JPH01281447A - Method for fixing recording and erasing states - Google Patents

Method for fixing recording and erasing states

Info

Publication number
JPH01281447A
JPH01281447A JP63111251A JP11125188A JPH01281447A JP H01281447 A JPH01281447 A JP H01281447A JP 63111251 A JP63111251 A JP 63111251A JP 11125188 A JP11125188 A JP 11125188A JP H01281447 A JPH01281447 A JP H01281447A
Authority
JP
Japan
Prior art keywords
recording
light
recording layer
fixing
erasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63111251A
Other languages
Japanese (ja)
Inventor
Toshiichi Onishi
敏一 大西
Kazuo Yoshinaga
和夫 吉永
Yutaka Kurabayashi
豊 倉林
Gakuo Eguchi
江口 岳夫
Akihiro Mori
明広 毛利
Shuzo Kaneko
金子 修三
Kazuo Isaka
井阪 和夫
Yoshi Toshida
土志田 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63111251A priority Critical patent/JPH01281447A/en
Publication of JPH01281447A publication Critical patent/JPH01281447A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To form the region which is impossible to record and erase on a rewriting type photorecording medium, and to make possible to protect a recorded information in a hard system by fixing the molecular structure or the fabric structure contg. in a recording layer with a polymerization or a cross-linking reaction. CONSTITUTION:In the photorecording medium contg. the recording layer capable of changing optical characteristics by changing a light transmittance or a light reflecting power, the molecular structure or the fabric structure of a specified region contg. in the recording layer are fixed, thereby fixing the optical characteristics of the recording layer, and the fixed optical characteristics of the recording layer are controlled so as not to change by recording and erasing means. Thus, the region which is impossible to record and erase, is formed on the rewriting type photorecording medium, and the protection of the recorded information in the hard system makes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は書き換え型光記録媒体上の特定領域に記0光消
去光を照射しても変化しない領域を形成する記録及び消
去状態の固定化方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for fixing a recording and erasing state to form an area that does not change even when a specific area on a rewritable optical recording medium is irradiated with writing and erasing light. Regarding the method.

〔従来の技術〕[Conventional technology]

従来書き換え可能な光記録媒体には、光磁気メモリーや
T e Ox系の相変化型光メモリー等無機材料を記録
層に用いた光記録媒体と、一方、フォトクロミック材料
や液晶材料あるいは相分離ポリマー等の9機材料を記録
層に用いた光記録媒体とに大別される。無機材料を用い
た光記録媒体は記録層の環境安定性に問題がある上に、
製造に蒸着などが必要でコストが高くなるという欠点が
ある。一方、有機材料を用いた光記録媒体は一般に製造
コストが安い点で有利であり、特に相分離ポリマーや高
分子液晶等の高分子材料を用いた光記録媒体は薄膜を容
易に作りやすく、環境安定性にも優れている。
Conventional rewritable optical recording media include optical recording media that use inorganic materials for the recording layer, such as magneto-optical memories and T e Ox-based phase change optical memories, and optical recording media that use inorganic materials for the recording layer, such as photochromic materials, liquid crystal materials, phase-separated polymers, etc. Optical recording media are broadly classified into optical recording media that use nine types of materials for the recording layer. Optical recording media using inorganic materials have problems with the environmental stability of the recording layer, and
The drawback is that it requires vapor deposition and other processes for manufacturing, which increases the cost. On the other hand, optical recording media using organic materials are generally advantageous in terms of low manufacturing costs, and in particular, optical recording media using polymeric materials such as phase-separated polymers and polymeric liquid crystals are easy to form thin films and are environmentally friendly. It also has excellent stability.

〔発明が解決しようとしている問題点〕しかしながら、
これら書き換え型光記録媒体は記録の消去あるいはオー
ガーライトが可能である反面、該消去あるいは該記録に
対する記録の保護に欠けるという問題点があった。つま
り、光記録媒体中の記録情報は、ソフト上の保護は可能
であるが、媒体自身すなわちハード上の保護は、光記録
媒体中の全記録を、−指保護することは可能であるが、
光記録媒体中の各トラックあるいは各ビット単位での記
録の保護は実現されていないという欠点があった。また
、光記録媒体上の情報記録では、数ビット単位で1つの
情報となる場合があり、記録情報の保護のためには、記
録状態消去(未記録も含む)状態の両方の状態の固定化
が(つまり記録光でも消去光でも変化しない領域の形成
カリ必要とされていた。
[Problem that the invention is trying to solve] However,
Although these rewritable optical recording media are capable of erasing or auger writing, they have a problem in that they lack protection for the erasure or recording. In other words, it is possible to protect the information recorded on an optical recording medium using software, but it is possible to protect the medium itself, that is, the hardware, by protecting all records on the optical recording medium.
There is a drawback in that recording protection for each track or each bit in an optical recording medium is not realized. In addition, when recording information on optical recording media, one piece of information may consist of several bits, so in order to protect the recorded information, it is necessary to fix both the recorded state and the erased (including unrecorded) state. (In other words, it was necessary to form an area that does not change with either recording light or erasing light.)

〔問題点を解決するための手段(及び作用)〕本発明は
光透過率又は光反射率が変化しその光学特性の保持が可
能である記録層を有する光記録媒体に対し記録層中の特
定領域の分子講造あるいは組織構造を固定することによ
りその光学特性が固定化され、その固定された光学特性
が記録および消去の手法によって変化しないことを特徴
とする記録及び消去状態の固定化方法を提供することを
目的とする。
[Means for Solving the Problems (and Effects)] The present invention provides an optical recording medium having a recording layer in which the light transmittance or light reflectance changes and the optical properties thereof can be maintained. A method for fixing recording and erasing states, characterized in that optical properties are fixed by fixing the molecular structure or tissue structure of a region, and the fixed optical properties do not change due to recording and erasing methods. The purpose is to provide.

本発明によれば、書き換え記録媒体上に記録、消去とも
に不可能な領域を形成することができ、ノ1−ド的に記
録情報の保護を可能にしたものである。本発明では光記
録媒体の記録層に光透過率又は光反射率が可逆的に変化
する材料が用いられ特にフォトクロミックポリマ−2相
分離ポリマーや高分子液晶といった高分子材料が好まし
い。これらの高分子材料は光磁気メモリーやT e O
x系等の相変化型メモリーで用いられている無機材料や
低分子のフォトクロミック材料や低分子液晶等の有機化
合物に比べ、記録層の膜を容易に作ることが可能で、酸
化。
According to the present invention, it is possible to form an area on a rewritable recording medium where neither recording nor erasing is possible, and it is possible to protect recorded information from a node point of view. In the present invention, a material whose light transmittance or light reflectance changes reversibly is used for the recording layer of the optical recording medium, and polymer materials such as photochromic polymers, two-phase separation polymers, and polymeric liquid crystals are particularly preferred. These polymer materials are used for magneto-optical memory and T e O
Compared to inorganic materials, low-molecular photochromic materials, and organic compounds such as low-molecular liquid crystals used in x-based phase change memories, it is possible to easily create the recording layer film, and it is possible to oxidize.

光劣化等に対する安定性に優れるため耐環境安定性や記
録再生に対する耐久に優れた光記録媒体を安価に作るこ
とができる。また、高分子材料は、光吸収色素等の添加
剤との相溶性が良好で、高分子材料同志のブレンドなど
も可能で、多種多様の記録媒体を作ることができる。
Since it has excellent stability against optical deterioration, it is possible to inexpensively produce an optical recording medium that has excellent environmental stability and durability for recording and reproduction. Furthermore, polymeric materials have good compatibility with additives such as light-absorbing dyes, and blending of polymeric materials with other polymeric materials is possible, allowing the production of a wide variety of recording media.

例えば相分離ポリマーや高分子液晶の材料は、加熱後の
急冷や徐冷の差によって、あるいは加熱後に電界や磁界
を印加するかしないかの差により、光反射率や光透過率
を可逆的に変化させることができ、しかもそれが一定温
度下で保持(本発明でいう保持とは、光学特性が記録も
しくは消去光で変化しても再生光(読みとり光)では変
化せず、さらに光をあてない場合にも、長期保存が可能
である状態のものを示している。)できるという特性が
あるため、書き換え型記録媒体の記録層には良好である
For example, the light reflectance and light transmittance of phase-separated polymers and polymeric liquid crystal materials can be reversibly changed by the difference in rapid cooling or slow cooling after heating, or by the difference in whether or not an electric field or magnetic field is applied after heating. Moreover, it can be maintained at a constant temperature (retention in the present invention means that even if the optical characteristics change with recording or erasing light, they do not change with reproduction light (reading light), and when further light is applied. Even if there is no such material, it indicates a state in which it can be stored for a long time.

相分離ポリマーとしては、例えば2種類以上の無定形ポ
リマーを混合した系が挙げられ、これらは温度によって
相溶状態と相分離状態とに変化をする。
Examples of phase-separated polymers include systems in which two or more types of amorphous polymers are mixed, and these change into a compatible state and a phase-separated state depending on the temperature.

相分離状態では、ある特定のポリマー組成を有する微小
領域に系が分離し、それぞれの組成の光の屈折率が異な
れば微小領域の界面で光がつよく散乱されるために相分
離状態で系は光散乱状態である。
In a phase-separated state, the system separates into micro-regions with a specific polymer composition, and if the refractive index of light for each composition is different, the light is strongly scattered at the interface of the micro-regions. It is in a light scattering state.

一方、相溶状態では、このような界面が存在しないため
光は散乱されない。従って、相分離状態と相溶状態は、
それぞれの光散乱特性に応じ、例えば、光反射]いや光
透過率を検出することで区別できる。
On the other hand, in a compatible state, no such interface exists, so light is not scattered. Therefore, the phase-separated state and the compatible state are
Depending on their light scattering characteristics, they can be distinguished by detecting, for example, light reflection or light transmittance.

4度による相溶−相分離の変化パターンによって、これ
らのLC3T (Lower Cr1ticaI  S
olutionTemperature)型とUC3T
 (Upper  Cr1ticalSolution
  Temperature)型に区別され、前者は高
温側で相分離状態を示し、低温側では相溶状態を示し、
後者はその逆である。
These LC3T (Lower Cr1ticaI S
solutionTemperature) type and UC3T
(Upper Crltical Solution
The former shows a phase-separated state on the high-temperature side, and a compatible state on the low-temperature side,
The latter is the opposite.

UC5T型には、例えばポリスチレンーポリイソブデン
系、ポリスチレン−ポリブタジェン系、ポリプロピレノ
キシド−ポリブタジェン系等が挙げられ、LC8T型に
は、ポリ塩化ビニル−ポリメタクリル酸−n−ヘキシル
系、スチレンアクリロニトリル共重合体−ポリメタクリ
ル酸メチル系、ポリフッ化ビニリデン−ポリアクリル酸
メチル系などが挙げられるが、これらに限定されるもの
ではない。
The UC5T type includes, for example, polystyrene-polyisobutene type, polystyrene-polybutadiene type, polypropylenoxide-polybutadiene type, etc., and the LC8T type includes polyvinyl chloride-polymethacrylate-n-hexyl type, styrene-acrylonitrile type, etc. Examples include, but are not limited to, polymer-polymethyl methacrylate systems, polyvinylidene fluoride-polymethyl acrylate systems, and the like.

また、これらの相分離ポリマーは加熱後徐冷することに
より、高温側での相溶あるいは相分離の状態を低l」側
の状態に変化できる上に、加熱後急冷することにより、
高温側での状態を冷却後も保持できるという特徴がある
ため、書き換え型を含め光メモリーに応用できる。
In addition, by slowly cooling these phase-separated polymers after heating, it is possible to change the state of compatibility or phase separation on the high temperature side to a state on the low l'' side.
Because it has the ability to maintain its high-temperature state even after cooling, it can be applied to optical memories, including rewritable ones.

一方、高分子液晶は、サーモトロピック液晶であり、中
間相としてネマチック、スメクチック。
On the other hand, polymer liquid crystals are thermotropic liquid crystals, with nematic and smectic intermediate phases.

コレステリックのタイプが使用できる。高分子サーモト
ロピック液晶は、薄膜状態が得られるのみならず、低分
子液晶に比べ記録状態の保持が容易であるという利点を
有する。
Cholesteric type can be used. Polymer thermotropic liquid crystals have the advantage of not only being able to form a thin film but also being easier to maintain a recording state than low molecular weight liquid crystals.

例えば、本発明において利用できる高分子サーモトロピ
ック液晶(以下単に高分子液晶と記す)は、次の2つに
分類される。
For example, polymer thermotropic liquid crystals (hereinafter simply referred to as polymer liquid crystals) that can be used in the present invention are classified into the following two types.

■ メソーゲン基、あるいは比較的剛直で長い原子団が
屈曲性鎖で結ばれたもの。
■ Mesogenic groups, or relatively rigid and long atomic groups connected by flexible chains.

■ 側鎖にメソーゲン基、あるいは比較的剛直で長い原
子団を有するもの。
■ Those with mesogenic groups or relatively rigid and long atomic groups in their side chains.

これらの高分子液晶は異なる数種の高分子液晶と混合し
て用いることが可能である。また高分子液晶と低分子液
晶との混合物、高分子液晶と高分子との混合物として用
いることも可能である。
These polymer liquid crystals can be used in combination with several different types of polymer liquid crystals. It is also possible to use a mixture of a polymer liquid crystal and a low molecular liquid crystal, or a mixture of a polymer liquid crystal and a polymer.

以下に高分子液晶の具体例を示すがこれらに限定される
ものではない。
Specific examples of polymer liquid crystals are shown below, but the invention is not limited thereto.

H3 e これらの高分子液晶はガラス転移点以下の温度でその構
造状態を保持・固定できる特徴があるため、例えば次の
ような記録モードが可能である。
H3 e Since these polymeric liquid crystals have the characteristic of being able to maintain and fix their structural state at temperatures below the glass transition point, the following recording modes are possible, for example.

(1)の記録モードは、まず高分子液晶を液晶相が多数
のドメイン(分域)から成るポリドメイン状態に保持・
固定しておく。次に等方相を示す温度以上に高分子液晶
を加熱後、ガラス転移点以下に急冷し高分子液晶を等方
相の状態に保持・固定することにより、記録が行なわれ
る。
In recording mode (1), first, the polymer liquid crystal is maintained in a polydomain state in which the liquid crystal phase is composed of many domains (domains).
Keep it fixed. Next, recording is performed by heating the polymeric liquid crystal to a temperature higher than that at which it exhibits an isotropic phase, and then rapidly cooling it to a temperature lower than its glass transition point to maintain and fix the polymeric liquid crystal in an isotropic phase state.

(2)の記録モードは、まず高分子液晶を電界等を用い
液晶相が単一のドメインから成るモノドメイン状態に保
持・固定しておく。次にガラス転移点以上に高分子液晶
を加熱後冷却することにより、液晶相をポリドメイン状
態に保持・固定することで記録が行なわれる。
In the recording mode (2), the polymer liquid crystal is first held and fixed in a monodomain state in which the liquid crystal phase consists of a single domain using an electric field or the like. Next, recording is performed by heating the polymer liquid crystal above its glass transition point and then cooling it to maintain and fix the liquid crystal phase in a polydomain state.

これら(1)、(2)いずれも記録モードでも、記録状
態を加熱後の徐冷が加熱と電界印加の組合せにより、初
期の状態に戻すことが可能であるため、書き換え可能な
光記録媒体として用いることができる。従って、先非散
乱−光散乱の各状態を逆転させて記録モードとすること
も可能になる。
In both of these (1) and (2), even in the recording mode, the recording state can be returned to the initial state by slow cooling after heating and a combination of heating and electric field application, so it can be used as a rewritable optical recording medium. Can be used. Therefore, it is also possible to reverse each state of first non-scattering and light scattering to set the recording mode.

また高分子液晶と二色性色素の混合系を用いれば、高分
子液晶の水平−垂直配向に応じた二色性色素の吸収特性
の変化より、可逆的に光透過率や光反射率を変化さぜる
ことも可能である。
Furthermore, if a mixed system of polymer liquid crystal and dichroic dye is used, the light transmittance and light reflectance can be reversibly changed by changing the absorption characteristics of the dichroic dye according to the horizontal-vertical alignment of the polymer liquid crystal. It is also possible to stir it.

光メモリーの記録層中の高分子材料を加熱する手法とし
ては、記録層中又は隣接層中に光吸収性色素を添加し、
照射光を熱に変換する手法が一般的である。
A method of heating the polymer material in the recording layer of an optical memory is to add a light-absorbing dye into the recording layer or an adjacent layer,
A common method is to convert irradiated light into heat.

照射光は単色性、直進性に優れたレーザー光が好ましく
、特にコンパクト性や低消費電力等の点で半導体レーザ
ーが好ましい。半導体レーザー光のような近赤外波長領
域に吸収を有する光吸収色素には、例えば以下のような
ものが挙げられる。
The irradiation light is preferably a laser beam that is monochromatic and has excellent straightness, and a semiconductor laser is particularly preferable from the viewpoint of compactness and low power consumption. Examples of light-absorbing dyes having absorption in the near-infrared wavelength region such as semiconductor laser light include the following.

−I I)−3 ■)−4 また、He −N eレーザー光、Arイオンレーザ−
光等を用いればそれぞれの波長に吸収を有する光吸収性
色素を用いることができ、特に、高分子液晶中に添加す
る場合は相溶性の点で二色性色素を用いるのが好ましい
-I I)-3 ■)-4 Also, He-Ne laser light, Ar ion laser
If light or the like is used, a light-absorbing dye having absorption at each wavelength can be used, and in particular, when added to a polymer liquid crystal, it is preferable to use a dichroic dye from the viewpoint of compatibility.

さらに記録層中には、紫外線吸収剤、酸化防止剤、造核
剤等の添加剤を添加しても良い。
Furthermore, additives such as ultraviolet absorbers, antioxidants, and nucleating agents may be added to the recording layer.

本発明において記録層の分子構造あるいは組織構造を固
定する手法としては、例えば、記録層中に重合又は架橋
性の材料を含有させ、これを選択的に反応させることに
より達成される。
In the present invention, the method of fixing the molecular structure or tissue structure of the recording layer is achieved, for example, by incorporating a polymerizable or crosslinkable material into the recording layer and causing it to react selectively.

ここで記録層は前述の通り光透過率や光反射率を温度に
よって可逆的に制御させる場合は記録層の重合又は架橋
が光照射によって起こることが好ましい。
Here, in the case where the light transmittance and light reflectance of the recording layer are reversibly controlled by temperature as described above, it is preferable that polymerization or crosslinking of the recording layer occurs by light irradiation.

さらに記録層の特定領域の光学特性の固定は記録層中の
材料の構造固定に対応しているため、単純に重合を行う
場合よりも架橋反応を含ませ、3次元的に重合を行う方
が良い。架橋性材料には例えば次のようなものが挙げら
れる。
Furthermore, since fixing the optical properties of a specific region of the recording layer corresponds to fixing the structure of the material in the recording layer, it is better to include a crosslinking reaction and perform three-dimensional polymerization than to simply perform polymerization. good. Examples of crosslinkable materials include the following.

■ 重合性モノマー十架橋剤 重合性モノマーには、スチレン系、アクリル系、メクク
リル系といったビニル系モノマーが用いられ、架橋剤に
は、1分子中にビニル基を2つ以上有する化合物(例え
ばジ−ビニルベンゼンなど)が用いられる。
■ Polymerizable monomer crosslinking agent Vinyl monomers such as styrene, acrylic, and meccrylic monomers are used as polymerizable monomers, and crosslinking agents include compounds having two or more vinyl groups in one molecule (for example, di- vinylbenzene, etc.) are used.

(■ 架橋性オリゴマー、架橋性ポリマー架橋性オリゴ
マー、架橋性ポリマーとは、1分子中にビニル基を2つ
以上有する化合物であり、ウレタンオリゴマー、ポリケ
イ皮酸誘導体、マレイン酸−スチレン共重合体などが挙
げられる。
(■ Crosslinkable oligomer, crosslinkable polymer Crosslinkable oligomer, crosslinkable polymer is a compound having two or more vinyl groups in one molecule, such as urethane oligomer, polycinnamic acid derivative, maleic acid-styrene copolymer, etc. can be mentioned.

本発明では、光透過率、光反射率を可逆的に変化できる
高分子材料中に、このような架橋性材料を添加して記録
層として用いても良く、また、これら高分子材料自身が
このような架橋性を有していても良い。
In the present invention, such a crosslinkable material may be added to a polymer material capable of reversibly changing light transmittance and light reflectance and used as a recording layer, or these polymer materials themselves may be used as a recording layer. It may have such crosslinking properties.

すなわち、相分離ポリマーの少なくとも1種が架橋性ポ
リマーであっても良い。
That is, at least one of the phase-separated polymers may be a crosslinkable polymer.

また、特開昭62−284350には、光架橋性の高分
子液晶が開示されており、このような材料を単独又は他
の高分子液晶との混合系として用いても良い。
Further, JP-A-62-284350 discloses photo-crosslinkable polymer liquid crystals, and such materials may be used alone or in a mixed system with other polymer liquid crystals.

これらの架橋性を有する材料は、 (i)直接光照射を行い、反応を進行させる。These crosslinkable materials are (i) Direct light irradiation is performed to advance the reaction.

(ii)光重合開始剤、増感剤を添加し、これらに光照
射を行って生じた活性種が反応を進行させる。
(ii) A photopolymerization initiator and a sensitizer are added and these are irradiated with light, and the generated active species cause the reaction to proceed.

また、これらは反応開始に必要な光の波長を長波長側に
シフトさせる効果もある。
They also have the effect of shifting the wavelength of light necessary for reaction initiation to longer wavelengths.

これら架橋性を有する材料は前述したように加熱に対す
る安定性が必要であり、この点では■のオリゴマー、ポ
リマーの方が良(、用いる材料(特に■の場合)によっ
てはヒドロキノン、メトキシフェノール、N−ニトロヒ
ドロキシルアミン類などの熱重合禁止剤等の添加も必要
である。
As mentioned above, these materials with crosslinking properties need to be stable against heat, and in this respect, oligomers and polymers (2) are better (depending on the material used (particularly in the case of (2)), hydroquinone, methoxyphenol, N - It is also necessary to add thermal polymerization inhibitors such as nitrohydroxylamines.

本発明では、光透過率又は光反射率の可逆的変化を生じ
させるために照射する光の波長(λ1)と光重合又は光
架橋を起こすために照射される光の波長(λ2)が異な
り、λ1〉λ2であることが好ましい。この場合、λ1
の光照射では光重合光架橋が起こらず、λ2の光照射で
は光透過率又は光反射率の変化が起こらないことが必要
である。このためには、前述した記録層を加熱するため
に添加される光吸収性色素と増感剤、光重合開始剤の吸
収波長および照射光波長を選択する必要がある。
In the present invention, the wavelength (λ1) of light irradiated to cause a reversible change in light transmittance or light reflectance is different from the wavelength (λ2) of light irradiated to cause photopolymerization or photocrosslinking, It is preferable that λ1>λ2. In this case, λ1
It is necessary that photopolymerization and photocrosslinking do not occur with light irradiation of λ2, and that no change in light transmittance or light reflectance occurs with light irradiation of λ2. For this purpose, it is necessary to select the absorption wavelength of the light-absorbing dye, sensitizer, and photopolymerization initiator that are added to heat the recording layer, and the wavelength of the irradiation light.

一方、光重合や光架橋のために光記録媒体上の特定領域
に光照射を行うには、ユーザー光を用いることが良い。
On the other hand, it is preferable to use user light to irradiate a specific area on an optical recording medium with light for photopolymerization or photocrosslinking.

一般にレーザー光の発振波長が可視〜近赤外領域のため
、増感剤の吸収波長(紫外〜可視)と一致させるために
例えばKDP等の非線形光学素子を用い、レーザーの高
調波を用いても良い。また、光記録媒体の全面を含め、
かなり広範囲領域にも光照射を行う場合は、水銀灯等の
紫外線光源を用いても良い。
Generally, the oscillation wavelength of laser light is in the visible to near-infrared range, so in order to match the absorption wavelength (ultraviolet to visible) of the sensitizer, a nonlinear optical element such as KDP is used, and harmonics of the laser can also be used. good. In addition, including the entire surface of the optical recording medium,
If a fairly wide area is to be irradiated with light, an ultraviolet light source such as a mercury lamp may be used.

次に本発明の記録再生方法の一例を示す。光記録媒体の
素子構成を第1図に示す。第1図において、1、  l
’  は基板、2は高分子材料と光吸収色素を含む記録
層である。
Next, an example of the recording/reproducing method of the present invention will be described. FIG. 1 shows the element configuration of the optical recording medium. In Figure 1, 1, l
' is a substrate, and 2 is a recording layer containing a polymer material and a light-absorbing dye.

光散乱状態が可逆的に変化し、かつその状態が固定保持
できる高分子材料と光吸収色素を含有する高分子組成物
を基板上に塗工する。次に記録層全面を加熱後徐冷して
光散乱状態で固定する。このようにし、て得られた光記
録媒体を第2図に示す構成の装置で記録再生消去を行う
A polymer composition containing a polymer material whose light scattering state can be changed reversibly and which can be fixedly maintained and a light absorbing dye is coated on a substrate. Next, the entire surface of the recording layer is heated and then slowly cooled to fix it in a light scattering state. The optical recording medium thus obtained is subjected to recording, reproducing and erasing using an apparatus having the configuration shown in FIG.

第2図において3は光記録媒体、4,4′  はレーザ
ー光源、15はハーフミラ−15,5′  はレンズ、
6は再生光検出装置である。記録用レーザー4からの1
7−ザーバルス光を光記録媒体3に照射し、記録層を加
熱後急冷することにより光散乱強度を減少させる。レー
ザー4の出力を低くして、光記録媒体に照射し光散乱強
度の差を透過光量を検出することで記録の再生を行った
。また、レーザー4からのレーザー光のスポット径を大
きくして、光記録媒体に照射することで、記BMを加熱
後徐冷し、再度、光散乱強度を増大させることで記録の
消去を行った。
In Fig. 2, 3 is an optical recording medium, 4, 4' is a laser light source, 15 is a half mirror, 15, 5' is a lens,
6 is a reproduction light detection device. Recording laser 4 to 1
7- The optical recording medium 3 is irradiated with Zerbars light, and the recording layer is heated and then rapidly cooled to reduce the light scattering intensity. The recording was reproduced by lowering the output of the laser 4, irradiating the optical recording medium, and detecting the amount of transmitted light based on the difference in light scattering intensity. In addition, by increasing the spot diameter of the laser beam from laser 4 and irradiating it onto the optical recording medium, the recorded BM was heated and then gradually cooled, and the recording was erased by increasing the light scattering intensity again. .

さらにレーザー4′ からのレーザー光を照射すると記
録層の光架橋反応が起こるため、光散乱強度を固定する
ことができる。この領域は記録再生、消去に用いたレー
ザー4からの光照射では光散乱状態に変化がなかった。
Further, when the laser beam from the laser 4' is irradiated, a photocrosslinking reaction occurs in the recording layer, so that the light scattering intensity can be fixed. In this area, there was no change in the light scattering state when irradiated with light from the laser 4 used for recording, reproduction, and erasing.

以下本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

(実施例1) ウオレットザイズでフレグループを有する1mm厚のガ
ラス基板9上にA4反射膜8を蒸着で作成した。一方、 をジクロロエタン100重量部に溶解させ、N2ガスで
置換した溶液をN2ガス雰囲気下中でこのA1反射層の
中央部分にスピンコード法で塗工し、N。
(Example 1) An A4 reflective film 8 was formed by vapor deposition on a 1 mm thick glass substrate 9 having a wallet-sized frame loop. On the other hand, a solution prepared by dissolving N in 100 parts by weight of dichloroethane and substituting it with N2 gas was applied to the central part of this A1 reflective layer by a spin code method in an N2 gas atmosphere.

ガス雰囲気下60℃で乾燥、引き続き60℃で減圧乾燥
を行い約5μm厚の記録層2を作成した。
Drying was performed at 60° C. in a gas atmosphere, followed by drying under reduced pressure at 60° C. to form a recording layer 2 having a thickness of about 5 μm.

一方、1 m m厚のガラス基板I上の周辺部に571
 m径のガラスピーズを含む接着剤を印刷塗工し17層
前述の記録層を形成したガラス基板を積層して接着し、
た。得られた積層体を約85℃で加熱し、記録府中の高
分子液晶をネマチック相状態にした後、ガラス転移点以
下に徐冷して記録層を白濁光散乱状態に固定した。
On the other hand, on the peripheral part of the 1 mm thick glass substrate I, 571
Glass substrates on which 17 layers of the above-mentioned recording layer were formed by printing and coating an adhesive containing m-diameter glass beads were laminated and bonded.
Ta. The resulting laminate was heated at about 85° C. to bring the polymer liquid crystal in the recording layer into a nematic phase, and then slowly cooled to below the glass transition point to fix the recording layer in a cloudy, light-scattering state.

以上のようにして得られた光カードの構成図を第3図に
示す。
FIG. 3 shows a configuration diagram of the optical card obtained as described above.

次に、この光カードの記録・再生・消去並びに書き換え
不可能な記録形成を第4図の装置で行った。
Next, recording, reproducing, erasing, and forming non-rewritable records on this optical card were carried out using the apparatus shown in FIG.

第4図中符号3は光記録媒体、5はレンズ、7はxyス
テージ、10. 10’  はレーザー、11は偏光ビ
ームスプリンター、12はフォトダイオード、13は1
/4波長板、15はハーフミラ−を示す。レーザー尤、
原にはλmaw 830 n mの半導体レーザーを用
いる。
In FIG. 4, reference numeral 3 is an optical recording medium, 5 is a lens, 7 is an xy stage, 10. 10' is a laser, 11 is a polarized beam splinter, 12 is a photodiode, 13 is 1
/4 wavelength plate, 15 indicates a half mirror. laser,
A semiconductor laser with λmaw of 830 nm is used as the source.

半導体レーザーからのレーザー光は1/4波長板13を
通り、レンズ5によって集光され、適当なスポット径で
光カードの記録層に照射される6A7反射膜からの反射
光は再度レンズ及び1/4波長板を通過し、偏光ビーム
スプリッタ−11で入射光と分離され、フォトダイオー
ド12で検出される。
The laser light from the semiconductor laser passes through the 1/4 wavelength plate 13, is focused by the lens 5, and is irradiated onto the recording layer of the optical card with an appropriate spot diameter.The reflected light from the 6A7 reflective film is again focused on the lens and 1/4 wavelength plate. The light passes through a four-wavelength plate, is separated from the incident light by a polarizing beam splitter 11, and is detected by a photodiode 12.

光カードに書き換え可能な記録を形成するために、半導
体レーザー光の出力を8mWとして記録層上に約1μm
のスポット径で照射した。この時、記G層中の高分子液
晶は等吉相を示す温度域まで加熱された後急冷されるた
め、等吉相状態で固定され、光の散乱強度が減少し、記
録を行うことができた。
In order to form a rewritable record on an optical card, the output of semiconductor laser light is 8 mW, and a thickness of about 1 μm is formed on the recording layer.
It was irradiated with a spot diameter of At this time, the polymer liquid crystal in the recording layer G was heated to a temperature range in which it exhibits the isokitic phase and then rapidly cooled, so it was fixed in the isokitic phase state, the light scattering intensity decreased, and recording was possible. .

光カード上の記録の再生は半導体レーザーの出力を0 
、2 m Wに17で照射を行い、記録層の光散乱強度
に対応したAj?反射膜からの反射光強度をフォトダイ
オードで検出して行い、再生コントラスト比は1.1で
あった。
To reproduce the recording on the optical card, the output of the semiconductor laser is set to 0.
, 2 mW at 17, Aj? corresponding to the light scattering intensity of the recording layer. The intensity of reflected light from the reflective film was detected using a photodiode, and the reproduction contrast ratio was 1.1.

である。It is.

このようにして得られた光カード上の記録は以下の方法
で消去することができる。
The record on the optical card thus obtained can be erased by the following method.

半導体レーザー光の出力を15mWとして記録層上に約
13μmのスポット径で記録部に照射した。
The output of the semiconductor laser beam was set to 15 mW, and the recording layer was irradiated onto the recording layer with a spot diameter of about 13 μm.

この時記録部の高分子液晶は等吉相を示す温度域まで加
熱された後徐冷されるため、ネマチック相のホットドメ
イン状態で固定され、光散乱強度が増大し、消去を行う
ことができた。
At this time, the polymer liquid crystal in the recording section is heated to a temperature range that exhibits the isokyoshi phase and then slowly cooled, so it is fixed in the hot domain state of the nematic phase, the light scattering intensity increases, and erasing can be performed. .

次に、Arイオンレーザ−(λmat 4881 m 
、 出力100 m W )からの光をスポット径約1
.3 l1rnで光カードの特定領域に照射し、記録層
の光架橋を行った。Arイオンレーザ−照射部は、高分
子液晶の光散乱強度がそのままの状態で固定され、その
後この領域に記録や消去手法で用いた半導体レーザー光
を照射しても光散乱状態の変化はなかった。
Next, Ar ion laser (λmat 4881 m
, output 100 mW) with a spot diameter of approximately 1
.. A specific area of the optical card was irradiated with 3 l1rn to photo-crosslink the recording layer. In the Ar ion laser irradiation area, the light scattering intensity of the polymer liquid crystal was fixed as it was, and there was no change in the light scattering state even if this area was subsequently irradiated with the semiconductor laser light used in the recording and erasing method. .

〔実施例21 実施例1において記録層材料に以下のものに変更する。[Example 21 In Example 1, the recording layer material was changed to the following.

光カードの作成方法、構成は実施例1と同様である。得
られた光カードの記録・再生・消去、及び書き換え不可
能な領域の形成を第5図の装置で行った。
The manufacturing method and structure of the optical card are the same as in the first embodiment. Recording, reproduction, and erasing of the obtained optical card and formation of a non-rewritable area were carried out using the apparatus shown in FIG.

第5図中符号16は高調波発生装置を示す1.他の符号
は第4図で示す符号と同様のものを示す。書き換え可能
な記録形成、再生及び消去は実施例1と同様に行うこと
ができ、再生コントラスト比は1.0であった。
Reference numeral 16 in FIG. 5 indicates a harmonic generator. Other symbols are the same as those shown in FIG. Formation, reproduction, and erasure of rewritable recording could be performed in the same manner as in Example 1, and the reproduction contrast ratio was 1.0.

一方、光記録媒体上の情報の固定は、YAGレーザーか
らの基本波をKDPを用いて第3高調波(λm□357
ntn。
On the other hand, to fix the information on the optical recording medium, the fundamental wave from the YAG laser is converted to the third harmonic (λm□357
ntn.

60 m W )に変換した光を光カード上に照射した
。光照射された記録層は光架橋反応が進行し、高分子液
晶の光散乱強度は固定され、記録、消去で用いる半導体
レーザー光を照射しても光散乱強度の変化は生じなかっ
た。
60 mW) was irradiated onto the optical card. A photocrosslinking reaction progressed in the irradiated recording layer, and the light scattering intensity of the polymer liquid crystal was fixed, and no change in the light scattering intensity occurred even when irradiated with semiconductor laser light used for recording and erasing.

〔実施例3〕 実施例1で光カードの記録層の材料を以下のものに変更
した。
[Example 3] In Example 1, the material of the recording layer of the optical card was changed to the following.

−高分子液晶               20重量
部l′ 以下実施例2と同様に行い、再生コントラスト比1.2
であった。YAGレーザー第3高調波を照射することで
記録層に光架橋反応を生じさせ、記録層ある領域の光散
乱状態を固定することができた。
- Polymer liquid crystal 20 parts by weight l' The following was carried out in the same manner as in Example 2, and the reproduction contrast ratio was 1.2.
Met. By irradiating the third harmonic of the YAG laser, a photocrosslinking reaction was caused in the recording layer, and the light scattering state in a certain region of the recording layer could be fixed.

この領域は記録消去手法で用いる半導体レーザー光を照
射してもその光散乱状態は変化しなかった。
Even when this region was irradiated with semiconductor laser light used in the recording/erasing method, its light scattering state did not change.

〔発明の効果〕〔Effect of the invention〕

本発明において、光透過率又は光反射率が変化し、その
光学状態の一時保持が可能である記録層を有する書き換
え型光記録媒体で重合又は架橋反応を用いる等により記
録層の分子構造あるいは組織構造を固定することにより
書き換え型光記録媒体上に記録及び消去不可能な領域を
形成し、ハード的に記録情報の保護が可能となった。
In the present invention, in a rewritable optical recording medium having a recording layer whose optical transmittance or reflectance changes and whose optical state can be temporarily maintained, the molecular structure or structure of the recording layer is By fixing the structure, an area on the rewritable optical recording medium that cannot be recorded or erased is formed, making it possible to protect recorded information using hardware.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における光記録媒体の構成図、第2図は
本発明における記録再生消去の装置構成図、 第3図は本発明実施例1.2.3の光記録媒体の構成図
、 第4図は本発明実施例1の記録再生消去の装置構成図、 第5図は本発明実施例2.3の記録再生消去の装置構成
図、 1、 1’・・・基板    2・・・記録層3・・・
光記録媒体    4,4′・・・レーザー光源5.5
′・・・レンズ   6・・・光検出装置7・・・XY
ステージ   8・・・AI!反射膜9・・・ガラス基
板    10. 10’ ・・・レーザー11・・・
偏光ビームスプリッタ 12・・・フォトダイオード 13・・弓/4波長板   14・・・フィルター15
・・・ハーフミラ−16・・・高調波発生装置17・・
・接着層
FIG. 1 is a block diagram of an optical recording medium according to the present invention, FIG. 2 is a block diagram of a recording/reproducing/erasing device according to the present invention, and FIG. 3 is a block diagram of an optical recording medium according to Embodiment 1.2.3 of the present invention. FIG. 4 is a configuration diagram of a recording/reproducing/erasing device according to Embodiment 1 of the present invention, and FIG. 5 is a configuration diagram of a recording/reproducing/erasing device according to Embodiment 2.3 of the present invention. 1, 1'...Substrate 2... Recording layer 3...
Optical recording medium 4,4'...Laser light source 5.5
'...Lens 6...Photodetector 7...XY
Stage 8...AI! Reflective film 9...Glass substrate 10. 10'...Laser 11...
Polarizing beam splitter 12...Photodiode 13...Bow/4 wavelength plate 14...Filter 15
... Half mirror 16 ... Harmonic generator 17 ...
・Adhesive layer

Claims (11)

【特許請求の範囲】[Claims] (1)光透過率又は光反射率が変化しその光学特性の保
持が可能である記録層を有する光記録媒体に対し、該記
録層の分子構造あるいは組織構造を固定して該光学特性
を固定することを特徴とする記録及び消去状態の固定化
方法。
(1) For optical recording media having a recording layer whose optical transmittance or reflectance changes and whose optical properties can be maintained, the optical properties are fixed by fixing the molecular structure or tissue structure of the recording layer. A method for fixing recording and erasing states.
(2)前記記録層の光散乱強度が可逆的に変化すること
を特徴とする請求項1記載の記録及び消去状態の固定化
方法。
(2) The method for fixing recording and erasing states according to claim 1, wherein the light scattering intensity of the recording layer changes reversibly.
(3)記録層が高分子材料を含有していることを特徴と
する請求項1記載の記録及び消去状態の固定化方法。
(3) The method for fixing recorded and erased states according to claim 1, wherein the recording layer contains a polymeric material.
(4)前記高分子材料が相分離ポリマー、又は高分子液
晶であることを特徴とする請求項3記載の記録及び消去
状態の固定化方法。
(4) The method for fixing recorded and erased states according to claim 3, wherein the polymeric material is a phase-separated polymer or a polymeric liquid crystal.
(5)記録層中に重合又は架橋反応を行うことにより、
分子構造あるいは組織構造を固定することを特徴とする
請求項1記載の記録及び消去状態の固定化方法。
(5) By performing a polymerization or crosslinking reaction in the recording layer,
2. The method for fixing recording and erasing states according to claim 1, wherein a molecular structure or a tissue structure is fixed.
(6)前記重合又は架橋反応を起こす材料がオリゴマー
又は高分子材料である請求項5記載の記録及び消去状態
の固定化方法。
(6) The method for fixing recording and erasing states according to claim 5, wherein the material that causes the polymerization or crosslinking reaction is an oligomer or a polymer material.
(7)前記重合又は架橋反応を記録層に光を照射するこ
とによって行うことを特徴とする請求項5記載の記録及
び消去状態の固定化方法。
(7) The method for fixing recorded and erased states according to claim 5, wherein the polymerization or crosslinking reaction is carried out by irradiating the recording layer with light.
(8)記録層中に光重合開始剤あるいは増感剤あるいは
熱重合禁止剤が添加されていることを特徴とする請求項
7記載の記録及び消去状態の固定化方法。
(8) The method for fixing recorded and erased states according to claim 7, wherein a photopolymerization initiator, a sensitizer, or a thermal polymerization inhibitor is added to the recording layer.
(9)前記光記録媒体に照射する記録光、再生光もしく
は消去光の各波長とは異なる波長の光で重合又は架橋反
応を起こす請求項7記載の記録及び消去状態の固定化方
法。
(9) The method for fixing recording and erasing states according to claim 7, wherein a polymerization or crosslinking reaction is caused by light having a wavelength different from each wavelength of recording light, reproduction light, or erasing light irradiated onto the optical recording medium.
(10)記録層の重合又は架橋のために照射される光が
レーザー光であることを特徴とする請求項9記載の記録
及び消去状態の固定化方法。
(10) The method for fixing recorded and erased states according to claim 9, wherein the light irradiated for polymerizing or crosslinking the recording layer is a laser beam.
(11)前記レーザー光が、非線形光学素子により得ら
れる高調波であることを特徴とした請求項10記載の記
録及び消去状態の固定化方法。
(11) The method for fixing recording and erasing states according to claim 10, wherein the laser beam is a harmonic wave obtained by a nonlinear optical element.
JP63111251A 1988-05-07 1988-05-07 Method for fixing recording and erasing states Pending JPH01281447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111251A JPH01281447A (en) 1988-05-07 1988-05-07 Method for fixing recording and erasing states

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111251A JPH01281447A (en) 1988-05-07 1988-05-07 Method for fixing recording and erasing states

Publications (1)

Publication Number Publication Date
JPH01281447A true JPH01281447A (en) 1989-11-13

Family

ID=14556437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111251A Pending JPH01281447A (en) 1988-05-07 1988-05-07 Method for fixing recording and erasing states

Country Status (1)

Country Link
JP (1) JPH01281447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525845A (en) * 2011-05-27 2014-10-02 オパラックス インコーポレーテッド Method and system for thermal printing of photonic crystal materials and thermal printable photonic crystal materials and assemblies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525845A (en) * 2011-05-27 2014-10-02 オパラックス インコーポレーテッド Method and system for thermal printing of photonic crystal materials and thermal printable photonic crystal materials and assemblies
US9726783B2 (en) 2011-05-27 2017-08-08 Opalux Incorporated Methods and systems for thermal printing of photonic crystal materials, and thermally printable photonic crystal materials and assemblies

Similar Documents

Publication Publication Date Title
US5644416A (en) Light modulation device and method of light modulation using the same
KR100719431B1 (en) Optical recording medium and recording and/or reproducing apparatus employing the optical recording medium
JP2007171916A (en) Hologram recording material, hologram recording medium, and hologram recording method
JPWO2003021350A1 (en) Optical recording material
JPH01281447A (en) Method for fixing recording and erasing states
JP2515566B2 (en) Storage media
JP2678219B2 (en) Method of fixing data to optical recording medium, optical recording medium, and data recording device
JP2004535036A (en) Multilayer composite liquid crystal optical memory system with information recording and reading means
JPH03120625A (en) Information recording and reproducing device
JP3080454B2 (en) Card type optical recording medium and manufacturing method thereof
JP2005530302A (en) Optical data storage
KR20050012801A (en) Optimized medium with anisotropic dipole emission for fluorescent single or multi layer storage
JP2822889B2 (en) Information recording medium and method of manufacturing the same
JPH07161039A (en) Recording and reproducing method for optical recording medium
JP2696696B2 (en) Information recording medium
JP2713977B2 (en) recoding media
JP2003030851A (en) Method for reading information
JP2762863B2 (en) Optical modulation element and method for reading optical memory using the same
JP2696697B2 (en) Information recording medium
JPH02236517A (en) Optical recording medium
JPH024245A (en) Recording and reproducing method and recording medium to be used therefor
JPH01294791A (en) Information recording medium
JPH0230588A (en) Stabilization of recording and erasing states
JP2007525780A (en) Optical recording medium containing molecules with hydrogen bonds
JPH02236518A (en) Recording medium and recording method thereof