JPH0128152B2 - - Google Patents

Info

Publication number
JPH0128152B2
JPH0128152B2 JP18634880A JP18634880A JPH0128152B2 JP H0128152 B2 JPH0128152 B2 JP H0128152B2 JP 18634880 A JP18634880 A JP 18634880A JP 18634880 A JP18634880 A JP 18634880A JP H0128152 B2 JPH0128152 B2 JP H0128152B2
Authority
JP
Japan
Prior art keywords
polyurethane
skin material
layer
resin layer
polyurethane resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18634880A
Other languages
Japanese (ja)
Other versions
JPS57113065A (en
Inventor
Seiichi Kobayashi
Katsumi Oosawa
Shoji Oka
Takashi Ooi
Katsuya Motojima
Toshio Inami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP18634880A priority Critical patent/JPS57113065A/en
Publication of JPS57113065A publication Critical patent/JPS57113065A/en
Publication of JPH0128152B2 publication Critical patent/JPH0128152B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、座席シート用、家具表面装飾用等に
用いる一体成形用表皮材に関し、特に柔軟性、賦
形性、耐久性に優れた一体成形用表皮材に関する
ものである。 従来より、座席シート等の作成法の一つとし
て、熱可塑性合成樹脂皮膜、或いは熱可塑性合成
樹脂皮膜と繊維基材とが一体に形成された表皮材
を、真空成形法等により所定の形状に賦形し、更
に、その中に合成樹脂発泡体原液(主としてポリ
ウレタンフオーム)を注入、発泡させる一体成形
法が用いられている。しかしながら、その主流を
なすものは、熱可塑性合成樹脂皮膜に塩化ビニル
単独重合体又は共重合体を用いているため、含有
されている可塑剤の揮発による異臭、ガラス等に
付着して曇らせる曇化現象等の問題、更には、長
期間使用の場合には、合成樹脂発泡体への可塑剤
の移行に基づく硬化による風合の欠除等の問題が
あつた。又、深い形状の成形型を用いた場合には
皮膜層の厚さを厚くする必要があるが、表皮材の
重量が大きくなりすぎる欠点があり、更には、注
入発泡する合成樹脂発泡原液(主としてポリウレ
タンフオーム)との接着力が不足する等の欠点が
あり、特に車両用の座席シートとしては好ましい
ものではなかつた。 一方、熱可塑性のポリウレタン樹脂も表皮材用
皮膜として用いられている。しかし、これまで用
いられている表皮材用ポリウレタン樹脂は、殆ん
どが炭素数4以下のヒドロキシル化合物を二塩基
酸とを反応させて得られるポリエステルをポリオ
ール成分とするポリエステル系ポリウレタンであ
る。 しかしながら、本発明者らの見るところでは、
これらのポリエステル系ポリウレタン樹脂を用い
た従来の表皮材は、必ずしも加水分解に対する耐
性が十分ではない。即ち、ポリウレタン樹脂の加
水分解による経時的な劣化を生じ易く、甚だしく
なると表皮材の繊維基材から剥離してしまうこと
になる。又、この表皮材の賦形性も強すぎるゴム
弾性のため必ずしも十分でなく、座席シートの表
皮材として用いた時表面に安定な凹凸模様をつけ
ることがうまく出来ない。又、発泡体と一体成形
したものの形崩れも生じ易い。更に、その耐熱性
も十分でなく、真空成形のための表面加熱により
穴が開いたりする等の種々の欠点を有するもので
あつた。 又、一方では1対の凹凸型よりなるプレス成形
型を用いて加熱加圧(場合により加湿を併用)し
て表皮材を所定形状に賦形した後、賦形された凹
所に合成樹脂発泡原液(主としてポリウレタンフ
オーム)を注入発泡硬化させる方法も提案されて
いる。これらの方法に用いられる表皮材として
は、真空成形法に用いられる前述の表皮材の他
に、編織布単体があげられるが、編織布単体を用
いる場合は、注入発泡原液が表面に浸み出し外観
を損ね、又、他の表皮材においても前述の如く賦
形性、耐久性の面で種々の欠点を有するものであ
つた。 以上に鑑み、本発明者らは、安定な凹凸模様を
与え得る良好な賦形性と良好な耐加水分解性とを
有する柔軟性の優れたポリウレタン系表皮材を得
るために鋭意研究をかさね、特定のポリウレタン
樹脂からなる皮膜層を用いることにより、この目
的を達成し得ることを見出し、本発明をなすに至
つた。 即ち、本発明は、伸縮性を有する繊維基材にポ
リウレタン樹脂層を積層してなる表皮材におい
て、該ポリウレタン樹脂層が、ポリテトラメチレ
ングリコール、ポリプロピレングリコール等のポ
リエーテルポリオール、及びポリカーボネート系
ポリエステルからなる群から選ばれる少なくとも
1種をポリオール成分とするポリウレタンからな
り、その100%モジユラスが20〜200Kg/cm2で、か
つ、その100℃における残留歪率が10%以上の樹
脂層であることを特徴とする一体成形用表皮材に
関するものである。 本発明の表皮材は、伸縮性を有する繊維基材と
本発明の特徴部分をなす樹脂層の間に、該樹脂層
の構成要素と同じポリウレタンからなる発泡層を
設けてなる表皮材をも包含する。 以下に、本発明を詳細に説明する。 本発明に用いる繊維基材としては、特に制限は
ないが、伸び率が縦、横共に50%以上の編布、織
布、不織布が好ましく用いられる。 本発明の特徴部分をなすポリウレタン樹脂層
は、ポリテトラメチレングリコール、ポリプロピ
レングリコール等のポリエーテルポリオール、ポ
リカーボネート系ポリエステルをポリオール成分
として用い、ジフエニルメタンジイソシアネー
ト、トリレンジイソシアネート、ヘキサメチレン
ジイソシアネート等のイソシアネート及び低分子
量のグリコール又はジアミン等と反応させて得ら
れるポリウレタンによつて形成される。ポリオー
ル成分に上記のものから選ばれたものを用いて得
られたポリウレタン樹脂層の耐加水分解性は後掲
実施例によつて示されるように、従来用いられて
いるポリウレタン樹脂層のものより非常に優れて
いる。 本発明においては、ポリウレタン樹脂層は、そ
の100%モジユラスが20〜200Kg/cm2となるように
調製されなければならない。20Kg/cm2未満では実
用的な表皮材としては弱すぎ、200Kg/cm2をこえ
ると風合が硬くなりすぎて好ましくない。 ポリウレタン樹脂層の厚さは、表皮材の用途等
によつても変るが、10〜800μが普通である。10μ
より薄くては、真空成形、或いは加熱加圧成形時
に伸ばされた時厚みが薄くなりすぎ、ピンホール
発生の原因となり好ましくない。800μより厚く
なると風合が硬くなり好ましくない。 ポリウレタン樹脂層は、その残留歪率を100℃
において10%以上にする必要がある。又、30%以
上がより好ましい。10%未満では真空一体成形後
の表皮材の収縮力が強く形崩れが発生し易く好ま
しくない。 又、ポリウレタン樹脂層は、130℃以上の軟化
点を持つものであることが望ましい。真空成形、
又は加熱加圧成形時に表面加熱をする方法では、
これより低い軟化点は好ましくないからである。 ポリウレタン樹脂層は、繊維基布と接触する側
を発泡ポリウレタン層に代えてもよい。換言すれ
ば、発泡していないポリウレタン非発泡層と発泡
ポリウレタン層、繊維基布層の3層で表皮材を構
成したものも本発明に含まれる。このようにポリ
ウレタン発泡層を介在させることにより表皮材と
しての風合が良好となる。発泡層が連続気泡であ
る場合には、通気性、吸湿性にも優れたものとな
る。一方、発泡層が独立気泡である場合は、真空
成形又は加熱加圧成形時に非発泡層にピンホール
が発生しても、注入発泡原液が非発泡層から表皮
材表面に浸み出すのを阻止する役割を果すので、
ポリウレタン非発泡層を一層薄くすることがで
き、なお一層良好な風合のものとすることができ
る。この発泡ポリウレタン樹脂層の材質は、非発
泡ポリウレタン層と同じもの、即ち、前記した特
定のポリオールを用いて得られる発泡ポリウレタ
ンであることが好ましい。発泡剤、発泡法は慣用
のものを用いれば十分である。ポリウレタン発泡
層の密度は0.2〜0.7g/c.c.とするのが好ましい。
0.2g/c.c.以下になると物性が弱くなりすぎ実用
的でなくなり、0.7g/c.c.以上では風合が硬くな
り、又、発泡層を設ける意味がなくなり、好まし
くない。ポリウレタン発泡層の厚みは非発泡層の
厚みとも関係するが、5000μをこえることは好ま
しくない。表皮材が厚ぼつたくなり、成形時に皺
が大きく発生し易くなるからである。その他非発
泡層の場合と同様に、軟化点は130℃以上、残留
歪率は100℃で10%以上であることが望ましい。 本発明の表皮材は、そのポリウレタン樹脂層を
構成する特定構造のポリウレタンのため、加水分
解による劣化が少なく、同時に紫外線による劣化
が少ない。即ち、耐加水分解性、耐光性、耐候性
等の耐久性に優れ、又、膜の諸特性値を前記範囲
に特定しているため、柔軟性、耐熱性、賦形性に
優れたものである。 本発明の表皮材は、種々の用途に用い得るが、
特に真空成形、或いは加熱加圧成形により型にフ
イツトさせ、その凹部へ合成樹脂発泡原液を注入
発泡硬化させ一体に成形せしめて自動車用、家具
用等の座席シートを作るのに好適に用いられ、所
望により安定な凹凸模様を付した耐久性、柔軟性
に優れた座席シートが、発泡体との一体成形によ
り容易に得られる。 以下に、本発明の実施例を示す。実施例中、部
は重量部を表わす。 実施例 1 フラツトなシリコンペーパー表面に、ポリテト
ラメチレングリコール系ポリウレタン樹脂溶液を
乾燥厚みが55μになるように塗布し、これを加熱
乾燥してポリウレタン非発泡層を形成せしめた。
この層の被膜は、軟化点180℃、100%モジユラス
40Kg/cm2、100℃における残留歪率が60%のもの
であつた。このポリウレタン非発泡層上に、ポリ
プロピレングリコール系イソシアネート末端プレ
ポリマーを主体とする発泡性ウレタンエラストマ
ー配合物を目付量170g/m2で塗布し、これを温
度110℃の加熱機にて加湿下で3分間加熱し、発
泡硬化させて厚み400μ、密度0.48g/c.c.、軟化点
165℃、100℃における残留歪率38%のポリウレタ
ン発泡層を得た。 次に、該ポリウレタン発泡層上にポリテトラメ
チレングリコール系二液型ポリウレタン接着剤を
目付量150g/m2で塗布し、伸び率縦50%、横200
%の6−ナイロン編布を貼り合わせ、100℃で7
分間加熱して接着剤を反応硬化させた後、シリコ
ンペーパーを剥離し、真空成形用表皮材を得た。
この表皮材を真空成形型にセツトし、遠赤外ヒー
ターにより150℃に加熱後直ちに減圧吸引して成
形型内面に密着させた後、 ポリマーポリオール 40部 ポリエーテル 60部 水 3部 シリコンオイル 1部 触媒 0.5部 MDI/TDI(=45/55) 53部 (インデツクス105) よりなる発泡体原液を型温42℃で注入し、80℃で
8分間発泡硬化した後、脱型し、立体的に賦形さ
れた風合良好な成形品を得た。得られた成形品の
賦形性、耐加水分解性、曇価の測定結果を第1
表、第2表及び第3表に示す。 実施例 2 フラツトなシリコンペーパー表面にポリカーボ
ネート系ポリエステルポリウレタン樹脂溶液を、
乾燥厚みが100μの非発泡層になるように塗布し、
これを加熱乾燥してポリウレタン非発泡層を形成
せしめた。この層の被膜は、軟化点170℃、100%
モジユラス110Kg/cm2、100℃における残留歪率が
70%のものであつた。このポリウレタン非発泡層
上にポリプロピレングリコール二液型ポリウレタ
ン接着剤を目付量150g/m2で塗布し、伸び率縦
50%、横200%の6−ナイロン編布を貼り合わせ、
100℃にて7分間加熱し接着剤を反応硬化させた
後、シリコンペーパーを剥離し真空成形用表皮材
を得た。この表皮材を真空成形型にセツトし、熱
風により150℃に加熱後、直ちに減圧吸引して成
形型内面に密着させた後、 ポリマーポリオール 40部 ポリエーテル 60部 水 3部 シリコンオイル 1部 触媒 0.5部 MDI/TDI(=45/55) 53部 (インデツクス105) よりなる発泡体原液を型温43℃で注入し、65℃で
10分間発泡硬化した後、脱型し、立体的に賦形さ
れた風合良好な成形品を得た。このものの賦形
性、耐加水分解性、曇価の測定結果を第1表、第
2表、及び第3表に示す。 実施例 3 フラツトなシリコンペーパー表面にポリプロピ
レングリコール系ポリウレタン樹脂溶液を乾燥厚
みが50μになるように塗布し、加熱乾燥してポリ
ウレタン非発泡層を形成せしめた。この層の被膜
は軟化点200℃、100%モジユラス50Kg/cm2、100
℃における残留歪率が80%のものであつた。この
ポリウレタン非発泡層上にポリプロピレングリコ
ール系イソシアネート末端プレポリマーを主体と
する発泡性ウレタンエラストマー配合物を目付量
400g/m2で塗布し、これを温度115℃の加熱機に
て加湿下で3分間加熱して発泡硬化させ、厚み
1500μ、密度0.3g/c.c.、軟化点170℃、100℃にお
ける残留歪率75%のポリウレタン発泡層を得た。 次に、該ポリウレタン発泡層上にポリテトラメ
チレングリコール系二液型ポリウレタン接着剤を
目付量130g/m2で塗布し、伸び率縦150%、横
250%の66−ナイロン編布を貼り合わせ、80℃に
て15分間加熱して接着剤を反応硬化させた後、シ
リコンペーパーを剥離し表皮材を得た。この表皮
材を凹凸型よりなる一対のプレス型間に、編布面
が凹型側に位置するように載置し、150℃にて2
分間加圧プレスして立体的に賦形された表皮材を
得た。この表皮材の凹部に実施例1と同じ配合の
ウレタンフオーム原液を注入発泡硬化させた後脱
型し、立体感に富む風合良好な成形品を得た。得
られた成形品の賦形性、耐加水分解性、曇価の測
定結果を第1表、第2表及び第3表に示す。 比較例 1 フラツトなシリコンペーパー表面に、エチレン
グリコールとアジピン酸とを反応させて得たポリ
エステルをポリオール成分とするポリエステル系
ポリウレタン樹脂溶液を乾燥厚みが40μになるよ
うに塗布し、100℃にて3分間加熱乾燥してポリ
ウレタン連続被膜層を形成せしめた。この層の被
膜は、軟化点150℃、100%モジユラス150Kg/cm2
100℃における残留歪率が4%のものであつた。
このポリウレタン被膜層上に軟化点180℃、100%
モジユラスが50Kg/cm2のエチレン−ジエチレング
リコール−アジピン酸系二液ポリエステルポリウ
レタン樹脂溶液をナイフコーターにて目付量160
g/m2にて塗布し、まだ粘着性を有するうちに、
伸び率縦50%、横100%のポリエステル片面起毛
布の無起毛面を貼り合わせ、次いで80℃の加熱機
にて10分間加熱乾燥硬化後、シリコンペーパーを
剥離して積層物を得た。次に実施例1と同様に真
空成形し成形品を得た。得られた成形品の耐加水
分解性及び賦形性を第1表及び第2表に示す。 比較例 2 フラツトなシリコンペーパー上にエチレングリ
コールとアジピン酸とを反応させて得たポリエス
テルをポリオール成分とするポリエステル系二液
型ポリウレタン樹脂溶液を、ナイフコーターにて
目付量300g/m2で塗布し、これを90℃にて5分
間乾燥し、まだ粘着性を有するうちに伸び率縦50
%、横70%の綿片面起毛布の無起毛面を貼り合わ
せ、反応硬化後シリコンペーパーを剥離し得られ
た積層物を実施例1と同様に真空成形し成形品を
得た。得られた成形品の耐加水分解性及び賦形性
を第1表及び第2表に示す。 比較例 3 ポリ塩化ビニル樹脂100部、可塑剤70部、安定
剤5部からなるポリ塩化ビニル配合物を、カレン
ダー法により厚み0.45mmのポリ塩化ビニルシート
を伸び率縦50%、横200%の6−ナイロン編布に
積層して真空成形用表皮材を得た。この表皮材を
実施例1と同様に真空成形して成形品を得た。得
られた成形品の賦形性、耐加水分解性、曇価の測
定結果を第1表、第2表及び第3表に示す。 なお、耐加水分解性の測定及び曇価の測定は、
次の方法によつた。 (1) 耐加水分解性の測定 成形品の試料片を相対湿度95%、温度70℃の
条件に6週間放置し(ジヤングルテスト)、そ
の後の試料片の表皮材とポリウレタンフオーム
との剥離試験を行ない、剥離状態を観察した。 (2) 曇価の測定 成形品の試料片を積分球式光線透過率測定装
置(JIS−K6714)を用いて測定した。
The present invention relates to an integrally molded skin material used for seat seats, furniture surface decoration, etc., and particularly relates to an integrally molded skin material that has excellent flexibility, formability, and durability. Conventionally, as one method for producing seats, etc., a thermoplastic synthetic resin film, or a skin material in which a thermoplastic synthetic resin film and a fiber base material are integrally formed, is formed into a predetermined shape using a vacuum forming method or the like. An integral molding method is used in which the material is shaped, and then a synthetic resin foam stock solution (mainly polyurethane foam) is injected and foamed. However, most of them use vinyl chloride homopolymer or copolymer for the thermoplastic synthetic resin film, so the plasticizer contained therein evaporates and creates an unpleasant odor and causes fogging that adheres to glass etc. Furthermore, in the case of long-term use, there were problems such as loss of texture due to hardening due to transfer of plasticizer to the synthetic resin foam. In addition, when using a mold with a deep shape, it is necessary to increase the thickness of the coating layer, but this has the disadvantage that the weight of the skin material becomes too large. It has drawbacks such as insufficient adhesive strength with polyurethane foam (polyurethane foam), and is not particularly suitable for use as a seat for a vehicle. On the other hand, thermoplastic polyurethane resins are also used as coatings for skin materials. However, most of the polyurethane resins for skin materials used so far are polyester polyurethanes whose polyol component is polyester obtained by reacting a hydroxyl compound having 4 or less carbon atoms with a dibasic acid. However, in the view of the present inventors,
Conventional skin materials using these polyester-based polyurethane resins do not necessarily have sufficient resistance to hydrolysis. That is, the polyurethane resin is likely to deteriorate over time due to hydrolysis, and if the situation worsens, it will peel off from the fiber base material of the skin material. Furthermore, the formability of this skin material is not necessarily sufficient due to its excessively strong rubber elasticity, and when used as a skin material for a seat, it is difficult to form a stable uneven pattern on the surface. Moreover, even though it is integrally molded with the foam, it is likely to lose its shape. Furthermore, its heat resistance is not sufficient, and it has various drawbacks such as holes being formed due to surface heating during vacuum forming. On the other hand, after shaping the skin material into a predetermined shape by heating and pressurizing (combined with humidification in some cases) using a press mold consisting of a pair of concave and convex molds, synthetic resin foam is applied to the shaped recesses. A method has also been proposed in which a stock solution (mainly polyurethane foam) is injected and foamed to harden. In addition to the above-mentioned skin materials used in the vacuum forming method, the skin material used in these methods includes a single textile fabric, but when using a single textile fabric, the injected foaming solution seeps onto the surface. In addition, other skin materials have various drawbacks in terms of formability and durability, as described above. In view of the above, the present inventors have conducted extensive research in order to obtain a polyurethane skin material with excellent flexibility that has good formability and good hydrolysis resistance that can provide a stable uneven pattern. It has been discovered that this object can be achieved by using a film layer made of a specific polyurethane resin, and the present invention has been completed. That is, the present invention provides a skin material formed by laminating a polyurethane resin layer on a stretchable fiber base material, in which the polyurethane resin layer is made of a polyether polyol such as polytetramethylene glycol or polypropylene glycol, or a polycarbonate polyester. A resin layer made of polyurethane containing at least one polyol component selected from the group consisting of a polyurethane having a 100% modulus of 20 to 200 kg/cm 2 and a residual strain rate of 10% or more at 100°C. The present invention relates to a characteristic skin material for integral molding. The skin material of the present invention also includes a skin material in which a foam layer made of the same polyurethane as the constituent element of the resin layer is provided between a fiber base material having elasticity and a resin layer that is a characteristic part of the present invention. do. The present invention will be explained in detail below. The fiber base material used in the present invention is not particularly limited, but knitted fabrics, woven fabrics, and nonwoven fabrics with an elongation rate of 50% or more in both length and width are preferably used. The polyurethane resin layer, which is a feature of the present invention, uses polyether polyols such as polytetramethylene glycol and polypropylene glycol, and polycarbonate polyesters as polyol components, and isocyanates such as diphenylmethane diisocyanate, tolylene diisocyanate, and hexamethylene diisocyanate. It is formed from polyurethane obtained by reacting with low molecular weight glycols or diamines. As shown in the examples below, the hydrolysis resistance of the polyurethane resin layer obtained using a polyol component selected from the above is much higher than that of the conventionally used polyurethane resin layer. Excellent. In the present invention, the polyurethane resin layer must be prepared so that its 100% modulus is 20 to 200 Kg/cm 2 . If it is less than 20 Kg/cm 2 , it is too weak to be used as a practical skin material, and if it exceeds 200 Kg/cm 2 , the texture becomes too hard, which is undesirable. The thickness of the polyurethane resin layer varies depending on the use of the skin material, etc., but is usually 10 to 800 μm. 10μ
If it is thinner, the thickness becomes too thin when stretched during vacuum forming or heat-pressing forming, which is undesirable because it causes pinholes. If it is thicker than 800μ, the texture will be hard and undesirable. The polyurethane resin layer has a residual strain rate of 100℃
It is necessary to make it 10% or more. Moreover, 30% or more is more preferable. If it is less than 10%, the shrinkage force of the skin material after vacuum integral molding is strong and the shape is likely to be lost, which is not preferable. Further, it is desirable that the polyurethane resin layer has a softening point of 130°C or higher. vacuum forming,
Or, in the method of surface heating during hot pressure molding,
This is because a softening point lower than this is not preferred. The polyurethane resin layer may be replaced with a foamed polyurethane layer on the side that contacts the fiber base fabric. In other words, the present invention includes a skin material composed of three layers: a non-foamed polyurethane layer, a foamed polyurethane layer, and a fiber base fabric layer. By interposing the polyurethane foam layer in this manner, the texture as a skin material is improved. When the foam layer has open cells, it has excellent air permeability and hygroscopicity. On the other hand, if the foam layer has closed cells, even if pinholes occur in the non-foam layer during vacuum forming or heat-pressure molding, the injected foam stock solution will be prevented from seeping out from the non-foam layer to the surface of the skin material. Because it plays the role of
The polyurethane non-foamed layer can be made even thinner and has even better texture. The material of this foamed polyurethane resin layer is preferably the same as that of the non-foamed polyurethane layer, that is, the foamed polyurethane obtained using the above-mentioned specific polyol. It is sufficient to use conventional foaming agents and foaming methods. The density of the polyurethane foam layer is preferably 0.2 to 0.7 g/cc.
If it is less than 0.2 g/cc, the physical properties will be too weak to be practical, and if it is more than 0.7 g/cc, the texture will be hard and there will be no point in providing a foam layer, which is not preferable. The thickness of the polyurethane foam layer is also related to the thickness of the non-foam layer, but it is not preferable for it to exceed 5000μ. This is because the skin material becomes thick and lumpy, and wrinkles are likely to occur during molding. As with other non-foamed layers, it is desirable that the softening point is 130°C or higher and the residual strain rate is 10% or higher at 100°C. Since the skin material of the present invention has a specific structure of polyurethane constituting its polyurethane resin layer, it is less likely to deteriorate due to hydrolysis and at the same time, less likely to be deteriorated by ultraviolet rays. In other words, it has excellent durability such as hydrolysis resistance, light resistance, and weather resistance, and because the film has various characteristic values within the above range, it has excellent flexibility, heat resistance, and formability. be. The skin material of the present invention can be used for various purposes, but
In particular, it is suitably used to make seats for automobiles, furniture, etc. by fitting it into a mold by vacuum forming or heating and pressure forming, and injecting a synthetic resin foaming solution into the recess, foaming and hardening, and molding it as one piece. A highly durable and flexible seat sheet with a stable uneven pattern, if desired, can be easily obtained by integral molding with a foam. Examples of the present invention are shown below. In the examples, parts represent parts by weight. Example 1 A polytetramethylene glycol-based polyurethane resin solution was applied to the surface of a flat silicone paper to a dry thickness of 55 μm, and this was heated and dried to form a non-foamed polyurethane layer.
This layer has a softening point of 180℃ and a 100% modulus.
The residual strain rate at 40Kg/cm 2 and 100°C was 60%. On this polyurethane non-foamed layer, a foamable urethane elastomer compound mainly composed of a polypropylene glycol-based isocyanate-terminated prepolymer was applied at a basis weight of 170 g/m 2 , and this was heated in a heating machine at a temperature of 110°C under humidification for 30 minutes. Heated for minutes, foamed and hardened to a thickness of 400μ, density of 0.48g/cc, and softening point.
A polyurethane foam layer with a residual strain rate of 38% at 165°C and 100°C was obtained. Next, a polytetramethylene glycol-based two-component polyurethane adhesive was applied on the polyurethane foam layer at a basis weight of 150 g/ m2 , and the elongation rate was 50% vertically and 200% horizontally.
% of 6-nylon knitted fabric is pasted together and heated to 7% at 100℃.
After heating for a minute to reaction-cure the adhesive, the silicone paper was peeled off to obtain a skin material for vacuum forming.
This skin material was set in a vacuum mold, heated to 150°C with a far-infrared heater, and immediately vacuumed to make it adhere to the inside of the mold.Polymer polyol 40 parts Polyether 60 parts Water 3 parts Silicone oil 1 part A foam stock solution consisting of catalyst 0.5 parts MDI/TDI (=45/55) 53 parts (index 105) was injected at a mold temperature of 42°C, foamed and cured at 80°C for 8 minutes, then demolded and three-dimensionally shaped. A molded article with a good shape and texture was obtained. The measurement results of the shapeability, hydrolysis resistance, and haze value of the obtained molded product were
Tables 2 and 3 show the results. Example 2 A polycarbonate-based polyester polyurethane resin solution was applied to a flat silicone paper surface.
Apply to a non-foaming layer with a dry thickness of 100μ,
This was heated and dried to form a polyurethane non-foamed layer. The coating of this layer has a softening point of 170℃ and 100%
Modulus 110Kg/cm 2 , residual strain rate at 100℃
It was 70%. On this polyurethane non-foamed layer, a polypropylene glycol two-component polyurethane adhesive was applied at a basis weight of 150 g/ m2 , and the elongation rate was
6-nylon knitted fabric of 50% width and 200% width is pasted together.
After heating at 100° C. for 7 minutes to reaction-cure the adhesive, the silicone paper was peeled off to obtain a skin material for vacuum forming. This skin material was set in a vacuum mold, heated to 150℃ with hot air, and immediately vacuumed to adhere to the inside of the mold.Polymer polyol 40 parts Polyether 60 parts Water 3 parts Silicone oil 1 part Catalyst 0.5 A foam stock solution consisting of 53 parts MDI/TDI (=45/55) (index 105) was injected at a mold temperature of 43°C and heated to 65°C.
After foaming and curing for 10 minutes, the mold was removed to obtain a three-dimensionally shaped molded product with a good texture. The measurement results of the shapeability, hydrolysis resistance, and haze value of this product are shown in Tables 1, 2, and 3. Example 3 A polypropylene glycol-based polyurethane resin solution was applied to the surface of a flat silicone paper to a dry thickness of 50 μm, and then heated and dried to form a non-foamed polyurethane layer. The coating of this layer has a softening point of 200℃ and a 100% modulus of 50Kg/cm 2 , 100
The residual strain rate at ℃ was 80%. On this polyurethane non-foaming layer, a foamable urethane elastomer compound mainly composed of polypropylene glycol-based isocyanate-terminated prepolymer is applied in a basis weight.
400g/m 2 is applied and heated in a heating machine at a temperature of 115℃ for 3 minutes under humidification to foam and harden.
A polyurethane foam layer having a diameter of 1500μ, a density of 0.3 g/cc, a softening point of 170°C, and a residual strain rate of 75% at 100°C was obtained. Next, a polytetramethylene glycol-based two-component polyurethane adhesive was applied on the polyurethane foam layer at a basis weight of 130 g/m 2 , and the elongation rate was 150% in the vertical direction and the horizontal direction.
250% 66-nylon knitted fabrics were bonded together and heated at 80°C for 15 minutes to reaction cure the adhesive, and then the silicone paper was peeled off to obtain a skin material. This skin material was placed between a pair of concave and convex press molds with the knitted fabric surface facing the concave mold side, and heated at 150℃ for 2 hours.
A three-dimensionally shaped skin material was obtained by pressure pressing for a minute. A urethane foam stock solution having the same composition as in Example 1 was injected into the concave portion of this skin material, allowed to foam and harden, and then removed from the mold to obtain a molded product with a rich three-dimensional effect and a good texture. Tables 1, 2, and 3 show the measurement results of the shapeability, hydrolysis resistance, and haze value of the obtained molded product. Comparative Example 1 A polyester-based polyurethane resin solution containing polyester obtained by reacting ethylene glycol and adipic acid as a polyol component was applied to a flat silicone paper surface to a dry thickness of 40 μm, and the solution was heated at 100°C for 30 minutes. A continuous polyurethane coating layer was formed by heating and drying for a minute. The coating of this layer has a softening point of 150℃, a 100% modulus of 150Kg/cm 2 ,
The residual strain rate at 100°C was 4%.
On this polyurethane coating layer, the softening point is 180℃, 100%
A two-component polyester polyurethane resin solution based on ethylene-diethylene glycol-adipic acid with a modulus of 50 kg/cm 2 was coated with a knife coater to give a basis weight of 160.
g/m 2 and while still sticky,
The non-raised sides of polyester single-sided raised fabrics with an elongation rate of 50% in length and 100% in width were laminated together, and then dried and cured by heating in a heating machine at 80° C. for 10 minutes, and then the silicone paper was peeled off to obtain a laminate. Next, vacuum forming was performed in the same manner as in Example 1 to obtain a molded product. Tables 1 and 2 show the hydrolysis resistance and shaping properties of the molded articles obtained. Comparative Example 2 A polyester-based two-component polyurethane resin solution containing polyester obtained by reacting ethylene glycol and adipic acid as a polyol component was applied onto a flat silicone paper using a knife coater at a basis weight of 300 g/m 2 . , dry this at 90℃ for 5 minutes, and while it is still sticky, the elongation rate is 50% in the longitudinal direction.
%, the non-fapped side of a 70% cotton single-sided raised fabric was laminated together, and after reaction and curing, the silicone paper was peeled off, and the resulting laminate was vacuum formed in the same manner as in Example 1 to obtain a molded product. Tables 1 and 2 show the hydrolysis resistance and shaping properties of the molded articles obtained. Comparative Example 3 A polyvinyl chloride compound consisting of 100 parts of polyvinyl chloride resin, 70 parts of plasticizer, and 5 parts of stabilizer was prepared by calendering into a polyvinyl chloride sheet with a thickness of 0.45 mm with an elongation rate of 50% in length and 200% in width. 6-Nylon knitted fabric was laminated to obtain a skin material for vacuum forming. This skin material was vacuum formed in the same manner as in Example 1 to obtain a molded product. Tables 1, 2, and 3 show the measurement results of the shapeability, hydrolysis resistance, and haze value of the obtained molded product. In addition, for the measurement of hydrolysis resistance and haze value,
I used the following method. (1) Measurement of hydrolysis resistance A sample piece of the molded product was left for 6 weeks at a relative humidity of 95% and a temperature of 70°C (the Youngle test), and then a peel test was conducted between the skin material of the sample piece and the polyurethane foam. The state of peeling was observed. (2) Measurement of haze value A sample piece of the molded article was measured using an integrating sphere type light transmittance measuring device (JIS-K6714).

【表】【table】

【表】【table】

【表】【table】

【表】 上表より明らかなように、賦形性、耐加水分解
性に優れる曇価の小さい柔軟な表皮一体発泡クツ
シヨン体は本発明品だけであることが明らかであ
る。
[Table] As is clear from the above table, it is clear that the product of the present invention is the only flexible skin-integrated foamed cushion with excellent shaping properties and hydrolysis resistance and a low haze value.

Claims (1)

【特許請求の範囲】 1 伸縮性を有する繊維基材にポリウレタン樹脂
層を積層してなる表皮材において、該ポリウレタ
ン樹脂層が、ポリテトラメチレングリコール、ポ
リプロピレングリコール等のポリエーテルポリオ
ール、及びポリカーボネート系ポリエステルから
なる群から選ばれる少なくとも1種をポリオール
成分とするポリウレタンからなり、その100%モ
ジユラスが20〜200Kg/cm2で、かつ、その100℃に
おける残留歪率が10%以上の樹脂層であることを
特徴とする一体成形用表皮材。 2 ポリウレタン樹脂層が非発泡皮膜である特許
請求の範囲第1項記載の一体成形用表皮材。 3 ポリウレタン樹脂層が、非発泡皮膜と繊維基
材側の発泡層の2層からなる特許請求の範囲第1
項記載の一体成形用表皮材。
[Scope of Claims] 1. A skin material formed by laminating a polyurethane resin layer on a stretchable fiber base material, wherein the polyurethane resin layer is made of a polyether polyol such as polytetramethylene glycol or polypropylene glycol, or a polycarbonate polyester. A resin layer made of polyurethane containing at least one polyol component selected from the group consisting of, whose 100% modulus is 20 to 200 Kg/ cm2 , and whose residual strain rate at 100°C is 10% or more. A skin material for integral molding characterized by: 2. The skin material for integral molding according to claim 1, wherein the polyurethane resin layer is a non-foamed film. 3. Claim 1 in which the polyurethane resin layer consists of two layers: a non-foamed film and a foamed layer on the fiber base material side.
Skin material for integral molding as described in section.
JP18634880A 1980-12-30 1980-12-30 Skin material for integral molding Granted JPS57113065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18634880A JPS57113065A (en) 1980-12-30 1980-12-30 Skin material for integral molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18634880A JPS57113065A (en) 1980-12-30 1980-12-30 Skin material for integral molding

Publications (2)

Publication Number Publication Date
JPS57113065A JPS57113065A (en) 1982-07-14
JPH0128152B2 true JPH0128152B2 (en) 1989-06-01

Family

ID=16186775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18634880A Granted JPS57113065A (en) 1980-12-30 1980-12-30 Skin material for integral molding

Country Status (1)

Country Link
JP (1) JPS57113065A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757717B2 (en) * 2006-06-15 2011-08-24 アキレス株式会社 Uneven surface material

Also Published As

Publication number Publication date
JPS57113065A (en) 1982-07-14

Similar Documents

Publication Publication Date Title
US3941633A (en) Plastic laminate, article and method of making same
JP3013108B2 (en) Process for producing open-cell, cold-formable rigid polyurethane foam and its use for producing molded articles
US8486522B2 (en) Multi-layer composite materials comprising a foam layer, corresponding method of production and use thereof
US20100330333A1 (en) Multi-layer composite materials comprising a textile sheet material, production and corresponding method of use thereof
JP4515841B2 (en) Urethane polyol prepolymer, porous polyurethane body and method for producing the same
KR101816392B1 (en) Artificial leather for vehicle interior material and method for manufacturing the same
KR101983443B1 (en) Artificial leather using aqueous polyurethane and Manufacturing Method thereof
US20120280416A1 (en) Method for making a composite article
TW202306775A (en) Multilayered composite material comprising foamed granules
WO2019065758A1 (en) Synthetic resin skin material composite and method for manufacturing synthetic resin skin material composite
EP0786333B1 (en) Method for the manufacture of molded articles coated with a microfibrous material
JPH054904B2 (en)
JP7271184B2 (en) Skin-in-one foam molded product and manufacturing method thereof
JP2931382B2 (en) Polyurethane and leather-like composite sheet using the same
JPH0551882A (en) Forming sheet material
JPH0128152B2 (en)
CN112622392B (en) Thermoplastic polyurethane foam product with surface coating and preparation method thereof
JPS6143471B2 (en)
JPH02292041A (en) Manufacture of parts from synthetic foam layer and parts produced thereby
JPH086265B2 (en) Wrinkled synthetic leather similar to natural leather and method for producing the same
JP2590362B2 (en) Flocked urethane molded products
JPH0577349A (en) Molding sheet like article
JPH0531842A (en) Composite sheet for forming
JPH06294077A (en) Synthetic leather and its production
JPS5920030B2 (en) Synthetic leather with excellent flexibility and durability