for long periods of time even under high temperature conditions. The present invention was completed based on the discovery that this reaction tube is possible and can be made into a reaction tube suitable for use in a semiconductor diffusion furnace.

ここで、炭化珪素質反応管内面に炭化珪素被膜を形成す
るという技術は特公昭61−20128号公報等で公知
であるが、これらは洗浄の際の耐食性の向上を目的とし
たものである。これに対して本発明者らは、反応管の炭
化珪素質基材の鉄濃度を制御し、更にその反応管の内面
に鉄濃度5ppm以下の高純度炭化珪素膜を形成するこ
とにより、該膜で基材及び外部からの不純物の拡散を有
効に遮断することができ、熱処理工程における不純物の
存在によるシリコンウェハーの汚染を有効に防止し得る
のを見い出したものである。また。
Here, the technique of forming a silicon carbide film on the inner surface of a silicon carbide reaction tube is known from Japanese Patent Publication No. 61-20128, etc., but these techniques are aimed at improving corrosion resistance during cleaning. On the other hand, the present inventors controlled the iron concentration of the silicon carbide base material of the reaction tube and further formed a high-purity silicon carbide film with an iron concentration of 5 ppm or less on the inner surface of the reaction tube. It has been discovered that the diffusion of impurities from the base material and the outside can be effectively blocked, and that contamination of silicon wafers due to the presence of impurities during the heat treatment process can be effectively prevented. Also.

上記特公昭61−20128号公報に記載されたものは
、その基材として再結晶炭化珪素を使用しているが、こ
の再結晶炭化珪素は強度に劣るため(反応焼結炭化珪素
は曲げ強度35〜45kg/−であるのに対し、再結晶
炭化珪素は15〜25kg/IIIMと約172である
)、高温条件下での使用に際し、その内表面に形成され
た被膜と基材との熱膨張率の差により発生する熱応力に
よって破損してしまう場合があり、特に複数回の使用に
よる熱サイクルによって非常に破損し易いものとなって
しまう。これに対して密度3.0g/aI以上の反応焼
結炭化珪素は強度が高いため、反応管の内面に炭化珪素
膜を形成し、高温条件下で使用しても、更には熱サイク
ルを繰り返しても容易に破損してしまうことがなく、長
期間の使用が可能となり。
The product described in the above-mentioned Japanese Patent Publication No. 61-20128 uses recrystallized silicon carbide as its base material, but since this recrystallized silicon carbide has inferior strength (reaction sintered silicon carbide has a bending strength of 35 ~45 kg/-, whereas recrystallized silicon carbide is 15-25 kg/IIIM, which is about 172), and when used under high temperature conditions, the thermal expansion of the coating formed on the inner surface and the base material Thermal stress caused by the difference in rate may cause damage, and the product is particularly susceptible to damage due to thermal cycling caused by multiple uses. On the other hand, reaction-sintered silicon carbide with a density of 3.0 g/aI or more has high strength, so it forms a silicon carbide film on the inner surface of the reaction tube, and even when used under high temperature conditions, it can be repeatedly heat cycled. It will not be easily damaged even when used, and can be used for a long time.

半導体拡散炉用として好適に使用し得ることを本発明者
らは知見したものである。
The present inventors have found that it can be suitably used for semiconductor diffusion furnaces.

従って、本発明は、鉄濃度が20ppm以下、かつ密度
が3.0g/a(以上の反応焼結炭化珪素質からなる反
応管の内面全面に鉄濃度5 ppm以下の高純度炭化珪
素膜を形成したことを特徴とする炭化珪素質反応管を提
供するものである。
Therefore, the present invention forms a high-purity silicon carbide film with an iron concentration of 5 ppm or less on the entire inner surface of a reaction tube made of reaction sintered silicon carbide with an iron concentration of 20 ppm or less and a density of 3.0 g/a (or more). The present invention provides a silicon carbide reaction tube characterized by the following.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明反応管は、上述のようにその内面に形成された炭
化珪素膜により、反応管基材及び外部からの不純物の拡
散を遮断し、半導体に熱処理を施す際にシリコンウェハ
ーが不純物によって汚染されるのを防止するものである
。この場合、炭化珪素膜自身の純度が悪いと炭化珪素膜
からの不純物拡散によってシリコンウェハーが汚染され
てしまう。そのため炭化珪素膜は高純度とすることが必
要であり、具体的には被膜内の鉄含有量を5 ppm以
下とする必要がある。即ち、鉄は反応管がその製造にお
いて最も汚染を受は易い物質であり、鉄を5 ppm以
下とすることにより、他の有害な不純物も5 ppm以
下とすることができる。
As described above, the reaction tube of the present invention has a silicon carbide film formed on its inner surface to block the diffusion of impurities from the reaction tube base material and the outside, and prevents contamination of the silicon wafer with impurities when heat treating a semiconductor. This is to prevent In this case, if the purity of the silicon carbide film itself is poor, the silicon wafer will be contaminated by impurity diffusion from the silicon carbide film. Therefore, the silicon carbide film needs to have high purity, and specifically, the iron content in the film needs to be 5 ppm or less. That is, iron is the substance that is most likely to contaminate reaction tubes during its manufacture, and by reducing iron to 5 ppm or less, other harmful impurities can also be reduced to 5 ppm or less.

このような高純度の炭化珪素膜を反応管内面に形成する
方法としては、特に制限されず種々の方法を採用し得る
が、特に気相合成法により反応管内面に炭化珪素膜を析
出させる方法が好適に採用される。
The method for forming such a high-purity silicon carbide film on the inner surface of the reaction tube is not particularly limited and various methods can be adopted, but in particular, a method of depositing a silicon carbide film on the inner surface of the reaction tube by vapor phase synthesis is a method. is preferably adopted.

また、この炭化珪素膜の厚さは50〜1300声、特に
200〜1300pとすることが好ましく、炭化珪素膜
の厚さが50pn未満であると不純物の遮断効果が不十
分となる場合があり、一方13oOIxnを超えるとそ
の使用に際し破損し易くなる場合がある。
Further, the thickness of this silicon carbide film is preferably 50 to 1300 pn, particularly 200 to 1300 pn, and if the thickness of the silicon carbide film is less than 50 pn, the impurity blocking effect may be insufficient. On the other hand, if it exceeds 13oOIxn, it may become easily damaged during use.

本発明反応管は、上記の鉄濃度5 ppm以下の炭化珪
素膜を反応焼結炭化珪素質反応管の内面に形成したもの
であるが、炭化珪素膜の鉄濃度を5ppm以下に保つた
めには、基材の純度が非常に重要であり、基材中の鉄濃
度を20ppm以下、好ましくは10ppm以下とする
ことが必要である。基材中の鉄が炭化珪素膜に汚染をも
たらすメカニズムは不明であるが、基材中の鉄が20p
pmを超えると炭化珪素膜中の鉄を5 ppm以下に保
つことばできない。
The reaction tube of the present invention has the silicon carbide film with an iron concentration of 5 ppm or less formed on the inner surface of the reaction sintered silicon carbide reaction tube, but in order to keep the iron concentration of the silicon carbide film below 5 ppm, The purity of the base material is very important, and it is necessary that the iron concentration in the base material be 20 ppm or less, preferably 10 ppm or less. The mechanism by which iron in the base material causes contamination on the silicon carbide film is unknown, but iron in the base material
If it exceeds pm, it is impossible to keep the iron content in the silicon carbide film below 5 ppm.

また、本発明の反応管は、その基材として炭化珪素質を
基材として用いているため高温下においても変形、失透
現象などの不都合を生じることがない。また、この炭化
珪素質は反応焼結質であるためにその強度に優れ、炭化
珪素膜と基材との熱膨張率の差から生じる熱応力によっ
ても破損するようなことのないものであるが、反応焼結
炭化珪素質であってもSi含有率が高いと炭化珪素層と
の熱膨張差が大となり、やはり破損し易くなるため、基
材中のSi含有率を25体積%以下、密度で3.0g/
aJ以上とする必要があり、好ましくは密度3.03〜
3.Log/−である。
Furthermore, since the reaction tube of the present invention uses silicon carbide as its base material, it does not suffer from deformation or devitrification phenomena even at high temperatures. Furthermore, since this silicon carbide material is a reactive sintered material, it has excellent strength and will not be damaged by thermal stress caused by the difference in thermal expansion coefficient between the silicon carbide film and the base material. Even if the material is made of reactive sintered silicon carbide, if the Si content is high, the difference in thermal expansion between the silicon carbide layer and the silicon carbide layer will be large, making it easy to break. 3.0g/
It is necessary to have aJ or more, and preferably the density is 3.03~
3. Log/-.

ここで、反応焼結炭化珪素質は、特公昭45−3806
1号公報等に見られるように、初期に多量(15〜40
重景%)重量素質を添加し、約1500〜1900’C
で反応させるものであり(一方、再結晶法は少量(一般
には1o%以下)の炭素質を添加し、かつ約2000℃
の熱処理が必要である)、この多量に添加された炭素の
反応により生成されたSiCが結果として粒子の結合を
強化し、その強度を高いものとしている。
Here, the reaction sintered silicon carbide material is
As seen in Publication No. 1, etc., a large amount (15 to 40
weight ratio) Adding weight element, about 1500~1900'C
(On the other hand, in the recrystallization method, a small amount (generally 10% or less) of carbonaceous material is added and the reaction is carried out at about 2000℃.
The SiC produced by the reaction of this large amount of carbon added strengthens the bonds between the particles and increases their strength.

上記の如き炭化珪素膜を形成した反応管を製造する場合
は、鉄濃度20ppm以下、密度3.0g/a1以上に
制御された反応焼結炭化珪素質反応管を用意し、その内
表面に鉄濃度5 ppm以下の炭化珪素膜を形成すれば
よい。なお、この場合塩酸水溶液(HCQ : H20
= 1. : ]、)等に反応管を数時間浸漬する方法
な−とにより、表面の不純物を十分に取り除いた後、炭
化珪素膜を形成することが望ましい。
When manufacturing a reaction tube with a silicon carbide film as described above, prepare a reaction tube made of reaction-sintered silicon carbide with an iron concentration of 20 ppm or less and a density of 3.0 g/a1 or more, and coat the inner surface with iron. A silicon carbide film having a concentration of 5 ppm or less may be formed. In this case, an aqueous hydrochloric acid solution (HCQ: H20
= 1. It is desirable to form a silicon carbide film after sufficiently removing surface impurities by immersing the reaction tube in a solution such as : ], ) for several hours.

ここで、炭化珪素膜を形成する方法としては、前述した
ように鉄濃度5 ppm以下の高純度炭化珪素膜を形成
し得る方法ならばよく、種々の方法が採用し得るが、特
に気相合成法により反応管内表面に炭化珪素被膜を析出
させる方法が好適に採用される。この方法は、一般にC
,V D (ChemicalVapor Depos
ition)法と呼ばれ、CH,5iCQ、、CH,5
iHCf12、(CH3)25iCQ2.5LC111
4+CH4,5iCR4+C1HI1等の原料ガスをC
VD炉に装填された反応焼結炭化珪素質反応管内面に流
してSjCを反応管内表面に析出させるものである。な
お、原料ガスは上記したものに限られず、CVD法に一
般的に用いられるものであればよく。
Here, the method for forming the silicon carbide film may be any method that can form a high-purity silicon carbide film with an iron concentration of 5 ppm or less, as described above, and various methods may be employed, but in particular, vapor phase synthesis is A method of depositing a silicon carbide film on the inner surface of the reaction tube by a method is preferably employed. This method generally uses C
, V D (Chemical Vapor Depos
CH,5iCQ, ,CH,5
iHCf12, (CH3)25iCQ2.5LC111
4+CH4,5iCR4+C1HI1 etc. raw material gas is C
SjC is caused to flow onto the inner surface of a reaction tube made of sintered silicon carbide loaded into a VD furnace, and to precipitate SjC on the inner surface of the reaction tube. Note that the raw material gas is not limited to those mentioned above, and may be any gas commonly used in the CVD method.

また圧力は常温又は減圧のいずれでもよく、温度は10
00〜1400℃が好ましい。ここで。
The pressure may be either room temperature or reduced pressure, and the temperature is 10
00 to 1400°C is preferable. here.

温度が1000”C未満であると析出膜が非晶質となり
易く、不安定となる場合がある。一方、1400℃を超
えると基材のSiが溶融して外部に溶出してしまう場合
がある。
If the temperature is less than 1000"C, the deposited film tends to become amorphous and may become unstable. On the other hand, if the temperature exceeds 1400"C, the Si of the base material may melt and be eluted to the outside. .

なお、上記CVD法を採用する場合、反応管内面にSi
除去処理を施してSi除去M(炭化珪素層)を形成し、
その上にCVD法による炭化珪素被膜を形成することが
できるが、この場合Si除去処理の方法としては、溶液
処理、高温での塩酸ガス処理等が好適に採用される。な
お、これらの方法でSi除去処理を行なった場合、反応
管内表面に酸が残留しないように十分に水洗した後にC
VD法による被膜形成処理を行なうことが好ましい。
In addition, when adopting the above CVD method, Si is added to the inner surface of the reaction tube.
A removal process is performed to form a Si-removed M (silicon carbide layer),
A silicon carbide film can be formed thereon by the CVD method, but in this case, a solution treatment, a hydrochloric acid gas treatment at high temperature, or the like is preferably employed as a method of Si removal treatment. In addition, when performing Si removal treatment using these methods, C
It is preferable to perform a film forming treatment using a VD method.

11F房か釆 以上説明したように、本発明の炭化珪素質反応管は、高
温下においても変形、失透現象などの不都合を生じるこ
となく、更にその強度に優れ、高温条件下においても長
時間の使用が可能であり、かつ不純物の存在に起因する
欠陥をシリコンウェハーに生じさせることがない。従っ
て、本発明の反応管を用いて半導体に熱処理を施すこと
により半導体製造における歩留まりを向上させることが
できる。
As explained above, the silicon carbide reaction tube of the present invention does not cause problems such as deformation or devitrification even under high temperatures, has excellent strength, and can be used for long periods of time even under high temperature conditions. can be used without causing defects in silicon wafers due to the presence of impurities. Therefore, by heat-treating semiconductors using the reaction tube of the present invention, the yield in semiconductor manufacturing can be improved.

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples.

〔実施例及び比較例1,2〕 外径184Iφ、内径170nnφ、長さ2300mm
の絞り部を有する反応管をその製造に際し、原料の精製
の程度及び成形圧力を変えて2本準備した。
[Example and Comparative Examples 1 and 2] Outer diameter 184Iφ, inner diameter 170nnφ, length 2300mm
Two reaction tubes each having a constricted portion were prepared by changing the degree of refining of the raw material and the molding pressure.

ダミーサンプルを用いて不純物分桁を行なった結果、鉄
濃度はそれぞれ8 ppmと47ppmであった。
As a result of impurity analysis using dummy samples, the iron concentrations were 8 ppm and 47 ppm, respectively.

また、その密度はそれぞれ3.01g/cu?、2.9
4g/a+?であった。次いで反応管及びダミーサンプ
ルをHCQ : H,O=1 : 1(重量比)の塩酸
溶液に5時間浸漬し、表面の不純物を除去した後、十分
に水洗乾燥を行なってCVD炉にセットした。炉内を1
20 Torr迄減圧し、1300°C迄昇温保持した
反応管内面にトリクロルメチルシランIQ/min、水
素ガス10 n /minを流して内面上に厚さ200
声の炭化珪素膜を形成した。
Also, their density is 3.01g/cu? , 2.9
4g/a+? Met. Next, the reaction tube and dummy sample were immersed in a hydrochloric acid solution of HCQ:H,O=1:1 (weight ratio) for 5 hours to remove surface impurities, thoroughly washed with water, dried, and set in a CVD furnace. Inside the furnace 1
The pressure was reduced to 20 Torr, the temperature was raised to 1300°C, and trichloromethylsilane IQ/min and hydrogen gas were flowed at a rate of 10 n/min to the inner surface of the reaction tube to form a 200 mm thick film on the inner surface.
Formed a silicon carbide film for the voice.

ダミーサンプルを分析したところ被膜中にはそれぞれ5
 ppm、 12 ppmの鉄が含有されていた。
When a dummy sample was analyzed, there were 5
ppm, 12 ppm of iron was contained.

次に、上記2本の反応管をそれぞれ拡散炉内に装填し、
この反応管内にシリコンウェハー(CZ−P型(1,0
0>)を挿入した後、ウェハーにドライ酸素中、120
0℃X100m1nの条件で熱処理を施した。このウェ
ハーにつき、ウェハージルトルエッチの後、顕微鏡検査
により欠陥密度を調べた。結果を第1表に示す。
Next, each of the above two reaction tubes is loaded into a diffusion furnace,
A silicon wafer (CZ-P type (1,0
0>), the wafer was heated in dry oxygen for 120°C.
Heat treatment was performed under the conditions of 0° C. x 100 ml. The defect density of this wafer was examined by microscopic examination after wafer ditle etching. The results are shown in Table 1.

また、比較のため石英反応管についても同様の試験を行
なった。結果を第1表に併記する。
For comparison, a similar test was also conducted on a quartz reaction tube. The results are also listed in Table 1.

第     1     表 次に、長時間運転よる影響を調べるため上記実施例及び
比較例1の反応管を拡散炉に装填し、800℃(2時間
保持)81200℃(2時間保持)を1サイクルとする
ヒートサイクルを繰り返し、その寿命を調べた。結果は
実施例の反応管は100サイクル経過後でも何らの変化
も見られなかった。これに対して比較例1の反応管は8
2サイクル目で破損してしまった。
Table 1 Next, in order to examine the effects of long-term operation, the reaction tubes of the above Examples and Comparative Example 1 were loaded into a diffusion furnace, and one cycle was set at 800°C (held for 2 hours) and 81200°C (held for 2 hours). We repeated the heat cycle and examined its lifespan. As a result, no change was observed in the reaction tube of the example even after 100 cycles. On the other hand, the reaction tube of Comparative Example 1 was 8
It broke on the second cycle.

出願人  信越化学工業株式会社 代理人  弁理士 小 島 隆 司 平成1年5月2日 特許庁長官  吉 1)文 毅  殿 1、事件の表示 昭和63年特許願第109211号 2、発明の名称 炭化珪素質反応管 3、補正をする者 事件との関係      特許出願人 化  所  東京都千代田区大手町二丁目6番1号氏 
 名  (206)信越化学工業 株式会社代表者 小
坂雄太部 4、代理人 〒104 住  所  東京都中央区銀座3丁目11番14号ダパ
クリエートビル5階 電話(545)64546、補正
の内容 (1)明細書第4頁第5行目の「層」を「膜」と訂正す
る。
Applicant Shin-Etsu Chemical Co., Ltd. Agent Patent Attorney Takashi Kojima May 2, 1999 Commissioner of the Japan Patent Office Yoshi 1) Takeshi Moon 1, Indication of the case 1988 Patent Application No. 109211 2, Name of the invention Carbonization Siliceous Reaction Tube 3, Relationship with the Amended Person Case Patent Applicant Office: Mr. 6-1 Otemachi 2-chome, Chiyoda-ku, Tokyo
Name (206) Shin-Etsu Chemical Co., Ltd. Representative Yutabe Kosaka 4, Agent 104 Address 5th floor, Dapa Create Building, 3-11-14 Ginza, Chuo-ku, Tokyo Telephone (545) 64546 Contents of amendment (1) ) "Layer" on page 4, line 5 of the specification is corrected to "film".

(2)同第8頁第9行目の「層」を「膜Jと訂正する。(2) "Layer" on page 8, line 9 is corrected to "film J."

以上that's all

Claims (1)

【特許請求の範囲】[Claims]  1.鉄濃度が20ppm以下で密度が3.0g/cm
^3以上の反応焼結炭化珪素質からなる反応管の内面全
面に鉄濃度5ppm以下の高純度炭化珪素膜を形成した
ことを特徴とする炭化珪素質反応管。
1. Iron concentration is 20ppm or less and density is 3.0g/cm
A silicon carbide reaction tube characterized in that a high-purity silicon carbide film with an iron concentration of 5 ppm or less is formed on the entire inner surface of the reaction tube made of a reaction sintered silicon carbide material with an iron concentration of 5 ppm or less.
JP63109211A 1988-05-06 1988-05-06 Silicon carbide-based reaction tube Pending JPH01282152A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63109211A JPH01282152A (en) 1988-05-06 1988-05-06 Silicon carbide-based reaction tube
US07/346,736 US4999228A (en) 1988-05-06 1989-05-03 Silicon carbide diffusion tube for semi-conductor
KR1019890006050A KR890017767A (en) 1988-05-06 1989-05-06 Silicon carbide reaction tube
EP89108265A EP0340802B1 (en) 1988-05-06 1989-05-08 Silicon carbide diffusion tube for semi-conductor
DE89108265T DE68909481T2 (en) 1988-05-06 1989-05-08 Silicon carbide diffusion tube for semiconductors.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109211A JPH01282152A (en) 1988-05-06 1988-05-06 Silicon carbide-based reaction tube

Publications (1)

Publication Number Publication Date
JPH01282152A true JPH01282152A (en) 1989-11-14

Family

ID=14504414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109211A Pending JPH01282152A (en) 1988-05-06 1988-05-06 Silicon carbide-based reaction tube

Country Status (2)

Country Link
JP (1) JPH01282152A (en)
KR (1) KR890017767A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179049A (en) * 1990-11-20 1993-01-12 Asahi Glass Company Ltd. Heat treating apparatuses for semiconductors and high purity silicon carbide parts for the apparatuses and a method of making thereof
JPH05279123A (en) * 1992-02-04 1993-10-26 Shin Etsu Chem Co Ltd Siliceous carbide member for producing semiconductor
WO1999042748A1 (en) * 1998-02-18 1999-08-26 Nippon Pillar Packing Co., Ltd. Rotary joint
JP2001203192A (en) * 2000-01-21 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335452A (en) * 1986-07-31 1988-02-16 東芝セラミツクス株式会社 Manufacture of structural member for semiconductor diffusion furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335452A (en) * 1986-07-31 1988-02-16 東芝セラミツクス株式会社 Manufacture of structural member for semiconductor diffusion furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179049A (en) * 1990-11-20 1993-01-12 Asahi Glass Company Ltd. Heat treating apparatuses for semiconductors and high purity silicon carbide parts for the apparatuses and a method of making thereof
JPH05279123A (en) * 1992-02-04 1993-10-26 Shin Etsu Chem Co Ltd Siliceous carbide member for producing semiconductor
WO1999042748A1 (en) * 1998-02-18 1999-08-26 Nippon Pillar Packing Co., Ltd. Rotary joint
JP2001203192A (en) * 2000-01-21 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine

Also Published As

Publication number Publication date
KR890017767A (en) 1989-12-18

Similar Documents

Publication Publication Date Title
JP3433392B2 (en) Cleaning gas and cleaning method for vacuum processing apparatus
US4999228A (en) Silicon carbide diffusion tube for semi-conductor
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
JP5281027B2 (en) Method of processing semiconductor processing components and components formed by this method
CN100575311C (en) The method of purifying silicon carbide structures
JPH118216A (en) Method of cleaning semiconductor manufacturing member
JPH01282152A (en) Silicon carbide-based reaction tube
US5759426A (en) Heat treatment jig for semiconductor wafers and a method for treating a surface of the same
US20100012949A1 (en) Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film
JP2000302577A (en) Graphite member coated with silicon carbide
JPH03153876A (en) Silicon carbide member
JP2000302576A (en) Graphite material coated with silicon carbide
JPH01282153A (en) Silicon carbide-based reaction tube
US6881262B1 (en) Methods for forming high purity components and components formed thereby
JP3698372B2 (en) CVD-SiC coated member
US6531415B1 (en) Silicon nitride furnace tube low temperature cycle purge for attenuated particle formation
JP3642446B2 (en) Semiconductor wafer processing tool
JPH0465376A (en) Si impregnated sic product coated by cvd and production thereof
JP3378608B2 (en) Method for producing silicon carbide substrate for jig for semiconductor production
JPS59189622A (en) Diffusion furnace process tube for semiconductor
JP2001102386A (en) Munufacturing method of semiconductor wafer
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
WO2004021428A1 (en) Method of eliminating boron contamination of annealed wafer
JPH0583517B2 (en)
JP3185653B2 (en) Material for semiconductor manufacturing equipment and method for manufacturing the same