JPH01279566A - Alkaline dry battery - Google Patents

Alkaline dry battery

Info

Publication number
JPH01279566A
JPH01279566A JP63109306A JP10930688A JPH01279566A JP H01279566 A JPH01279566 A JP H01279566A JP 63109306 A JP63109306 A JP 63109306A JP 10930688 A JP10930688 A JP 10930688A JP H01279566 A JPH01279566 A JP H01279566A
Authority
JP
Japan
Prior art keywords
manganese dioxide
mix
chemically treated
positive electrode
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63109306A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takahashi
浩之 高橋
Nobuaki Chiba
千葉 信昭
Kazumasa Yoshida
和正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63109306A priority Critical patent/JPH01279566A/en
Publication of JPH01279566A publication Critical patent/JPH01279566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an alkaline dry battery having good heavy-load discharge performance and low cost by using activated, chemically treated manganese dioxide mainly having gamma-structure and whose surface area and total pore volume are specified as a positive active material. CONSTITUTION:A press-molded positive mix 2 is placed in a cylindrical metal can 1 also serving as a positive terminal. Activated, chemically treated manganese dioxide mainly having gamma-structure and whose surface area is 30-55m<2>/g and total pore volume is 0.06-0.12cm<3>/g is used in the positive mix 2. A negative mix 4 is fitted to the hollow part of the positive mix 2 through a cylindrical separator 3. A negative current collector 5 is inserted into the negative mix 4 and its upper part is projected from the negative mix 4. A ring-shaped metal plate 7 is arranged in the protruded periphery of the current collector 5 and the inner periphery of the metal can 1 through an insulating gasket 6. A metallic sealing plate 8 also serving as a negative terminal is brought into contact with the current collector 5. Heavy-load discharge performance is thereby increased.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、アルカリ乾電池に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to an alkaline dry battery.

[従来の技術及び課題] アルカリ乾電池は、塩化亜鉛電解液を用いたマンガン乾
電池に比べて連続放電及び重負荷放電性能が優れている
ため、携帯用再生装置やカメラのフラッシュライトの電
源等として利用されている。
[Conventional technology and issues] Alkaline batteries have better continuous discharge and heavy load discharge performance than manganese batteries using zinc chloride electrolyte, so they are used as power sources for portable playback devices and camera flashlights. has been done.

ところで、上記アルカリ乾電池の正極活物質としては従
来より優れた放電性能と高密度を有する電解二酸化マン
ガンが多く用いられていた。しかしながら、かかる電解
二酸化マンガンは、硫酸マンガンの電解により得られ、
その電解に長時間を要しかつ多くの電力を消費するため
、製造コストが高くなるという問題があった。
Incidentally, electrolytic manganese dioxide, which has superior discharge performance and high density, has been widely used as the positive electrode active material of the above-mentioned alkaline dry batteries. However, such electrolytic manganese dioxide is obtained by electrolysis of manganese sulfate,
Since the electrolysis takes a long time and consumes a lot of power, there is a problem in that the manufacturing cost is high.

このようなことから、前記電解二酸化マンガンより製造
コストの低い化学合成二酸化マンガンや天然二酸化マン
ガンを正極活物質として用いることが試みられている。
For this reason, attempts have been made to use chemically synthesized manganese dioxide or natural manganese dioxide, which are lower in production cost than the electrolytic manganese dioxide, as positive electrode active materials.

しかしながら、これら化学合成二酸化マンガン等を正極
活物質として用いた電池は重負荷放電特性等が良好では
ながった。
However, batteries using chemically synthesized manganese dioxide or the like as a positive electrode active material did not have good heavy load discharge characteristics.

そこで、優れた放電性能を有しがっ電解二酸化マンガン
より低コストで得られる活性化化学処理二酸化マンガン
をアルカリ乾電池の正極活物質して用いることが検討さ
れている。この活性化化学処理二酸化マンガンは、下記
式(1)に示すように天然二酸化マンガンを粉砕し高温
で加熱焙燻することによりM n 203を形成し、こ
のMn2O3を下記式(2)に示すように硫酸で処理し
、その後中和処理等を行なうことによって得られるもの
である。
Therefore, it is being considered to use activated chemically treated manganese dioxide, which has excellent discharge performance and is obtained at a lower cost than electrolytic manganese dioxide, as a positive electrode active material for alkaline dry batteries. This activated chemically treated manganese dioxide is produced by crushing natural manganese dioxide and roasting it at high temperature to form Mn203 as shown in the following formula (1), and converting this Mn2O3 into Mn2O3 as shown in the following formula (2). It is obtained by treating with sulfuric acid, followed by neutralization.

2Mn02−Mn2 o、 +1/202   (1)
Mn2  o3 +H2S 04 mMn 02  +Mn S 04  +H20(2)
しかしながら、かかる活性化化学処理二酸化マンガンを
正極活物質として用いた電池は、電解二酸化マンガンを
正極活物質とした従来の電池に比べて重負荷放電特性等
が必ずしも優れたものではなかった。
2Mn02-Mn2 o, +1/202 (1)
Mn2 o3 +H2S 04 mMn 02 +Mn S 04 +H20 (2)
However, batteries using such activated chemically treated manganese dioxide as a positive electrode active material have not necessarily been superior in heavy load discharge characteristics, etc. compared to conventional batteries using electrolytic manganese dioxide as a positive electrode active material.

本発明は、上記従来の問題点を解決するためになされた
もので、電解二酸化マンガンに匹敵する重負荷放電特性
を有し、かつ該電解二酸化マンガンより低コストの正極
活物質を備えたアルカリ乾電池を提供しようとするもの
である。
The present invention has been made to solve the above conventional problems, and is an alkaline dry battery equipped with a positive electrode active material that has heavy load discharge characteristics comparable to electrolytic manganese dioxide and is lower in cost than electrolytic manganese dioxide. This is what we are trying to provide.

[課題を解決するための手段] 本発明は、表面積が30〜55m / 9でかつ総社容
積が0.06〜0.12cH3/ 9のγ型結晶を主成
分とする活性化化学処理二酸化マンガンを正極活物質と
して用いたことを特徴とするアルカリ乾電池である。
[Means for Solving the Problems] The present invention uses activated chemically treated manganese dioxide whose main component is γ-type crystals with a surface area of 30 to 55 m/9 and a Soja volume of 0.06 to 0.12 cH3/9. This is an alkaline dry battery characterized by its use as a positive electrode active material.

上記活性化化学処理二酸化マンガンの総社容積の値は、
例えば前記活性化化学処理二酸化マンガンの試料を15
0℃に加熱し15分間窒素を通気して表面付若水を除去
した後、窒素吸着法により測定し、表面積はBET法に
より11Jlj定する。なお、総社容積は半径が8人〜
400人の孔の総量である。
The value of Soja volume of the above activated chemically treated manganese dioxide is:
For example, a sample of the activated chemically treated manganese dioxide
After heating to 0° C. and bubbling nitrogen for 15 minutes to remove surface water, the sample is measured by the nitrogen adsorption method, and the surface area is determined to be 11 Jlj by the BET method. In addition, the radius of Soja volume is 8 people ~
This is the total amount of holes for 400 people.

かかる表面積及び総社容積を限定した理由は、表面積が
30尻/g未満でありかつ総社容積が0.06(1’ 
/ g未満であると、該二酸化マンガンが高密度となっ
て導電材との接触面積が減少すると共に、電解液の吸収
が悪くなって該二酸化マンガン中でのプロトンの拡散等
が不良となるためである。一方、表面積が55m / 
gを越えかつ総社容積が0.12cII3/ gを越え
ると、二酸化マンガンが嵩ぼって正極合剤での二酸化マ
ンガンの充填量が減少するためである。
The reason for limiting the surface area and soja volume is that the surface area is less than 30 butts/g and the soja volume is 0.06 (1'
If it is less than /g, the manganese dioxide becomes dense and the contact area with the conductive material decreases, and the absorption of the electrolyte becomes poor, resulting in poor diffusion of protons in the manganese dioxide. It is. On the other hand, the surface area is 55m/
This is because if the total volume exceeds 0.12 cII3/g, the manganese dioxide becomes bulky and the amount of manganese dioxide filled in the positive electrode mixture decreases.

上記活性化化学処理二酸化マンガンは、例えば天然二酸
化マンガンを粉砕、焙燻して三二酸化マンガンとし、こ
の三二酸化マンガンを更に微粉砕して加熱された硫酸等
の鉱酸中に混合することにより二酸化マンガンに変化さ
せ、この二酸化マンガンを中和、乾燥する工程において
、前記鉱酸の処理等を調節することにより製造される0
また・この方法においてアルカリ金属、特にカリウムを
除去した天然二酸化マンガンを用いることにより活性度
の高い前記γ型結晶を主成分とする活性化化学二酸化マ
ンガンが得られる。かかるγ型結晶は1活性化化学処理
二酸化マンガン中に50重量%以上含むことが望ましい
The activated chemically treated manganese dioxide can be produced by, for example, pulverizing and roasting natural manganese dioxide to produce manganese sesquioxide, and then finely pulverizing this manganese sesquioxide and mixing it in a heated mineral acid such as sulfuric acid. In the process of converting the manganese dioxide into
Furthermore, in this method, by using natural manganese dioxide from which alkali metals, particularly potassium, have been removed, activated chemical manganese dioxide containing the highly active γ-type crystals as a main component can be obtained. It is desirable that such γ-type crystals be contained in an amount of 50% by weight or more in one activation chemically treated manganese dioxide.

[作用] 本発明に使用する正極活物質は、表面積が30〜55m
/SiEの範囲でかつ総社容積が0.06〜0.12c
113/ 9の範囲のγ形結晶を主成分とする活性化化
学処理二酸化マンガンからなり、従来の電解二酸化マン
ガンと同様な活性度を有するため、放電時において二酸
化マンガン結晶内へのプロトンの拡散と電子の移動とが
良好になされる。また、前記活性化化学処理二酸化マン
ガンは天然二酸化マンガンの化学処理により得られるた
め、電解二酸化マンガンに比べて低コストで得ることが
できる。従って、電解二酸化マンガンに匹敵する重負荷
放電特性を有し、かつ低コストのアルカリ乾電池を得る
ことができる。
[Function] The positive electrode active material used in the present invention has a surface area of 30 to 55 m
/SiE range and Soja volume is 0.06 to 0.12c
It is made of activated chemically treated manganese dioxide whose main component is γ-form crystals in the range of 113/9, and has the same activity as conventional electrolytic manganese dioxide, so it prevents the diffusion of protons into the manganese dioxide crystals during discharge. Good electron movement is achieved. Further, since the activated chemically treated manganese dioxide is obtained by chemically treating natural manganese dioxide, it can be obtained at a lower cost than electrolytic manganese dioxide. Therefore, it is possible to obtain a low-cost alkaline dry battery that has heavy load discharge characteristics comparable to electrolytic manganese dioxide.

[実施例] 以下、本発明をJIS規格LR6形(単3形)アルカリ
乾電池に適用した例について第1図を参照にして詳細に
説明する。
[Example] Hereinafter, an example in which the present invention is applied to a JIS standard LR6 type (AA size) alkaline dry battery will be described in detail with reference to FIG.

実施例1 図中の1は正極端子を兼ねる有底円筒形の金属缶である
。この金属缶1内には、円筒状に加圧成形した正極合剤
2が充填されている。なお、前記正極合剤2は金属缶1
に対する接触性を高めるために金属缶1への充填後にお
いて例えば3ton/ciの圧力で再加圧される。前記
正極合剤2は、後述する方法により得られる活性化化学
処理二酸化マンガン90重量部と鱗片状黒鉛10重量部
に6%の水酸化カリウムのアルカリ電解液を3重量部加
え攪拌混合し、これを3ton/ cdの圧力で中空円
筒状に加圧成形したものである。また、前記円筒状の正
極合剤2の中空部にはアセタール化ポリビニルアルコー
ル繊維の不織布からなる有底円筒状のセパレータ3を介
してゲル状負極合剤4が充填されている。このゲル状負
極合剤4は、ポリアクリル酸ソーダを主成分とする水酸
化カリウム電解液に負極活物質であるアマルガム化した
亜鉛粉末を分散させた構成になっている。このゲル状負
極合剤4内には、真鍮源の負極集電棒5がその上端部を
該負極合剤4より突出するように挿着されている。この
負極集電棒5の突出部外周面及び前記金属缶lの上部内
周面には二重環状のポリアミド樹脂からなる絶縁ガスケ
ット6が介在されている。また、前記ガスケット6の二
重環状部の間にはリング状の金属板7が配置され、かつ
該金属板7には負極端子を兼ねる帽子形の金属封口板8
が前記集電棒5の頭部に当接するように配置されている
。そして、前記金属缶lの開口縁を内方に屈曲させるこ
とにより前記ガスケット6及び金属封口板8で金属缶l
内を密閉口している。
Example 1 Reference numeral 1 in the figure is a cylindrical metal can with a bottom that also serves as a positive electrode terminal. This metal can 1 is filled with a positive electrode mixture 2 which is press-formed into a cylindrical shape. Note that the positive electrode mixture 2 is in the metal can 1.
After filling the metal can 1, the metal can is re-pressurized at a pressure of, for example, 3 tons/ci to improve contact with the metal can. The positive electrode mixture 2 was prepared by adding 3 parts by weight of an alkaline electrolyte of 6% potassium hydroxide to 90 parts by weight of activated chemically treated manganese dioxide obtained by the method described below and 10 parts by weight of flaky graphite, and mixing the mixture with stirring. It is press-molded into a hollow cylindrical shape at a pressure of 3 tons/cd. Further, the hollow portion of the cylindrical positive electrode mixture 2 is filled with a gelled negative electrode mixture 4 via a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fibers. This gelled negative electrode mixture 4 has a structure in which amalgamated zinc powder, which is a negative electrode active material, is dispersed in a potassium hydroxide electrolyte containing sodium polyacrylate as a main component. A negative electrode current collector rod 5 made of brass is inserted into the gelled negative electrode mixture 4 so that its upper end protrudes beyond the negative electrode mixture 4 . A double annular insulating gasket 6 made of polyamide resin is interposed on the outer circumferential surface of the protrusion of the negative electrode current collector rod 5 and on the inner circumferential surface of the upper part of the metal can 1. Further, a ring-shaped metal plate 7 is disposed between the double annular portions of the gasket 6, and a cap-shaped metal sealing plate 8 that also serves as a negative electrode terminal is attached to the metal plate 7.
is arranged so as to come into contact with the head of the current collector rod 5. Then, by bending the opening edge of the metal can l inward, the gasket 6 and the metal sealing plate 8 close the metal can l.
The inside is sealed.

前記活性化化学処理二酸化マンガンは、次のようにして
製造される。まず、M n 0280%、5i024%
、l;’e2035%及びその他の不純物1196の組
成からなる天然二酸化マンガン鉱石を粗粉砕し、カリウ
ムを除去した後この粉砕物を850℃の雰囲気下で1時
間焙焼してMn20Bを調製する。つづいて、このMn
2O3を150p以下に微粉砕し、IM−硫酸溶液中で
1時間酸処理を行なうことにより前記Mn2O3をM 
n O2に化学変化させる。次いで、このM n O3
を中和処理し、乾燥、圧縮した後、所定の粒度に調製す
ることにより活性化化学処理二酸化マンガンを製造する
。得られた活性化化学処理二酸化マンガンは、BET表
面積が31i/’jで、前述した窒素吸着法による総孔
容積が0.062 dlgのγ型結晶ヲ70%、残りが
α型結晶の組成を有するものである。
The activated chemically treated manganese dioxide is produced as follows. First, M n 0280%, 5i024%
A natural manganese dioxide ore having a composition of 35%, l;'e2, and 1196% of other impurities is coarsely ground, potassium is removed, and the ground product is roasted in an atmosphere of 850° C. for 1 hour to prepare Mn20B. Next, this Mn
The Mn2O3 is converted into Mn2O3 by pulverizing 2O3 to 150p or less and acid-treating it in an IM-sulfuric acid solution for 1 hour.
Chemically changed to n O2. Then, this M n O3
Activated chemically treated manganese dioxide is produced by neutralizing, drying, compressing, and adjusting to a predetermined particle size. The obtained activated chemically treated manganese dioxide has a BET surface area of 31i/'j, a total pore volume of 0.062 dlg by the nitrogen adsorption method described above, and has a composition of 70% γ-type crystals and the remainder α-type crystals. It is something that you have.

実施例2 表面績が35m/g、総孔容積が0.100 ax3/
 gのγ型結晶を70%で残部がα型結晶である活性化
化学処理二酸化マンガンを正極活物質として用いた以外
、実施例1と同様な構造のアルカリ乾電池を組立てた。
Example 2 Surface roughness is 35 m/g, total pore volume is 0.100 ax3/
An alkaline dry battery having the same structure as in Example 1 was assembled, except that activated chemically treated manganese dioxide containing 70% gamma type crystals and the remainder α type crystals was used as the positive electrode active material.

実施例3 表面績が42尻/g、総孔容積が0.09003/9の
γ型結晶を70%で残部がα型結晶である活性化化学処
理二酸化マンガンを正極活物質として用いた以外、実施
例1と同様な構造のアルカリ乾電池を組立てた。
Example 3 An activated chemically treated manganese dioxide having a surface roughness of 42 butts/g and a total pore volume of 0.09003/9, 70% of which was γ-type crystals and the remainder of which was α-type crystals, was used as the positive electrode active material. An alkaline dry battery having the same structure as in Example 1 was assembled.

実施例4 表面績が50m / g、総孔容積が0.110 Cl
ll3/ gのγ型結晶を7096で残部がα型結晶で
ある活性化化学処理二酸化マンガンを正極活物質として
用いた以外、実施例1と同様な構造のアルカリ乾電池を
組立てた。
Example 4 Surface roughness is 50 m/g, total pore volume is 0.110 Cl
An alkaline dry battery having the same structure as in Example 1 was assembled, except that activated chemically treated manganese dioxide containing 7096 γ-type crystals of 113/g and the remainder α-type crystals was used as the positive electrode active material.

実施例5 表面績が557Il/g、総孔容積が0.060 cI
I3/ 9のγ型結晶を70%で残部がα型結晶である
活性化化学処理二酸化マンガンを正極活物質として用い
た以外、実施例1と同様な構造のアルカリ乾電池を組立
てた。
Example 5 Surface roughness is 557 Il/g, total pore volume is 0.060 cI
An alkaline dry cell having the same structure as in Example 1 was assembled, except that activated chemically treated manganese dioxide containing 70% I3/9 γ-type crystals and the remainder α-type crystals was used as the positive electrode active material.

参照例1 表面績が4077i/g、総孔容積が0.041α3/
gのγ型結晶を70%で残部がα型結晶である活性化化
学処理二酸化マンガンを正極活物質として用いた以外、
実施例1と同様な構造のアルカリ乾電池を組立てた。
Reference example 1 Surface roughness is 4077i/g, total pore volume is 0.041α3/
Other than using activated chemically treated manganese dioxide with 70% gamma type crystals and the remainder α type crystals as the positive electrode active material,
An alkaline dry battery having the same structure as in Example 1 was assembled.

参照例2 表面績が4277i/g、総孔容積が0゜140c11
3/gのγ型結晶を70%で残部がα型結晶である活性
化化学処理二酸化マンガンを正極活物質として用いた以
外、実施例1と同様な構造のアルカリ乾電池を組立てた
Reference example 2 Surface roughness is 4277i/g, total pore volume is 0°140c11
An alkaline dry cell having the same structure as in Example 1 was assembled, except that activated chemically treated manganese dioxide having 70% γ-type crystals and the remainder α-type crystals was used as the positive electrode active material.

参照例3 表面績が6571i/g、総孔容積が0.180α3/
gのγ型結晶を70%で残部がα型結晶である活性化化
学処理二酸化マンガンを正極活物質として用いた以外、
実施例1と同様な構造のアルカリ乾電池を組立てた。
Reference example 3 Surface roughness is 6571i/g, total pore volume is 0.180α3/
Other than using activated chemically treated manganese dioxide with 70% gamma type crystals and the remainder α type crystals as the positive electrode active material,
An alkaline dry battery having the same structure as in Example 1 was assembled.

比較例 表面績が38771/ 9、総孔容積が0.054 a
tt3/ 9の電解二酸化マンガンを正極活物質として
用いた以外、実施例1と同様な構造のアルカリ乾電池を
組立てた。
Comparative example surface roughness is 38771/9, total pore volume is 0.054a
An alkaline dry battery having the same structure as in Example 1 was assembled except that electrolytic manganese dioxide of TT3/9 was used as the positive electrode active material.

しかして、本実施例1〜5及び参照例1〜3及び比較例
の電池夫々について、2Ω抵抗による連続放電を行ない
、0.9Vの放電電圧になるまでの放電持続時間を測定
する重負荷放電特性試験を行なった。その結果を下記第
1表に示す。
Therefore, for each of the batteries of Examples 1 to 5, Reference Examples 1 to 3, and Comparative Example, continuous discharge was performed using a 2Ω resistance, and heavy load discharge was performed to measure the discharge duration until the discharge voltage reached 0.9V. Characteristic tests were conducted. The results are shown in Table 1 below.

第1表 また、上記実施例1〜5、参照例1〜3及び比較例の電
池における正極活物質の表面積と総社容積との関係を、
第2図に示した。なお、図中のA〜lは夫々実施例1〜
5の電池、参照例1〜3の電池及び比較例の電池に用い
た正極活物質を示している。また、第2図中において点
線で囲まれた領域は、本発明における表面積と総社容積
を満足する部分である。
Table 1 also shows the relationship between the surface area of the positive electrode active material and the Soja volume in the batteries of Examples 1 to 5, Reference Examples 1 to 3, and Comparative Example.
It is shown in Figure 2. In addition, A to l in the figure represent Examples 1 to 1, respectively.
The positive electrode active materials used in the batteries of No. 5, the batteries of Reference Examples 1 to 3, and the batteries of Comparative Examples are shown. Furthermore, the area surrounded by dotted lines in FIG. 2 is a portion that satisfies the surface area and total volume in the present invention.

上記第1表から明らかなように、表面積と総社容積の関
係が第2図の点線内にある正極活物質を用いた本実施例
1〜5の電池は、表面積等が第2図の点線内から外れる
参照例1〜3の電池に比べて重負荷放電特性が良好にな
っていることがわかる。また、本実施例1〜5の電池は
電解二酸化マンガンを正極活物質として用いた比較例の
電池に匹敵する重負荷放電特性を示していることがわか
る。
As is clear from Table 1 above, the batteries of Examples 1 to 5 using positive electrode active materials whose relationship between surface area and Soja volume is within the dotted line in FIG. It can be seen that the heavy load discharge characteristics are better compared to the batteries of Reference Examples 1 to 3, which deviate from the above. Moreover, it can be seen that the batteries of Examples 1 to 5 exhibit heavy load discharge characteristics comparable to the batteries of comparative examples using electrolytic manganese dioxide as the positive electrode active material.

[発明の効果] 以上詳述したように、本発明によれば電解二酸化マンガ
ンに匹敵する重負荷放電特性を有し、かつ低コストのア
ルカリ乾電池を得ることができる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to obtain a low-cost alkaline dry battery that has heavy load discharge characteristics comparable to electrolytic manganese dioxide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すアルカリ乾電池の断面
図、第2図は正極活物質における表面積と総社容積との
関係を示す線図である。 ■・・・金属缶、2・・・正極合剤、3・・・セパレー
タ、4・・・ゲル状負極合剤、5・・・負極集電棒、8
・・・金属封口板。 出願人代理人 弁理士 鈴江武彦 第1図
FIG. 1 is a cross-sectional view of an alkaline dry battery showing an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the surface area and the total volume of the positive electrode active material. ■... Metal can, 2... Positive electrode mixture, 3... Separator, 4... Gel-like negative electrode mixture, 5... Negative electrode current collector rod, 8
...Metal sealing plate. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】[Claims] 表面積が30〜55m^2/gでかつ総孔容積が0.0
6〜0.12cm^3/gのγ型結晶を主成分とする活
性化化学処理二酸化マンガンを正極活物質として用いた
ことを特徴とするアルカリ乾電池。
Surface area is 30-55m^2/g and total pore volume is 0.0
An alkaline dry battery characterized in that activated chemically treated manganese dioxide containing γ-type crystals of 6 to 0.12 cm^3/g as a main component is used as a positive electrode active material.
JP63109306A 1988-05-02 1988-05-02 Alkaline dry battery Pending JPH01279566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109306A JPH01279566A (en) 1988-05-02 1988-05-02 Alkaline dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109306A JPH01279566A (en) 1988-05-02 1988-05-02 Alkaline dry battery

Publications (1)

Publication Number Publication Date
JPH01279566A true JPH01279566A (en) 1989-11-09

Family

ID=14506853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109306A Pending JPH01279566A (en) 1988-05-02 1988-05-02 Alkaline dry battery

Country Status (1)

Country Link
JP (1) JPH01279566A (en)

Similar Documents

Publication Publication Date Title
CN100448073C (en) Alkali battery
CA2175856C (en) A method for producing positive electrode material and lithium batteries incorporating this material
AU2003244343A1 (en) Alkali cell
KR900702588A (en) Rechargeable alkaline manganese dioxide-zinc cell with improved measuring capacity
EP2770566B1 (en) Alkaline battery
US5744259A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
US20050008936A1 (en) Alkaline battery
US3446669A (en) Sintered metal oxide battery separator and battery
JP2008210746A (en) Manganese dioxide and battery using the same
JPH01279566A (en) Alkaline dry battery
JP2925630B2 (en) Alkaline batteries
JP2000048827A (en) Alkaline battery
JPS57170459A (en) Button type alkaline battery
JP2003123746A (en) Alkaline zinc battery
JPH031444A (en) Alkaline dry battery
JP4759900B2 (en) Alkaline zinc battery
JP2522328B2 (en) Organic electrolyte battery
JPH034447A (en) Alkaline battery
JPH04184867A (en) Silver oxide battery
CN101114707A (en) Alkaline battery
JPH10302793A (en) Cathode mix for alkaline battery
JP2003017042A (en) Sealed alkaline-zinc primary battery
JPH01292752A (en) Alkaline dry battery
US2636064A (en) Alkaline electrical battery
JP4892796B2 (en) Alkaline zinc battery