JPH01281848A - Precision cutting device - Google Patents

Precision cutting device

Info

Publication number
JPH01281848A
JPH01281848A JP11330088A JP11330088A JPH01281848A JP H01281848 A JPH01281848 A JP H01281848A JP 11330088 A JP11330088 A JP 11330088A JP 11330088 A JP11330088 A JP 11330088A JP H01281848 A JPH01281848 A JP H01281848A
Authority
JP
Japan
Prior art keywords
workpiece
tool
cutting
applied voltage
microgrooving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11330088A
Other languages
Japanese (ja)
Inventor
Suguru Motonishi
本西 英
Koji Yoshida
浩二 吉田
Tomiharu Matsushita
富春 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11330088A priority Critical patent/JPH01281848A/en
Publication of JPH01281848A publication Critical patent/JPH01281848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To realize a high-precision fine groove working by constituting so that the applied voltage to a piezoelectric element is controlled in response to the detected value of a displacement gauge which has been fitted to a fine groove working tool for measuring the gap dimension between the surface of a workpiece and the end thereof. CONSTITUTION:In a tool T, a capacitance type displacement gauge 18 is fitted to the shank thereof, and at the time of cutting, the gap dimension between the end of the displacement gauge 18 and the surface of a workpiece W is measured for detecting the surface run-out of the workpiece W. This detected signal is arithmetically processed, and the applied voltage to electron ceramics is controlled so as to control the deflect on of the edge part of the tool T in response to the magnitude of the surface run-out. In other words, when the gap dimension is decreased, the applied voltage is lowered in correspondence to the value to shorten the electronic ceramics, and conversely when the gap dimension is increased, the applied voltage is raised to lengthen the electronic ceramics. Thus, even if the surface run-cut due to the rotation of the workpiece W is caused, while absorbing this, a given depth of cut can be maintained for cutting.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、光ディスクまたは磁気ディスク用のスタンパ
、あるいはそれらの母型金型等の加工において、精度の
高い微細溝加工を行うための精密切削装置に関するもの
である。
The present invention relates to a precision cutting device for machining fine grooves with high precision in machining stampers for optical disks or magnetic disks, or their master molds.

【従来技術】[Prior art]

この種の精密切削装置における従来技術としては、特開
昭61−117006号公報に記載されている溝趣工装
置が知られている。この溝加工装置では、片持ちはり構
造のシャフト部材の先端に、微小切り込みを与えながら
切削を行う工具が取り付けられている。
As a conventional technique for this type of precision cutting device, a groove cutting device described in Japanese Patent Application Laid-open No. 117006/1983 is known. In this groove machining device, a tool that performs cutting while making minute cuts is attached to the tip of a shaft member having a cantilever structure.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上述のごとく構成された精密切削装置にあっては、シャ
フト部材が片持ちはり構造であることから、切削反力に
よって工具が浮き上がる可能性が大きい。また、シャフ
ト部材の固定端から工具先端部までの距離が大きくなる
ことから、切削精度の低下も免れ得ない。さらには、溝
深さのインプロセス検出器を持っておらず、したがって
被加工物が撓んでいるような場合、あるいは被加工物の
支持台が回転によって「うねり」を生じるような波打ち
運動を行う場合には、その加工表面に「うねり」を生じ
るが、その「うねり」を補償して溝深さのコントロール
が行えない等の点が挙げられ、より高精度な切削を行う
ためには技術的に限界があった。 本発明は上述のごとき従来技術の課題に鑑み、テれらを
有効に解決すべく創案されたものである。 したがってその目的は、被削面の「面振れ」を補償して
高精度な微細溝を切削加工できる精密切削装置を提供す
ることにある。
In the precision cutting device configured as described above, since the shaft member has a cantilever structure, there is a high possibility that the tool will be lifted up by the cutting reaction force. Furthermore, since the distance from the fixed end of the shaft member to the tip of the tool increases, cutting accuracy inevitably decreases. Furthermore, it does not have an in-process groove depth detector, so it can be used in cases where the workpiece is bent, or when the support of the workpiece undergoes waving motion that causes "undulations" due to rotation. In some cases, undulations occur on the machined surface, but it is not possible to compensate for these undulations and control the groove depth. There was a limit. The present invention has been devised in view of the problems of the prior art as described above, in order to effectively solve the problems. Therefore, the purpose is to provide a precision cutting device that can cut highly accurate microgrooves by compensating for "surface runout" on the surface to be cut.

【課題を解決するための手段】[Means to solve the problem]

本発明に係る精密切削装置は、上述のごとき従来の技術
的課題を解決し、その目的を達成するために以下のよう
に構成されている。 即ち、シャンクと刃部の間に形成される溝部内にこれら
間に挾まれて装着され、印加電圧に応じて伸縮自在な圧
電素子を有し、且つ上記刃部が切り込み方向へ撓み得る
板ばね構造に形成された微細溝加工用工具と、両端支持
はり構造で、その大略中央に上記微細溝加工用工具を支
持するフレームと、上記微細溝加工用工具の切り込み方
向に垂直な平面内で回転可能な被加工物支持台と、該被
加工物支持台をその回転軸に対称な2箇所の位置で支持
し、該支持台の回転径方向へ平行移動自在な送り手段と
、上記被加工物支持台上に支持されて回転する被加工物
の該回転に伴う面振れを検知すべく、上記微細溝加工用
工具に取り付けられて該被加工物の表面との間のギャッ
プ寸法を計測する変位計とを備え、上記変位計の検出値
に伴って上記圧電素子への印加電圧を制御するように構
成されている。
The precision cutting device according to the present invention solves the conventional technical problems as described above and is configured as follows in order to achieve the objective. That is, a leaf spring is installed in a groove formed between the shank and the blade, and has a piezoelectric element that can be expanded and contracted according to an applied voltage, and that allows the blade to bend in the cutting direction. A micro-grooving tool formed in a structure, a frame supporting the micro-grooving tool at approximately the center thereof, which has a beam structure supporting both ends, and a frame that rotates within a plane perpendicular to the cutting direction of the micro-grooving tool. a support for a workpiece, a feeding means that supports the workpiece support at two positions symmetrical to its rotation axis and is movable in parallel in the rotational radial direction of the support; A displacement device that is attached to the microgrooving tool and measures the gap dimension between the surface of the workpiece and the surface of the workpiece, in order to detect the surface runout caused by the rotation of the workpiece that is supported on a support stand and rotates. and is configured to control the voltage applied to the piezoelectric element in accordance with the detected value of the displacement meter.

【作用】[Effect]

本発明に係る精密切削装置によれば、微細溝加工用工具
が、その圧電素子への印加電圧を制御することによって
、切り込み方向へその刃先の位置を高精度に制御して進
退させる。この微細溝加工用工具を支持するフレームは
、両端支持はり構造で剛性が高く、且つ両端支持はり構
造の大略中央で該工具を支持しているので切削反力によ
る撓みも少なく、微細溝加工用工具による高精度な切り
込み量制御の精度を維持する。 また、切削力を受ける被加工物を支持する側の構造とし
ては、送り手段が被加工物支持台をその回転軸に対称な
2箇所の位置で支持しているので、この送り手段に均等
に作用し、被加工物を安定した状態に支持し微細溝加工
用工具による高精度な切り込み量制御の精度を維持する
。 また、被加工物支持台の回転に伴ってこれに支持された
被加工物にいくらかの面振れが生じたとしても、微細溝
加工用工具に取り付けられている変位計が、その先端部
と被加工物の表面との間のギャップ寸法を計測すること
によって面振れを検知できる。この計測値に基づいて求
められる圧電素子への適正な電圧が印加される。その結
果、被加工物の面振れが生じてもこれを補償して所望の
微小切り込み量が一定して得られる。
According to the precision cutting device of the present invention, the microgroove machining tool advances and retreats in the cutting direction while controlling the position of its cutting edge with high precision by controlling the voltage applied to the piezoelectric element. The frame that supports this tool for micro-groove machining has a double-end support beam structure and has high rigidity, and since the tool is supported approximately at the center of the both-end support beam structure, there is little deflection due to cutting reaction force, making it ideal for micro-groove machining. Maintains the accuracy of highly accurate cutting depth control using tools. In addition, as for the structure on the side that supports the workpiece that receives the cutting force, the feeding means supports the workpiece support at two positions symmetrical to its rotation axis, so that the feeding means is evenly distributed. It works to support the workpiece in a stable state and maintain the precision of highly accurate control of the cutting amount by the microgrooving tool. In addition, even if some surface runout occurs in the workpiece supported by the workpiece support as it rotates, the displacement gauge attached to the microgrooving tool will Surface runout can be detected by measuring the gap size between the workpiece and the surface. An appropriate voltage determined based on this measured value is applied to the piezoelectric element. As a result, even if surface runout of the workpiece occurs, this can be compensated for and a desired minute depth of cut can be consistently obtained.

【発明の効果】【Effect of the invention】

以上の説°明より明らかなように、本発明によれば次の
ごとき優れた効果が発揮される。 即ち、工具支持部および被加工物支持部の剛性を高め、
且つ被加工物の回転に伴う面振れを補償できるので、微
細溝加工用工具の切り込み方向への高精度な変位量を忠
実に反映でき、高精度な微細溝加工を実現できる。
As is clear from the above description, the present invention provides the following excellent effects. In other words, the rigidity of the tool support part and the workpiece support part is increased,
In addition, since it is possible to compensate for the surface run-out due to the rotation of the workpiece, it is possible to faithfully reflect the highly accurate displacement amount of the micro-grooving tool in the cutting direction, thereby achieving highly accurate micro-grooving.

【実施例】 以下に本発明の好適一実施例について第1図および第2
図を参照して説明する。 第1図は本発明の精密切削装置に係る一実施例において
用いられる微細溝加工用の工具の概略構成を示す側面図
である。微細溝加工用の工具Tは、刃部1とシャンク2
との間に溝部3が形成され、シャンク2に対して刃部1
の剛性が独立するように構成されている。則ち、ソリッ
ド構造のシャンり2に対して、刃部1はスリット5が入
れられて板ばね構造にされている。このスリット5は、
図示するように、刃部1の大略中央に形成されて内周下
端面が該刃部1の底面に大略平行であり、且つ溝部3の
底面に大略等しい高さの角穴状に形成された部分5゛と
、この角穴状の部分5′の内周上端面および内周下端面
をそれぞれ刃部1の前方および後方へ延長する位置に隙
17jf状に形成された部分5”とからなっており、ち
ょうど角穴状の部分5°と各隙間状の部分5”とのそれ
ぞれの間に2枚の平行板ばねを形成するように構成され
ている。 したがって、刃部1がその板ばね構造によって撓むとき
、刃部!の先端の切刃4が切り込み方向へ変位すること
になる。また、このように板ばね構造は2枚もしくはそ
れ以上の複数枚の板ばねで構成することによって、撓み
時の切刃4の姿勢が傾くのを防止できる。なお、角穴状
の部分5°の4隅および隙間状の部分5“の各先端には
、撓み時の応力集中を防止すべく丸穴状の面取り(角落
とし)部が形成されている。 一方、溝部3内には、シャンク2の前端面と刃部1の後
端面との間に挟持されるように圧電素子である電子セラ
ミックス6が嵌装されている。電子セラミックス6は、
これに印加される電圧に応じて溝部3の幅方向へ伸縮し
、伸長時にはソリッド構造のシャンク2を固定側とし、
板ばね構造の刃部■を押圧して弾性変形させる。このよ
うに構成された工具ζこよる切り込み量制御の分解能と
しては、ヒステリシス特性はあるものの、電圧上昇時に
おいても電圧下降時においても0.0!μ1オーダまで
制御可能である。 第2図は本発明に係る精密切削装置の一実施例を示す斜
視図である。図示するように、エアダンパ10に支持さ
れて防振構造にされたベース11の大略中央に、被加工
物である金型素材にッケルーリン鍍金材)Wを取付固定
するためのエアスピンドル12が設けられている。この
エアスピンドル!2にはモータ13が取り付けられてお
り、このモータ13によりスピンドルが回転駆動される
。さらにこのエアスピンドル12は、ベース11上で互
いに平行且つ同時にスライド移動する1対のエアスライ
ド14上に取付固定されている。1対のエアスライド1
4は、エアスピンドル12の回転軸に対して対称な位置
でこのエアスピンドル12を支持しており、その移動方
向はエアスピンドル12の径方向に一致している。エア
スライド14は、リニアスケール(精度0.1μl)を
用いているので、一定時間間隔毎のエアスライド14の
送りムラは±3%以内であり、要求を満足している。 エアスピンドル!2およびエアスライド14の上方並び
に両側方を囲繞するように、凹型のフレーム15が設け
られている。この凹型フレーム15は、その両端でベー
ス11上に固定して取り付けられる柱部16と、これら
両柱部16の項部間に両端支持はり構造で掛は渡されろ
梁部17とから構成されている。梁部17の大略中央に
は、上述の微細溝加工用の工具Tがその刃先を下方に向
けて設置されており、エアスライド14がスライド移動
するとき、エアスピンドル12の回転軸がちょうど工具
Tの刃先を通るように工具Tの取付位置が設定される。 したがって、切削力および切削反力は、その6力が発生
する点(切削点)に対して対称な構造の各部材によって
支持されるので、各部材の撓みは極力小さく抑えられ、
切削精度を可及的高精度に維持される。 工具Tには、そのシャンク2に固定して静電容量型の変
位計(分解能0.O1μIN)+8が取り付けられてお
り、切削時には変位計18の先端と被加工物Wの表面と
の間のギャップ寸法が測定されて被加工物Wの面振れが
検知される。この検知信号は、図示しない制御手段によ
って演算処理され、面振れの大きさに応じて工具Tの刃
部lの撓み量を制御すべく電子セラミックス6への印加
電圧が制御される。即ち、ギャップ寸法が小さくなると
その値に応じて印加電圧を下げて電子セラミックス6を
縮長させ、逆にギャップ寸法が大きくなると印加電圧を
上げて電子セラミックス6を伸長させる。このようにし
て、被加工物Wの回転に伴う而振れがあっても、これを
吸収しながら一定の切り込み量を維持して切削が行える
[Embodiment] A preferred embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
This will be explained with reference to the figures. FIG. 1 is a side view showing a schematic configuration of a tool for microgrooving used in an embodiment of the precision cutting apparatus of the present invention. The tool T for microgrooving has a blade part 1 and a shank 2.
A groove 3 is formed between the blade 1 and the shank 2.
The stiffness of the two is independent of each other. That is, while the shank 2 has a solid structure, the blade part 1 has a slit 5 and a leaf spring structure. This slit 5 is
As shown in the figure, a rectangular hole is formed approximately in the center of the blade portion 1, the lower end surface of the inner circumference is approximately parallel to the bottom surface of the blade portion 1, and the height is approximately equal to the bottom surface of the groove portion 3. It consists of a portion 5'' and a portion 5'' formed in the shape of a gap 17jf at a position where the inner circumferential upper end surface and inner circumferential lower end surface of this square hole-shaped portion 5' extend toward the front and rear of the blade portion 1, respectively. The structure is such that two parallel leaf springs are formed between the square hole-shaped portion 5° and each gap-shaped portion 5''. Therefore, when the blade part 1 is deflected by its leaf spring structure, the blade part! The cutting edge 4 at the tip is displaced in the cutting direction. Moreover, by configuring the leaf spring structure with two or more leaf springs in this way, it is possible to prevent the cutting blade 4 from tilting in its posture when it is bent. Note that round hole-shaped chamfered (corner drop) portions are formed at the four corners of the square hole-shaped portion at 5° and at each tip of the gap-shaped portion 5'' to prevent stress concentration during bending. On the other hand, an electronic ceramic 6, which is a piezoelectric element, is fitted in the groove 3 so as to be sandwiched between the front end surface of the shank 2 and the rear end surface of the blade section 1.
It expands and contracts in the width direction of the groove part 3 according to the voltage applied to it, and when expanding, the solid structure shank 2 is on the fixed side,
Press the blade part (■) with a leaf spring structure to elastically deform it. The resolution of the cutting depth control based on the tool ζ configured in this way has a hysteresis characteristic, but it is 0.0 even when the voltage increases and when the voltage decreases! Control is possible up to the μ1 order. FIG. 2 is a perspective view showing an embodiment of a precision cutting device according to the present invention. As shown in the figure, an air spindle 12 is provided approximately in the center of a base 11 which is supported by an air damper 10 and has a vibration-proof structure, for attaching and fixing the Kkkerurin plated material (W) to the mold material that is the workpiece. ing. This air spindle! A motor 13 is attached to 2, and the spindle is rotationally driven by this motor 13. Further, the air spindle 12 is fixedly mounted on a pair of air slides 14 that slide parallel to each other and simultaneously on the base 11. 1 pair of air slides 1
4 supports the air spindle 12 at a position symmetrical with respect to the rotation axis of the air spindle 12, and its moving direction coincides with the radial direction of the air spindle 12. Since the air slide 14 uses a linear scale (accuracy of 0.1 μl), the feeding unevenness of the air slide 14 at each fixed time interval is within ±3%, which satisfies the requirements. Air spindle! A concave frame 15 is provided so as to surround the air slide 2 and the air slide 14 above and on both sides thereof. This concave frame 15 is composed of a pillar part 16 that is fixedly attached to the base 11 at both ends thereof, and a beam part 17 that has a support beam structure at both ends and is hung between the neck parts of both pillar parts 16. ing. Approximately in the center of the beam section 17, the above-mentioned tool T for micro-groove machining is installed with its cutting edge facing downward, and when the air slide 14 slides, the rotation axis of the air spindle 12 is aligned with the tool T. The mounting position of the tool T is set so that it passes through the cutting edge of the tool T. Therefore, the cutting force and cutting reaction force are supported by each member with a symmetrical structure with respect to the point where the six forces are generated (cutting point), so the deflection of each member is suppressed to the minimum possible.
Cutting accuracy is maintained as high as possible. A capacitive displacement meter (resolution 0.01 μIN) +8 is attached to the shank 2 of the tool T, and during cutting, the distance between the tip of the displacement meter 18 and the surface of the workpiece W is measured. The gap dimension is measured and the surface runout of the workpiece W is detected. This detection signal is processed by a control means (not shown), and the voltage applied to the electronic ceramics 6 is controlled in order to control the amount of deflection of the blade portion l of the tool T according to the magnitude of surface runout. That is, when the gap size becomes smaller, the applied voltage is lowered in accordance with the value to cause the electronic ceramics 6 to contract, and when the gap size becomes larger, the applied voltage is increased to elongate the electronic ceramics 6. In this way, even if there is vibration due to the rotation of the workpiece W, cutting can be performed while absorbing this and maintaining a constant depth of cut.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の精密切削装置に係る一実施例において
用いられる微細溝加工用の工具の概略構成を示す側面図
、第2図は本発明に係る精密切削装置の一実施例を示す
斜視図である。 !・・・刃部、2・・・シャンク、3・・・溝部、6・
・・圧電素子としての電子セラミックス、12・・・被
加工物支持台としてのエアスピンドル、14・・・送り
手段としてのエアスライド、15・・・フレーム、I8
・・・変位計、T・・・工具
FIG. 1 is a side view showing a schematic configuration of a tool for microgrooving used in an embodiment of the precision cutting device of the present invention, and FIG. 2 is a perspective view showing an embodiment of the precision cutting device of the present invention. It is a diagram. ! ...Blade part, 2...Shank, 3...Groove part, 6.
...Electronic ceramics as piezoelectric element, 12...Air spindle as workpiece support, 14...Air slide as feeding means, 15...Frame, I8
...Displacement meter, T...Tool

Claims (1)

【特許請求の範囲】[Claims] (1)、シャンク(2)と刃部(1)の間に形成される
溝部(3)内にこれら間に挾まれて装着され、印加電圧
に応じて伸縮自在な圧電素子(6)を有し、且つ上記刃
部(1)が切り込み方向へ撓み得る板ばね構造に形成さ
れた微細溝加工用工具(T)と、両端支持はり構造で、
その大略中央に上記微細溝加工用工具(T)を支持する
フレーム(15)と、上記微細溝加工用工具(T)の切
り込み方向に垂直な平面内で回転可能な被加工物支持台
(12)と、該被加工物支持台(12)をその回転軸に
対称な2箇所の位置で支持し、該支持台(12)の回転
径方向へ平行移動自在な送り手段(14)と、 上記被加工物支持台(12)上に支持されて回転する被
加工物の該回転に伴う面振れを検知すべく、上記微細溝
加工用工具(T)に取り付けられて該被加工物の表面と
の間のギャップ寸法を計測する変位計(18)とを備え
、 上記変位計(18)の検出値に伴って上記圧電素子(6
)への印加電圧を制御するように構成したことを特徴と
する精密切削装置。
(1), it has a piezoelectric element (6) that is installed in a groove (3) formed between the shank (2) and the blade part (1) and is expandable and contractable according to the applied voltage. and a fine groove machining tool (T) formed in a leaf spring structure in which the blade part (1) can be bent in the cutting direction, and a support beam structure at both ends,
Approximately in the center thereof, there is a frame (15) that supports the microgrooving tool (T), and a workpiece support stand (12) that is rotatable in a plane perpendicular to the cutting direction of the microgrooving tool (T). ), a feeding means (14) that supports the workpiece support (12) at two positions symmetrical to its rotation axis and is movable in parallel in the rotational radial direction of the support (12); In order to detect the surface runout caused by the rotation of the workpiece that is supported on the workpiece support stand (12) and rotates, it is attached to the microgrooving tool (T) and is connected to the surface of the workpiece. and a displacement meter (18) for measuring the gap size between the piezoelectric elements (6 and 6) according to the detected value of the displacement meter (18).
) A precision cutting device characterized in that it is configured to control the voltage applied to the device.
JP11330088A 1988-05-09 1988-05-09 Precision cutting device Pending JPH01281848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11330088A JPH01281848A (en) 1988-05-09 1988-05-09 Precision cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11330088A JPH01281848A (en) 1988-05-09 1988-05-09 Precision cutting device

Publications (1)

Publication Number Publication Date
JPH01281848A true JPH01281848A (en) 1989-11-13

Family

ID=14608719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11330088A Pending JPH01281848A (en) 1988-05-09 1988-05-09 Precision cutting device

Country Status (1)

Country Link
JP (1) JPH01281848A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058844A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable rotation about a y-direction transversely across a work piece for making microstructures
WO2007058758A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable and independent movement in an x-direction and a z-direction into and laterally along a work piece for making microstructures
US7395742B2 (en) 2005-11-15 2008-07-08 3M Innovative Properties Company Method for using a cutting tool having variable movement in a z-direction laterally along a work piece for making microstructures
US7487701B2 (en) 2005-11-15 2009-02-10 3M Innovative Properties Company Method for using a cutting tool having variable movement at two simultaneously independent speeds in an x-direction into a work piece for making microstructures

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058844A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable rotation about a y-direction transversely across a work piece for making microstructures
WO2007058758A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable and independent movement in an x-direction and a z-direction into and laterally along a work piece for making microstructures
US7290471B2 (en) 2005-11-15 2007-11-06 3M Innovative Properties Company Cutting tool having variable rotation about a y-direction transversely across a work piece for making microstructures
US7293487B2 (en) 2005-11-15 2007-11-13 3M Innovative Properties Company Cutting tool having variable and independent movement in an x-direction and a z-direction into and laterally along a work piece for making microstructures
US7395741B2 (en) 2005-11-15 2008-07-08 3M Innovative Properties Company Method for using a cutting tool having variable and independent movement in an x-direction and z-direction into and laterally along a work piece for making microstructures
US7395742B2 (en) 2005-11-15 2008-07-08 3M Innovative Properties Company Method for using a cutting tool having variable movement in a z-direction laterally along a work piece for making microstructures
US7398715B2 (en) 2005-11-15 2008-07-15 3M Innovative Properties Company Method for using a cutting tool having variable rotation about a y-direction transversely across a work piece for making microstructures
US7487701B2 (en) 2005-11-15 2009-02-10 3M Innovative Properties Company Method for using a cutting tool having variable movement at two simultaneously independent speeds in an x-direction into a work piece for making microstructures

Similar Documents

Publication Publication Date Title
JP3075981B2 (en) Shape measuring device
US6438856B1 (en) Apparatus for fine positioning of a component, and coordinate measuring machine having an apparatus for fine positioning of a component
US20030009898A1 (en) Characterization of compliant structure force-displacement behavior
US7685869B2 (en) Nanoindenter
JP2988588B2 (en) Position measuring device
JPH0439011B2 (en)
GB2163256A (en) Surface tracer
US5808435A (en) Micropositioning device for disk head testing system
JPH01281848A (en) Precision cutting device
EP1400776B1 (en) Touch probing device
US7353616B2 (en) Shape measuring instrument
CN110316695B (en) Micro-nano dual-mode detection processing module
JP2966214B2 (en) Surface profile measuring device
JPS59124546A (en) Device for positioning body
JPH04256501A (en) Cutting device for minute cutting
JPH0639042B2 (en) Table drive
EP0391630A2 (en) Device for minimizing the temperature of precision apparatus
JPS62208839A (en) Machine tool conducting cutting work
KR100194733B1 (en) Micro cutting device with compensation structure of thermal expansion error
JP3027165B2 (en) Positioning device
JPH07136801A (en) Mobile turning tool type cutter
JP2004284000A (en) Straightness control stage
Lee et al. An air-bearing displacement sensor for nanometrology of surface forms
JPH0989550A (en) High-accuracy surface configuration measuring method and device
JPS615317A (en) Automatic focusing device