JPH01280631A - Intake system for engine - Google Patents

Intake system for engine

Info

Publication number
JPH01280631A
JPH01280631A JP63109411A JP10941188A JPH01280631A JP H01280631 A JPH01280631 A JP H01280631A JP 63109411 A JP63109411 A JP 63109411A JP 10941188 A JP10941188 A JP 10941188A JP H01280631 A JPH01280631 A JP H01280631A
Authority
JP
Japan
Prior art keywords
intake
resonance
engine
group
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63109411A
Other languages
Japanese (ja)
Other versions
JP2820411B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Akinori Yamashita
山下 昭則
Toshihiko Hattori
服部 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP10941188A priority Critical patent/JP2820411B2/en
Publication of JPH01280631A publication Critical patent/JPH01280631A/en
Application granted granted Critical
Publication of JP2820411B2 publication Critical patent/JP2820411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To obtain high resonance supercharging effect by respectively collecting the independent intake passages of the cylinders for every group consisting of a plurality of cylinders, connecting a main intake passage to about the center of the collecting passage of respective groups and also setting resonance synchronization engine speed to satisfy a specific relation. CONSTITUTION:In case that the invention is applied to a V type 6 cylinder engine providing respective three cylinders, 3a-3e and 3d-3f, at respective banks 1, 2, the intake order of which is discontinuous. The upper stream end sides of respective independant intake passages 5a-5c and 5d-5f respectively connected to respective intake ports 4a-4c and 4d-4f of the bank 1, 2 side the first and the secondary groups are connected to collecting passages 6, 7 to be collected. Respective main intake passages 10, 12 are connected to about the center of respective collecting passages 6, 7. A resonance system constructed by a passage portion containing respective independent intake passages is set in a way that resonance synchronization engine speed Nr with respect to the allowable maximum engine speed N max of an engine is 0.7 Nmax<Nr<1.2 Nmax.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は共鳴効果によって吸気の充填効率を高めるよう
にしたエンジンの吸気装置面に関づるらのである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine that enhances the filling efficiency of intake air by a resonance effect.

〔従来の技4+i ) 従来から、吸気の動的効果によ−)で充填効率を高める
ようにしたエンジンの吸気装置は種々知られている。例
えば、特公昭60−14169号公報に示された装置で
は、多気筒玉ンジンにおいて、吸気系を吸気順序が連続
しない気筒間1を向−グループとする2つのグループに
分け、この2つのグループの吸気系をそれぞれ、気筒別
の独立吸気通路(吸気マニホールドブランチ)のP流端
が接続された容積大の集合部と、この集合部から上流に
延びる共鳴通路とを備えて構成するととムに、上記集合
部に、」−記名グループの吸気系相qを連通遮断回能と
する切替装置を設け、各共鳴通路の上流端を上流側集合
室に接続している。ぞして、上記切替装置が上記各グル
ープ相Uを遮断した状態にあるときは、−1流側集合室
で廃用される吸気圧力波によってエンジンの低速域で過
給作用が得られるj、うに、十記l流側集合某と各吸気
ボートとの間の吸気系による固有振動数を、没定してJ
3 <とともに、ト記切替装酋が上記各吸気通路を連通
する状態どなったときは、比較的高速域で1記独立吸気
通路による慣性過給効果(各気筒IDヒ独独眼吸気通路
上流端で反射される1]1力波が吸入終期に作用するこ
とによる過給効果)が得られる。」:うに、独立吸気通
路の長さ等を設定している。
[Conventional Technique 4+i] Various engine intake systems have been known in which the filling efficiency is increased by the dynamic effect of intake air. For example, in the device disclosed in Japanese Patent Publication No. 60-14169, in a multi-cylinder engine, the intake system is divided into two groups, with the first group being between the cylinders where the intake order is not consecutive. When each intake system is configured to include a large-volume gathering section to which the P flow ends of independent intake passages (intake manifold branches) for each cylinder are connected, and a resonant passage extending upstream from this gathering section, A switching device is provided in the collecting section to connect and cut off the intake system phase q of the "--registered group," and connects the upstream end of each resonance passage to the upstream collecting chamber. Therefore, when the switching device is in a state where each of the group phases U is cut off, a supercharging effect is obtained in the low speed range of the engine by the intake pressure wave that is discarded in the −1 flow side collecting chamber. Then, by determining the natural frequency of the intake system between the downstream assembly and each intake boat, J
3. When the above switching device communicates with each of the above intake passages, the inertial supercharging effect by the independent intake passage (1) at relatively high speeds (the upstream end of each cylinder ID independent intake passage) A supercharging effect is obtained by the 1]1 force wave reflected at the end of suction. ”: Setting the length of the independent intake passage, etc.

(発明が解決しようとする課題) 上記吸気装置によると、」記独立吸気通路にJ、る慣性
過給効果がエンジンの特定回転数域で得られるようにそ
の長さ等を設定Jる心数があるが、上記独立吸気通路は
各気筒毎にそれぞれ設【プられるので、上記のような独
立吸気通路の設定を要覆ると吸気系の一]ンパク1〜化
の面で不利である。そこで、吸気系の]ンパク1〜化を
図るためには、独立吸気通路よりし上流側の部分す含め
た吸気系にJ:る共鳴効果を利用して高速域での過給!
1川をもたせることが望ましいが、とくにエンジンの許
容最高回転数付近の高速域で有効に共鳴効果をもkせる
ようにしたものは従来においてなかった1、シかも、上
記従来装置では、各クループ毎の集合部の気筒111方
向−・端側に偏っ/、: (1/屏に共鳴通路か接続さ
れていることにより、各独立吸気通路と#嗅通路との間
の距Hに気%:)jIJの較差が大きくなるIこめ、各
気筒に対J−る吸気の分配性が悪くなり、高  。
(Problem to be Solved by the Invention) According to the above-mentioned intake system, the length etc. of the independent intake passage are set so that the inertia supercharging effect is obtained in a specific rotation speed range of the engine. However, since the above-mentioned independent intake passages are provided for each cylinder, if the setting of the above-mentioned independent intake passages is changed, it is disadvantageous in terms of the intake system. Therefore, in order to make the intake system more compact, we can use the resonance effect of J: on the intake system, including the upstream portion of the independent intake passage, to achieve supercharging in the high-speed range!
Although it is desirable to have a resonance effect in the high-speed range, especially around the maximum allowable engine speed, there has been no prior art device that can effectively create a resonance effect. The cylinder 111 direction of each gathering part - biased toward the end side /,: (Because the resonant passage is connected to the 1/fold, the distance H between each independent intake passage and the olfactory passage is increased by %: ) As the difference in IJ increases, the distribution of intake air to each cylinder worsens, resulting in high

法域で共鳴過給を行なおうどじても各気筒に対する過給
作用にアンバランスが生じる等の問題があつIこ。
Even if resonance supercharging is carried out in the jurisdiction, there are problems such as an imbalance in the supercharging effect on each cylinder.

本発明は1配の事情+J鋸、み、吸気系の]ンバク1〜
化に右利な構造どしつつ、とくにエンジンの許容最高回
転数付近の高速域で、有効に共鳴効果を発揮させてLン
シン出力を高めることがてき、かつ、各気筒に対する吸
気の分配性も白土することができる]ニンジンの吸気装
置を1足供するしのである。
The present invention is based on the following circumstances + J saw, and the intake system]
While having a structure that is advantageous for engine speed, it is able to effectively exhibit resonance effects and increase L-engine output, especially in the high-speed range near the maximum allowable engine speed, and also has good air distribution to each cylinder. [Can be made of white clay] A pair of carrot intake devices is provided.

〔課題を解決りるlニーめの一′r段〕本発明は」7記
の上−)<z 目的を達成づるため、エンジンの吸気系
を吸気順序が連続しない気筒間lを同一グループとする
複数のグルーグに分(プて、気1に)別の独rt吸気通
路を各グループ毎に各々集合させ、かつ、この各集合部
の略中火に(:吸気通路を接続するとともに、P記名グ
ループの独立吸気通路および集合部と各集合部に連なる
通路部分とで構成される共鳴系を、その最短共鳴用経路
による1(鳴同調回転数N1゛が]−ンシンのR′F容
最高回転数N maxに対して 0、7NmilX <Nr < 1 、2Nmaxとな
るように設定したらのである。
[Nearly 1'r stage to solve the problem] The present invention is based on the above-mentioned item 7 above-)<z. Separate intake passages are divided into a plurality of groups, and the intake passages are connected to approximately medium heat in each group, and the intake passages are connected to The resonance system consisting of the independent intake passages and collecting parts of the registered group and the passage parts connected to each collecting part is calculated by the shortest resonance path (1 (sound tuned rotation speed N1゛)) - the maximum R'F capacity of the engine. The rotational speed Nmax is set to 0.7NmilX <Nr<1, 2Nmax.

〔作用〕[Effect]

」−記構成によると、1記共鳴系によって高速域で共鳴
効果が得られ、つまり、上記共鳴系による共鳴効果は共
鳴同調回転数イ]近のある程麿の範囲にわたる回転数域
で得られることから、共鳴同調回転数Nrが1配許容最
高回転数N maxに対して0、  7Nmax   
<Nr   <  1  、  2Nmaxとなるよう
に設定しておくことにより、後に一■)ボするように特
に許容最高回転数N max伺近の高速域でJ(鳴過給
fl用が社)られる。この場合に、1記名集合部の略中
火にJ:吸気通路が接続されていることにより、各気筒
に対重る吸気の分配性が良くなり、有効に共鳴過給作用
が発揮される、。
According to the above configuration, the resonant system described in 1. obtains a resonance effect in a high-speed range, that is, the resonance effect by the above-mentioned resonant system is obtained in a rotational speed range over a certain range near the resonance tuning rotational speed A]. Therefore, the resonance tuning rotation speed Nr is 0, 7Nmax for the maximum allowable rotation speed Nmax.
<Nr<1, by setting 2Nmax, J (sound for supercharging fl) will be applied especially in the high speed range near the maximum allowable rotational speed Nmax, so as to cause the engine to erode later. In this case, by connecting the J: intake passage to the approximately medium heat of the first collecting part, the distribution of the intake air to each cylinder is improved, and the resonance supercharging effect is effectively exerted. .

(実施例) 第1図は木5で明の装rI”をV型6気筒エンジンに適
用した場合の一実席例を示しており、この図において、
V型”エンジンの一方のバンク1には1番、2番、3番
の3つの気f13 a 、 3 i) 、 3 Cが設
はられ、他方のバンク2には4番、5番、6番の3つの
気筒3d、3e、3f′b(設【プられている。」二記
名気筒3 a−31にはそれぞれ吸気ボート4aへ・4
 f’および排気ボート(図示省略)が配設され、これ
らのボー1〜が図外の吸気弁おにびJA+気弁によ−)
でそれぞれ所定のクイミングC聞閉される。ト配各吸気
ボート/la〜4丁にはそれぞれ短い独rt吸気通路5
8〜5fが接続されCいる。
(Example) Fig. 1 shows an example of an actual seat when Ming's installation rI'' is applied to a V-type 6-cylinder engine, and in this figure,
One bank 1 of the V-type engine is equipped with three engines No. 1, 2, and 3, and the other bank 2 is equipped with No. 4, No. 5, and No. 6. Three cylinders 3d, 3e, 3f'b (numbered cylinders 3d, 3e, 3f'b) are installed. Two cylinders 3a-31 are connected to intake boats 4a and 4, respectively.
f' and an exhaust boat (not shown) are arranged, and these boats 1~ are connected to the intake valves (not shown) by the intake valves (not shown).
Each predetermined swimming C is closed. Each intake boat/la to 4 boats has a short rt intake passage 5
8 to 5f are connected.

−1記各気筒3a・〜・3(の吸気順序(点火順序)は
、1番気筒3a−)4番気筒3 d−2番気筒3b→5
)番気筒3e→3番気筒3 C; −+ 6番気筒34
の順となっている。
-1 The intake order (ignition order) of each cylinder 3a...
) No. cylinder 3e → No. 3 cylinder 3 C; -+ No. 6 cylinder 34
The order is as follows.

このエンジンの吸気系は吸気順序が連続しない気筒同士
を同一グルーグとする2つのグループに分りられ、−)
まり1記吸気順序にJ、ると、一方の−〇 − バンク1の各気筒3a〜3cはnいに吸気順序が連続せ
ず、他方のバンク2の各気筒3d〜3fムB7いに吸気
順序が連続しないので、吸気系が一方のバンク1側のグ
ループ(第1グループ)と他方のバンク2側のグループ
(第2グループ)とに分(プられている。そしで、第1
グループの各独立吸気通路5a〜5Cおよび第2グルー
プの各独立吸気通路5d〜5fは、各グループ毎に各々
集合されている。このグループ別の各集合部6.7は、
気筒列方向に沿った通路状に形成され、この各集合部6
,7の略中央に1:吸気通路10が接続されている。
The intake system of this engine is divided into two groups in which cylinders whose intake order is not consecutive are in the same group.
If the intake order is J, then the intake order of the cylinders 3a to 3c of one bank 1 is not consecutive, and the intake order of each cylinder 3d to 3f of the other bank 2 is not consecutive. Since the order is not consecutive, the intake system is divided into one group on the bank 1 side (first group) and the other group on the bank 2 side (second group).
The independent intake passages 5a to 5C of the group and the independent intake passages 5d to 5f of the second group are assembled in each group. Each group 6.7 is as follows:
Each gathering portion 6 is formed in the shape of a passage along the cylinder row direction.
, 7, an intake passage 10 is connected thereto.

上記主吸気通路10は、上記各集合部6.7の略中央に
上流端が接続されるととt)に上流端側で互いに連通さ
れたグループ別吸気通路11.12と、この各グループ
別吸気通路11.12の4丁流端側連通箇所13に接続
されlこ土浦側の共通吸気通路14とで構成され、共通
吸気通路14には」7流側から順にTアクリープ15.
T−アフロ−メータ16およびスロットル弁17が配設
されている。。
The main intake passage 10 has an upstream end connected to approximately the center of each gathering portion 6.7, and t) group intake passages 11.12 which communicate with each other at the upstream end side, and each group The common intake passage 14 is connected to the communication point 13 on the 4th stream end side of the intake passages 11, 12 and the common intake passage 14 on the Tsuchiura side.
A T-Aflow meter 16 and a throttle valve 17 are provided. .

この実流例では、各グループ別吸気通路11゜12の土
浦端側連通箇所13が共鳴用圧力反転部となり、第1グ
ループ側の各独立吸気通路5a〜5C1集合部6および
グループ別吸気通路11と、第2グルーグ側の各独0吸
気通路5d〜5f、集合部7おJ:びグループ別吸気通
路12とで゛、各グループに対する共鳴系がそれぞれ構
成されている。
In this actual flow example, the communication point 13 on the Tsuchiura end side of the intake passages 11° 12 for each group becomes the pressure reversal part for resonance, and the gathering part 6 of each independent intake passage 5a to 5C1 on the side of the first group and the intake passage 11 for each group The individual intake passages 5d to 5f on the second group side, the gathering portion 7 and the group-specific intake passages 12 constitute a resonance system for each group.

そ【ノで、後述の■、■式から求められる共鳴系の同調
回転数Nrが、エンジンの信頼性等の而から定められl
こエンジンの許容最高回転数N maxに対し、 0、  7Nmax   <Nr   <  1  、
  2Nmax     ・−−・−−■という関係を
満足する。」;うに、共鳴系を構成する各部分の長さ、
断面積、容積等が設定されている。
Therefore, the tuning rotation speed Nr of the resonance system, which is determined from equations
For the maximum allowable rotation speed Nmax of this engine, 0, 7Nmax <Nr < 1,
2Nmax ・−・−−■ The relationship is satisfied. ”; sea urchin, the length of each part that makes up the resonance system,
Cross-sectional area, volume, etc. are set.

なお、共鳴系の構成としては、第2図に示すように、複
数の共鳴用経路を59け、エンジン回転数に応じて共鳴
用経路を切替える、J:うにしておいてもよい++ ′
?J 4rわら、第2図に示す実施例で゛は、主吸気通
路10に(15Cjるグループ別吸気通路11゜12の
下流端部に、各集合部6.7を連通Jる連通路18か設
りられ、この連通路18中に、図外の作動手段に、」;
すエンジンの低速域で閉じられて高速域で聞かれる開閉
弁19が設置)られている。
As shown in FIG. 2, the resonance system may have a configuration in which there are 59 resonance paths and the resonance paths are switched according to the engine speed.
? In the embodiment shown in FIG. In this communication path 18, an actuating means (not shown) is provided.
An on-off valve 19 is installed that is closed in the low speed range of the engine and is heard in the high speed range.

そして、開閉弁19が連通路18を閉じた状態では、各
グループの独立吸気通路5a〜5cおよび5d〜5fか
らグループ別吸気通路11.12の上流端側連通箇所1
3まて・・が共鳴用経路となり、開閉弁19が連通路1
8を開いた状態では、各グループの独立吸気通路5 a
−5Cおよび5d〜5fから連通路18にわたる部分が
共鳴用経路となるようにしている。連通路はグループ別
吸気通路の途中に設けても、j:<、さらに複数箇所に
連通路を設()て多段階に共鳴用経路を切替えるように
してbJ:い。また、この図に示すように、各グループ
毎の集合部6.7は、ある程度の容積を右づるように拡
大させておいてムよい。
When the on-off valve 19 closes the communication passage 18, the upstream end side communication portion 1 of the group-specific intake passage 11.12 is connected to the independent intake passages 5a to 5c and 5d to 5f of each group.
3. is the resonance path, and the on-off valve 19 is the communication path 1.
8 is open, each group's independent intake passage 5 a
The portion extending from -5C and 5d to 5f to the communication path 18 is designed to be a resonance path. Even if the communication passage is provided in the middle of the intake passages for each group, it is possible to provide communication passages at a plurality of locations and switch the resonance path in multiple stages. Further, as shown in this figure, the gathering portion 6.7 for each group may be enlarged to some extent in volume to the right.

この第2図の実施例による揚台、共鳴系の最短共鳴用経
路、つまり上記開閉弁19によって連通路1ε3が聞か
れたときの」ξ鳴用経路ににるJξ鳴1ii1調回転数
Nrが、エンジンの許容回転数に対し、前記0代の関係
となるように設定されている。
According to the embodiment of FIG. 2, the shortest resonance path of the resonance system, that is, the Jξ sound 1ii 1 tone rotation speed Nr on the ξ sound path when the communication path 1ε3 is heard by the on-off valve 19, is , is set to have the above-mentioned relationship in the range of 0 with respect to the allowable rotational speed of the engine.

このような吸気装置におりる共鳴系の設定条件および共
鳴効果を、第3図乃〒第5図を参照しつ゛つ説明する。
The setting conditions and resonance effects of the resonance system in such an intake device will be explained with reference to FIGS. 3 to 5.

吸気系を吸気類)Yか連続しない気筒間」を同一・グル
ープとする2つのグループにねりで共鳴系を構成してい
ることにより、その各クループにおいてそれぞれ、各気
筒の作動により生じる圧力波が吸気ボート/Ia〜4c
、4d〜4fと前記斤力反転部との間で伝播して、共鳴
系を構成する部分にj]−力振動が生じる。そして、共
鳴系の固有振動の周期が各グルー1毎の吸入周期と合致
(共鳴固有振動数νrが各グループ角の吸入回数と合致
)するとき、同一グループの各気筒に生じる圧力波が共
振し、仕方振動が最ら強められる状態となる。
By constructing a resonance system by twisting the intake system into two groups in which the intake system (intake class) Y or discontinuous cylinders are the same group, the pressure waves generated by the operation of each cylinder in each group are Intake boat/Ia~4c
, 4d to 4f and the above-mentioned scooping force reversal section, and j]-force vibration is generated in the part constituting the resonance system. When the period of the natural vibration of the resonance system matches the suction period of each glue 1 (the resonance natural frequency νr matches the number of suctions of each group angle), the pressure waves generated in each cylinder of the same group resonate. , the state in which the vibration becomes the strongest is reached.

この状態となるエンジン回転数か共鳴同調回転数Nrで
ある。
The engine rotational speed at which this state occurs is the resonance tuning rotational speed Nr.

ここで、第1図または第2図の吸気系をモデ゛ル化して
示した第3図を参照しつ゛つ、共鳴固有振動数νrと共
鳴同調回転数N +’を求めると、次の■。
Here, referring to FIG. 3 which shows a model of the intake system in FIG. 1 or 2, the resonance natural frequency νr and the resonance tuning rotation speed N+' are determined as follows (2).

−]〇 − ■式のようになる。−】〇 − ■It becomes like the formula.

Nr = (120/m) ×vr   −−−−−−
(X)vr  =  (a/4  )  X  (1/
  (Vr  /F  +  L、+I))  )・・
・・・・■ m:1グループの気筒数 a:音速 Vr:1グループの独立吸気通路と集合部(第33図中
の斜線部分)の容量 F:集合部を連通Jる連通部分の平均断面積1−:1配
達通部分の中点までの良さ 1)二十記連通部分の」!均直径(管端補iF )つま
り、共鳴系の等価長が近似的に(Vr/F+ 1.、、
−+−D )となり、かつ、上記連通部分の中熱では圧
力波の正負が反転して反射される関係で圧力波の2往復
分が1周期に相当することから、jt鳴固石振動数νr
が近似的に十記■式で求められる。
Nr = (120/m) ×vr −−−−−−
(X)vr = (a/4)
(Vr /F + L, +I)) )...
...■ m: Number of cylinders in one group a: Speed of sound Vr: Capacity of the independent intake passages in one group and the gathering section (shaded area in Fig. 33) F: Average cross section of the communicating section that connects the gathering section J Area 1-: Goodness to the midpoint of the 1 delivery section 1) of the 20-letter communication section! The uniform diameter (tube end complement iF), that is, the equivalent length of the resonance system is approximately (Vr/F+ 1.,
-+-D ), and since the pressure waves are reflected with their polarity reversed in the medium heat of the above-mentioned communicating part, two round trips of the pressure waves correspond to one cycle, so the jt Nagatsuite frequency νr
can be approximately determined using the formula.

また、各グループ毎にエンジンの2回転で1グループの
気筒数mだけ吸気を行なう関係で、1秒当りの吸入回数
と固有振動数v1・とか−・致りるどさの回転数である
共鳴同調回転数Nrは120式で′求められる。
In addition, since each group takes in air for the number of cylinders in one group (m) with two revolutions of the engine, the number of intakes per second and the natural frequency v1, which is the number of revolutions at the end, are the resonance. The tuning rotation speed Nr can be found using equation 120.

このように、上記容量■「と連通部分におtづる上記平
均断面積F、良ざ1−および平均1径1つにより共鳴同
調回転数Nrか定まり、この共鳴同調回転数Nrを高速
側に設定しておくことにより、この共鳴同調回転数Nr
何近の高速域で、共鳴効果に、J:る過給作用が得られ
てTンジン出力が高められる。、この場合、どくに主吸
気通路10のグループ別吸気通路11.12のト流端が
各集合部6゜7の略中火に接続されていること&、、m
 、J:す、この接続箇所から各気筒の吸気ボー1−ま
での長さのアンバランスが小さくなり、各気筒に対する
吸気の分配性が良くな−)−C1高速域で共鳴効果を持
たせる場合にも共鳴効果による吸気過給f+用が有効に
発揮される。このため、この構造(こよる場合のTンジ
ン出力1−ルクは第1図に線へて示ずJ、うに、各集合
部6,7の一端側に1:吸気通路を接続しlこ場合(線
口)よりも高められることとなる。
In this way, the resonance tuning rotation speed Nr is determined by the above average cross-sectional area F, the fineness 1- and the average diameter 1, which are connected to the above-mentioned capacitance ■, and the resonance tuning rotation speed Nr is set to the high speed side. By setting this resonance tuning rotation speed Nr
At high speeds, the resonance effect produces a supercharging effect that increases engine output. In this case, the flow ends of the grouped intake passages 11 and 12 of the main intake passage 10 are connected to the approximately medium heat of each gathering part 6.
, J: So, the imbalance in the length from this connection point to each cylinder's intake bow 1- is reduced, and the distribution of intake air to each cylinder is improved.-)-C1 When creating a resonance effect in the high-speed range Also, intake supercharging f+ due to the resonance effect is effectively exerted. For this reason, in this structure (the T engine output 1-lux in this case is not shown by the line in Fig. (line entrance).

まlζ、第5図はに記Jtl鳥11)1調回転数N r
を種々の(「1【こ設定し/、=場合の1−ンシン出力
1−ルクのBj +1(線へ1〜△5)を、共鳴効果を
有しない場合の特性(線C)と比較して示す。この図に
おいて、線Δ1は共鳴同調回転数Nrを:エンジンの二
′1容最高回転数N maxとした場合の特性であり、
この場合は」二記許容最高回転数N maxでエンモレ
出力lりルクがピークどなり、そのイ」近の高速域で出
力1ヘルクか高められる。また、[0,7Nmax <
Nr〈1“、2NIllaX]の範囲であれば共鳴同調
回転数NrがW1容最高回転数N maxからずれtこ
賜金(線A2 、 A3 )でも、許容最高回転数Nm
axイ」近において、エンジン出力1〜ルクがピークJ
:りは低下するものの」を嗅効県を有しない場合より充
分に高くなる。ところが、1記範囲よりも低速側に人さ
く共鳴同調回転数Nrがずれると、許容最高回転数Nm
ax(;j近にI3 &jる1ンジン出力トルクが共鳴
効果を有しない場合よりも低トして逆効果となり(線A
4)、また上記範囲よりも高速側に大きく共鳴同調回転
数Nrがずれると、許容最高回転数N max以下では
1ンジン出力トルクが共鳴効果を有しない場合とはとl
υど変りがなくイ1っCしまう(線へ5)。
11) 1st key rotation speed N r
Compare the Bj +1 (1 to △5 to the line) of the 1-shin output 1-lux for various (1 [this setting /, = case) with the characteristic (line C) when there is no resonance effect. In this figure, the line Δ1 is the characteristic when the resonance tuning speed Nr is the maximum engine speed Nmax,
In this case, the entrainment output torque reaches its peak at the allowable maximum rotational speed Nmax, and the output is increased by one torque in the high speed range near that point. Also, [0,7Nmax <
If Nr<1", 2NIllaX], even if the resonance tuning rotational speed Nr deviates from the W1 maximum rotational speed Nmax (lines A2, A3), the allowable maximum rotational speed Nm
When the engine output is 1 to 1, the engine output peaks at J
Although the olfactory effect is lower, it is still significantly higher than that without the olfactory effect. However, if the resonance tuning rotation speed Nr deviates to the lower speed side than the range 1, the maximum allowable rotation speed Nm
1 engine output torque near I3 &j ax (;
4) Also, if the resonance tuning rotation speed Nr deviates significantly to the higher speed side than the above range, the case where one engine output torque does not have a resonance effect below the maximum allowable rotation speed Nmax is l.
There is no change in υ and I1C goes away (to the line 5).

従って、例えば第1図に示す実施例ににる場合は、グル
ープ別吸気通路11.12を集合部6゜7の間の連通部
分として、十記■、■弐〇求められる共鳴同調回転数N
rが十記範囲内となるように設定しておくことにより、
ム1容最高回転数NmaX付近の高速域でjt鳴効末に
よりTンジン出力が高められることどなる。また、第2
図の実施例にJ:る場合は、連通路1ε3を上記連通部
分としたときの十記■、■式で求められる共鳴同調回転
数Nrが上記範囲内となる、」:うに設定しておくこと
にJ、す、開閉弁19がnil l)\rtだどきはf
f1Q容最高回転数N max付近の高速域Q共鳴効果
により1ンジン出力が高められるー・h、開閉弁19が
閉じられたときは共鳴用経路が良くなつC固有振動数が
低下することにより、比較的低速域でb共鳴効果を持た
せることができる。
Therefore, for example, in the case of the embodiment shown in FIG.
By setting r so that it is within the ten range,
In the high-speed range near the maximum engine speed Nmax, the T engine output is increased by the end of the engine. Also, the second
In the example shown in the figure, if the communication path 1ε3 is used as the communication part, the resonance tuning rotation speed Nr determined by the equations 1 and 2 will be within the above range. In particular, the on-off valve 19 is nil.
The engine output is increased due to the Q resonance effect in the high-speed region near the maximum rotational speed N max.When the on-off valve 19 is closed, the resonance path becomes better and the C natural frequency decreases, It is possible to create a b-resonance effect in a relatively low speed range.

なお、−1記の第1図、第2図に示−づ実施例では■型
6気筒王ンジンに本発明を適用しているが、仙の多気筒
1−ンジンtこ−し本発明を適用づることが−i71− でき、その数例を第6図乃至第8図に示71’第6図は
V型4気筒Tンジンに適用した場合をポし、この場合も
、−・方のバンク21の気筒23a、23b同t、およ
び他方のバンク22の気筒23G、23d間」は、それ
ぞれ吸気順序が連続しないので、吸気系が一万のバンク
21側のグループと他方のバンク22側のグループとに
分りられ、一方のバンク21側の独立吸気通路25a。
In addition, in the embodiment shown in FIGS. 1 and 2 in Section 1, the present invention is applied to a type 6-cylinder engine, but the present invention is applied to a multi-cylinder 1-engine engine. It can be applied -i71-, and some examples are shown in Figs. Since the intake order is not consecutive between the cylinders 23a and 23b of the bank 21 and the cylinders 23G and 23d of the other bank 22, the intake system is different between the 10,000 group on the bank 21 side and the group on the other bank 22 side. An independent intake passage 25a on one bank 21 side.

25bおよび他方のバンク21側の独立吸気通路25c
、25dがそれぞれ集合されて、その各集合部26.2
7に主吸気通路30のグループ別吸%通路31.32が
接続されている。
25b and the independent intake passage 25c on the other bank 21 side
, 25d are collected, and each collection part 26.2
Group-specific intake percentage passages 31 and 32 of the main intake passage 30 are connected to 7.

第7図は直列4気筒丁ンジンに適用した場合を示し、こ
の場合は、吸気順序が連続しない1番気筒43aど4番
気筒43 dとが第1グループ、2番気筒43bと3番
気筒43cどが第2グルー1とされ、これらのグループ
毎に、各独立吸気通路45a、45dおよび4.5b、
45cがそれぞれ集合されて、その各集合部46.’1
7に1吸気通路50の各グループ′別吸気通路51.5
2がそれそれ接続されでいる。
FIG. 7 shows a case where the application is applied to an in-line four-cylinder engine. In this case, the first cylinder 43a and the fourth cylinder 43d, which have non-consecutive intake orders, are in the first group, and the second cylinder 43b and the third cylinder 43c are in the first group. which is the second group 1, and for each group, each independent intake passage 45a, 45d and 4.5b,
45c are respectively collected, and each collection part 46. '1
7 to 1 for each group of intake passages 50' separate intake passages 51.5
2 are connected one by one.

第8図はV is’ 8気筒ゴンジンに適用した場合を
示し、この場合ら、吸気順序が連続しない気筒同士を同
一・グループとするように、吸気系が一力のパンクロ1
側のグループと他方のパンクロ2側のグループとに分り
られ、これらのグループ毎に、各気筒63a〜63dお
よび63e〜63hの独立吸気通路6E)a〜65dお
にび65 e 〜651)がそれぞれ集合されて、その
各集合部66.67に主吸気通路70の各グループ別吸
気通路71゜72がそれぞれ接続されている。
Figure 8 shows the case where it is applied to a V is' 8-cylinder engine.
The cylinders 63a to 63d and 63e to 63h have independent intake passages 6E) to 65d and 65e to 651) for each of the cylinders 63a to 63d and 63e to 63h, respectively. Each group of intake passages 71 and 72 of the main intake passage 70 is connected to each collection part 66 and 67, respectively.

これら第6図乃至第8図に示す各実施例でも、各グルー
1の独立吸気通路i13よび集合部とそのト流の連通部
分となるグループ別吸気通路とで共鳴系を構成し、この
共鳴系を、前述の■、■式で求められる」ξ鳴同調回転
数NrがエンジンのFf容最高同転数N maxに対し
C前20式の関係を満足する範囲どなるように設定して
おくとともに、各集合部の略中火に主吸気通路のグルー
プ別吸気通路を接続りることにより、十記泊容回転数イ
」近の高−’16 − 速成て共鳴効果が得られ、がっ、各気筒に対−りる吸気
の分配性が高められることとなる。また、これら第6図
乃至第8図に示づ吸気装置においても、第2図の実施例
に準じて、良さの責なる複数の」L鳴用経路を設け、エ
ンジン回転数に応じて共鳴用経路を切替えてもよい。
In each of the embodiments shown in FIGS. 6 to 8, a resonance system is formed by the independent intake passages i13 of each glue 1 and the grouped intake passages that are the communication parts of the collective part and the flow. is set so that the ξ-sounding rotation speed Nr, which is determined by the above formulas ■ and ■, satisfies the relationship of Equation 20 with respect to the engine's Ff maximum synchronization speed Nmax, and By connecting the intake passages of each group of the main intake passage to the approximately medium heat of each gathering part, a resonance effect can be obtained at high engine speeds near 16-16. This results in improved distribution of intake air to the cylinders. Also, in the intake systems shown in FIGS. 6 to 8, a plurality of "L" sounding paths are provided, which are responsible for good quality, in accordance with the embodiment shown in FIG. The route may be switched.

(発明の効果〕 以上のように本発明は、吸気順序が連続しない気筒同士
を同一グループとする各グループ毎の気筒別の独立吸気
通路および集合部と各集合部に連なる通路部分とで構成
される共鳴系を、その最短共鳴用経路による共鳴同調回
転数Nrがこ[ンジンの許容最高回転数N maxに対
して 0、7Nmax <Nr <i、 2Nn+axとなる
ように設定1)でいるため、吸気系を−」ンバク1〜な
構造としつつ、エンジンの許容最高回転数イ」近で共鳴
効果ににり充填効率を高めることができる。その上、十
記名クループの集合部の略中央にト吸気通路を接続し一
〇いるので、各気筒に対4る吸気の分配性が高められて
、高速域での共鳴による過給作用が有効に発揮され、エ
ンジン出力を大幅に高めることができるものrある。
(Effects of the Invention) As described above, the present invention includes an independent intake passage and a gathering portion for each cylinder in each group in which cylinders whose intake order is not consecutive are grouped into the same group, and a passage portion connected to each gathering portion. The resonance system is set so that the resonance tuning rotation speed Nr due to the shortest resonance path is 0, 7Nmax < Nr < i, 2Nn + ax with respect to the engine's allowable maximum rotation speed N max 1). While the intake system has a compact structure, it is possible to increase the filling efficiency due to the resonance effect near the engine's maximum allowable rotation speed. Furthermore, since the intake passage is connected to the approximate center of the gathering part of the ten croup, the distribution of the intake air to each cylinder is improved, and the supercharging effect due to resonance in the high speed range is effective. There are some things that can significantly increase engine output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の吸気装置をV型6気筒エンジンに適用
り、 7j揚含の−・実施例を示づ吸気装置概略図、第
2図は別の実施例を示す吸気装置概略図、第3図は第1
図または第2図の吸気装置をモデル化して示す説明図、
第4図は上記吸気装置によるエンジン出力トルクのfi
lを、主吸気通路が集合部の−・端側に接続された場合
と比較して示す特性図、第5図は共鳴同調回転数を種々
変えた場合のTンジン出力トルクの狛竹図、第6図乃芋
第8図はV型6気筒]−ンジン以外の各種多気筒−1ン
シンに適用した場合の各実施例を示す吸気装置概略図で
ある。 3a〜ご3 +’、23a−23d、43a=43d。 63 a−63h ・−・気筒、りa−51’ 、 2
 b a 〜2:)<」、/I 5a−45d、65a
−65[1−・・独立吸気通路、6,7.26.27.
 /16,47,66゜67・・・集合部、10,30
.50.70・・・主吸気通路。 特Ω′[出願人      マ ツ ダ 株式会召代 
理 人      弁理士  手行 悦i″I]同  
           弁理」    艮■l    
i)同        弁理士  伊藤 孝夫第  3
  図 第  4  図 第  5  図 エンン゛ン回取l父(xl♂rpm) 234567      ′ エフブン回転t(X 10103rp 第  6  図
Fig. 1 is a schematic diagram of an intake system showing an embodiment in which the intake system of the present invention is applied to a V type 6-cylinder engine, and Fig. 2 is a schematic diagram of an intake system showing another embodiment. Figure 3 is the first
An explanatory diagram showing a model of the intake device in FIG.
Figure 4 shows the engine output torque fi due to the above intake system.
Figure 5 is a characteristic diagram showing the T engine output torque when the resonance tuning rotation speed is variously changed. FIG. 6 and FIG. 8 are schematic diagrams of intake systems showing various embodiments when applied to various multi-cylinder engines other than V-type six-cylinder engines. 3a~go3+', 23a-23d, 43a=43d. 63 a-63h --- cylinder, ri a-51', 2
ba ~2:)<'', /I 5a-45d, 65a
-65[1-...Independent intake passage, 6,7.26.27.
/16,47,66°67... assembly part, 10,30
.. 50.70...Main intake passage. Special Ω′ [Applicant Mazda Co., Ltd.
Patent Attorney Tegyo Etsu i″I] Same
``Patent Attorney'' 艮■l
i) Patent Attorney Takao Ito 3rd
Figure 4 Figure 5 Engine rotation t (xl♂rpm) 234567' Efun rotation t (X 10103rp Figure 6

Claims (1)

【特許請求の範囲】 1、エンジンの吸気系を吸気順序が連続しない気筒同士
を同一グループとする複数のグループに分けて、気筒別
の独立吸気通路を各グループ毎に各々集合させ、かつ、
この各集合部の略中央に主吸気通路を接続するとともに
、上記各グループの独立吸気通路および集合部と各集合
部に連なる通路部分とで構成される共鳴系を、その最短
共鳴用経路による共鳴同調回転数Nrがエンジンの許容
最高回転数Nmaxに対して 0.7Nmax<Nr<1.2Nmax となるように設定したことを特徴とするエンジンの吸気
装置。
[Scope of Claims] 1. The intake system of the engine is divided into a plurality of groups in which cylinders whose intake order is not consecutive are grouped into the same group, and independent intake passages for each cylinder are assembled in each group, and
The main intake passage is connected to approximately the center of each gathering part, and the resonance system consisting of the independent intake passages of each group, the gathering part, and the passage part connected to each gathering part is connected to the resonance system through the shortest resonance path. An intake system for an engine, characterized in that a tuned rotational speed Nr is set such that 0.7Nmax<Nr<1.2Nmax with respect to a maximum allowable engine rotational speed Nmax.
JP10941188A 1988-05-02 1988-05-02 Engine intake system Expired - Fee Related JP2820411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10941188A JP2820411B2 (en) 1988-05-02 1988-05-02 Engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10941188A JP2820411B2 (en) 1988-05-02 1988-05-02 Engine intake system

Publications (2)

Publication Number Publication Date
JPH01280631A true JPH01280631A (en) 1989-11-10
JP2820411B2 JP2820411B2 (en) 1998-11-05

Family

ID=14509567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10941188A Expired - Fee Related JP2820411B2 (en) 1988-05-02 1988-05-02 Engine intake system

Country Status (1)

Country Link
JP (1) JP2820411B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023863A (en) * 2005-07-14 2007-02-01 Toyota Motor Corp Intake device
US7556008B2 (en) 2006-06-29 2009-07-07 Nissan Motor Co., Ltd. Internal combustion engine intake device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148024A (en) * 1981-03-11 1982-09-13 Hino Motors Ltd Intake and exhaust for diesel engine
JPS57153924A (en) * 1981-03-20 1982-09-22 Hino Motors Ltd Inertia supercharging intake manifold in internal combustion engine
JPS5988223U (en) * 1982-12-07 1984-06-14 いすゞ自動車株式会社 Intake system for multi-cylinder internal combustion engine
JPS5988221U (en) * 1982-12-07 1984-06-14 いすゞ自動車株式会社 Intake system for multi-cylinder internal combustion engine
JPS5988222U (en) * 1982-12-07 1984-06-14 いすゞ自動車株式会社 Intake system for multi-cylinder internal combustion engine
JPS61116128U (en) * 1984-12-29 1986-07-22
JPS6254233U (en) * 1985-09-24 1987-04-03

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148024A (en) * 1981-03-11 1982-09-13 Hino Motors Ltd Intake and exhaust for diesel engine
JPS57153924A (en) * 1981-03-20 1982-09-22 Hino Motors Ltd Inertia supercharging intake manifold in internal combustion engine
JPS5988223U (en) * 1982-12-07 1984-06-14 いすゞ自動車株式会社 Intake system for multi-cylinder internal combustion engine
JPS5988221U (en) * 1982-12-07 1984-06-14 いすゞ自動車株式会社 Intake system for multi-cylinder internal combustion engine
JPS5988222U (en) * 1982-12-07 1984-06-14 いすゞ自動車株式会社 Intake system for multi-cylinder internal combustion engine
JPS61116128U (en) * 1984-12-29 1986-07-22
JPS6254233U (en) * 1985-09-24 1987-04-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023863A (en) * 2005-07-14 2007-02-01 Toyota Motor Corp Intake device
US7556008B2 (en) 2006-06-29 2009-07-07 Nissan Motor Co., Ltd. Internal combustion engine intake device

Also Published As

Publication number Publication date
JP2820411B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
JPH0431623A (en) Air intake device of engine
JPH0192518A (en) Engine intake-air device
JPH01280631A (en) Intake system for engine
US5085178A (en) Intake piping structure for multi-cylinder engine
JPH03286129A (en) Air intake device for multiple cylinder engine
JPH03202622A (en) Intake system for multi-cylinder engine
JPS61241418A (en) Suction device for multicylinder engine
JP2782604B2 (en) Multi-cylinder engine intake system
JPH03286131A (en) Air intake passage structure for multiple cylinder engine
JP2779253B2 (en) Multi-cylinder engine intake system
JP2771175B2 (en) Engine intake system
JP2775442B2 (en) Engine intake system
JPH03168325A (en) Suction device of multiple cylinder engine
JP2771176B2 (en) Engine intake system
JPS63106324A (en) Exhauster for v-type multicylinder engine
JP2872791B2 (en) Engine intake system
JPH03168326A (en) Suction device of engine
JPH0619796Y2 (en) Exhaust system for 4-cylinder engine
JP2872786B2 (en) Engine intake system
JPH03286135A (en) Exhaust for multiple cylinder engine
JP2562465B2 (en) Engine intake system
JP2583529B2 (en) Engine intake system
JP2547409B2 (en) V-type engine intake device
JPH0476263A (en) Intake system for engine
JPH03286132A (en) Air intake device for multiple cylinder engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees