JPH01279565A - Nonaqueous solvent battery - Google Patents

Nonaqueous solvent battery

Info

Publication number
JPH01279565A
JPH01279565A JP63109305A JP10930588A JPH01279565A JP H01279565 A JPH01279565 A JP H01279565A JP 63109305 A JP63109305 A JP 63109305A JP 10930588 A JP10930588 A JP 10930588A JP H01279565 A JPH01279565 A JP H01279565A
Authority
JP
Japan
Prior art keywords
manganese dioxide
positive
battery
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63109305A
Other languages
Japanese (ja)
Inventor
Mitsuo Hiruma
光生 晝間
Nobuaki Chiba
千葉 信昭
Kazumasa Yoshida
和正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63109305A priority Critical patent/JPH01279565A/en
Publication of JPH01279565A publication Critical patent/JPH01279565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase heavy-load discharge performance by using specifically treated chemical manganese dioxide as a positive active material and carbon black having specified specific surface area as a positive conductive material. CONSTITUTION:A positive mix 2 is accommodated in a positive container 1 made of stainless steel. Manganese trioxide (Mn2O3) prepared by baking manganese sulfate crystal is immersed in a sulfuric acid solution to convert into manganese dioxide (MnO2), and this manganese dioxide is washed, dried, and pressed to obtain chemical manganese dioxide, then this chemical manganese dioxide is heated for 8 hours at 400 deg.C in the atmosphere. This chemical manganese dioxide is mixed with carbon black whose specific surface area is 90-150m<2>/g and a binder, then this mixture is molded in a pellet to form the positive mix 2. A separator 3 and a negative electrode 4 are placed on the positive mix 2, and a nonaqueous solvent electrolyte is impregnated in the separator 3. The opening of the positive container 1 is crimped against a negative container through a gasket 5 to seal a battery. The heavy-load discharge performance of the battery is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、非水溶媒電池に関し、特に正極の組成を改良
した非水溶媒電池に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a non-aqueous solvent battery, and particularly to a non-aqueous solvent battery in which the composition of the positive electrode is improved.

[従来の技術] 負極活物質としてリチウム、ナトリウム等の軽金属を用
いた非水溶媒電池はエネルギー密度が大きく、貯蔵特性
に優れ、かつ作動温度範囲が広いという特徴をもち、電
卓、時計、メモリのバックアップ電源として多用されて
いるが、最近、重負荷放電性能が要求されている。また
、かかる非水溶媒電池において負極活物質であるリチウ
ム、ナトリウム等の軽金属と組合わせる正極活物質の選
択は電池性能を左右するため極めて重要である。
[Prior art] Nonaqueous solvent batteries that use light metals such as lithium and sodium as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range, and are used in calculators, watches, and memories. Although it is often used as a backup power source, heavy load discharge performance has recently been required. In addition, in such a non-aqueous solvent battery, the selection of a positive electrode active material to be combined with a light metal such as lithium or sodium, which is a negative electrode active material, is extremely important because it affects the battery performance.

ところで、上述した電池に使用される正極活物質として
は従来より多くの物質が検討され、その中でも二酸化マ
ンガンは比較的優れた性能を示し、化学的にも安定して
いるという長所を有するため広く用いられている。こう
した二酸化マンガンの中でも非水溶媒電池には、硫酸マ
ンガンを電解酸化して得られる電解二酸化マンガンが一
般的に使用されている。また、非水溶媒電池の正極は前
記活物質に導電材及び結着剤を添加、混合した組成のも
のが使用されている。この導電材としては、従来よりア
セチレンブラックや黒鉛等が多用されている。
By the way, many materials have been considered as positive electrode active materials for use in the above-mentioned batteries, and among them, manganese dioxide has been widely used because it has relatively excellent performance and is chemically stable. It is used. Among these manganese dioxides, electrolytic manganese dioxide obtained by electrolytically oxidizing manganese sulfate is generally used in nonaqueous solvent batteries. Further, the positive electrode of a non-aqueous solvent battery is made of a composition in which a conductive material and a binder are added to and mixed with the above-mentioned active material. Conventionally, acetylene black, graphite, and the like have been frequently used as the conductive material.

[発明が解決しようとする課題] しかしながら、活物質として電解二酸化マンガン、導電
材としてアセチレンブラック又は黒鉛ヲ用いた正極を組
込んだ非水溶媒電池では前述した重負荷放電性能の向上
に充分に対応できない問題があった。即ち、正極を構成
するために電解二酸化マンガンと共に配合されるアセチ
レンブラックは、吸液性に優れているものの、導電性が
劣る。
[Problems to be Solved by the Invention] However, non-aqueous solvent batteries incorporating a positive electrode using electrolytic manganese dioxide as an active material and acetylene black or graphite as a conductive material cannot sufficiently cope with the above-mentioned improvement in heavy load discharge performance. There was a problem that I couldn't do it. That is, acetylene black, which is blended together with electrolytic manganese dioxide to constitute the positive electrode, has excellent liquid absorption properties, but is poor in electrical conductivity.

一方、黒鉛は導電性に優れているものの、吸液特性が劣
る。従って、これらを導電材として正極を構成した場合
には正極の液保持性又は導電性が低下するため、電池の
内部抵抗を低減し難く、放電性能を向上させることが困
難となる。また、両者を配合した正極でも前記欠点を解
消できない。更に、電解二酸化マンガンも正極活物質と
して必ずしも充分な特性を有しているものといえず、し
かもその製造に際しては電解に長時間要し、かつ多くの
電力を消費するため製造コストが高くなるという問題が
あった。
On the other hand, although graphite has excellent conductivity, it has poor liquid absorption properties. Therefore, when a positive electrode is constructed using these conductive materials, the liquid retention or conductivity of the positive electrode is reduced, making it difficult to reduce the internal resistance of the battery and to improve the discharge performance. Further, even a positive electrode containing both of them cannot overcome the above-mentioned drawbacks. Furthermore, electrolytic manganese dioxide does not necessarily have sufficient properties as a positive electrode active material, and furthermore, its production requires a long time for electrolysis and consumes a lot of electricity, which increases production costs. There was a problem.

本発明は、上記従来の課題を解決するためになされたも
ので、雷放電性能の優れた非水溶媒電池を提供しようと
するものである。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a non-aqueous solvent battery with excellent lightning discharge performance.

[課題を解決するための手段] 本発明は、軽金属を活物質とする負極と、活物質、導電
材及び結若剤からなる正極と、非水溶媒系電解液とを具
備した非水溶媒電池において、前記正極活物質は硫酸マ
ンガン結晶を焙焼した三二酸化マンガン(Mn 2O3
 )を硫酸溶液に浸漬して二酸化マンガン(MnO2)
とし、これを水洗、乾燥、プレスして得た化学二酸化マ
ンガンがらなり、かつ前記導電材は比表面積(BET法
により求めた値)が90〜150m2/gのカーボンブ
ラックからなることを特徴とする非水溶媒電池である。
[Means for Solving the Problems] The present invention provides a nonaqueous battery comprising a negative electrode using a light metal as an active material, a positive electrode comprising an active material, a conductive material, and a rejuvenating agent, and a nonaqueous electrolyte. , the positive electrode active material is manganese sesquioxide (Mn2O3) obtained by roasting manganese sulfate crystals.
) in sulfuric acid solution to produce manganese dioxide (MnO2).
It is characterized in that it is made of chemical manganese dioxide obtained by washing, drying, and pressing this, and that the conductive material is made of carbon black with a specific surface area (value determined by the BET method) of 90 to 150 m2/g. It is a non-aqueous solvent battery.

上記負極活物質である軽金属としては、例えばリチウム
、ナトリウム、カリウム、カルシウム、マグネシウム、
アルミニウム等を挙げることができ、特にリチウム、ア
ルミニウムが好適である。
Examples of the light metal as the negative electrode active material include lithium, sodium, potassium, calcium, magnesium,
Examples include aluminum, with lithium and aluminum being particularly preferred.

上記電解液としては、例えばプロピレンカーボネート、
1.2−ジメトキシエタン、γ−ブチロラクトン、テト
ラヒドロフラン、ジオキソラン等の非水有機溶媒に過塩
素酸リチウム、ホウフッ化リチウム、塩化リチウム等の
電解質を0.2〜1.5モル/ノ溶解せしめたものが使
用される。
Examples of the electrolyte include propylene carbonate,
1. Electrolyte such as lithium perchlorate, lithium borofluoride, lithium chloride, etc. dissolved in a non-aqueous organic solvent such as 2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, dioxolane, etc. at 0.2 to 1.5 mol/min. is used.

上記正極活物質として使用する化学二酸化マンガンの詳
細な製造方法は、次のとうりである。まず、硫酸マンガ
ン結晶を空気雰囲気又は空気より酸素分圧の大きい酸素
雰囲気中にて800〜1100℃、10分間以上の条件
で焙焼し、硫酸マンガンを分解してMn2O3を主成分
とするマンガン酸化物を調製する。つづいて、このマン
ガン酸化物を硫酸により酸処理する。これにより、次式
に示す不均化反応が起こって二酸化マンガンが生成され
る。
The detailed method for producing chemical manganese dioxide used as the positive electrode active material is as follows. First, manganese sulfate crystals are roasted in an air atmosphere or an oxygen atmosphere with a higher oxygen partial pressure than air at 800 to 1100°C for 10 minutes or more to decompose the manganese sulfate and oxidize the manganese to Mn2O3 as the main component. prepare something Subsequently, this manganese oxide is acid-treated with sulfuric acid. As a result, the disproportionation reaction shown in the following formula occurs and manganese dioxide is produced.

Mn2O3 ”H2804−MnO2+Mn5O4+H
2O月n304 +2112804 →、MnO2+2
MnSO4+2112O上記反応で生成したM2O3を
水洗、中和処理、乾燥を行なった後、得られた粉末をロ
ールプレスにより1〜10ton /dの圧力下で平板
状に圧縮成形し、ひきつづき所定の粒度に粉砕して化学
二酸化マンガンを製造する。
Mn2O3 ”H2804-MnO2+Mn5O4+H
2O month n304 +2112804 →, MnO2+2
MnSO4+2112O After washing the M2O3 produced in the above reaction with water, neutralizing it, and drying it, the resulting powder is compression molded into a flat plate shape under a pressure of 1 to 10 tons/d using a roll press, and then pulverized to a predetermined particle size. to produce chemical manganese dioxide.

上記特定の比表面積を有するカーボンブラックは、次の
ような方法により製造される。まず、炭素原子/水素原
子が重量比で9以上の液状炭化水素を炉内で気体状の分
子状酸素及び水蒸気の存在下で部分酸化して合成ガスを
生成させると共に、カーボンを副生させる。ここに用い
る液状炭化水素としては、例えばナフサの熱分解油(エ
チレンヘビーエンド)、芳香族系炭化水素にカーボンを
混合したもの(カーボンオイル)、芳香族系炭化水素に
C重油などを混合した混合オイル等を挙げることができ
る。前記水蒸気は、目的とするカーボンを副生させるた
めに液状炭化水素1 トンに対しテ2O0〜800 K
’j、好ましくハ4oo〜8oo幻使用する。前記炉内
の温度は、12O0−1450’c、好ましくは130
0〜1450℃とし、反応時の圧力は10〜80気圧、
好ましくは25〜80気圧にする。つづいて、前記副生
カーボンを窒素雰囲気下、300〜90(1’Cで0.
5〜3時間乾燥し、更に不活性ガス雰囲気下、1000
〜3000℃で0.5〜5時間加熱処理することにより
前記特定の比表面積を有するカーボンブラックを製造す
る。
Carbon black having the above specific specific surface area is produced by the following method. First, a liquid hydrocarbon having a carbon atom/hydrogen atom weight ratio of 9 or more is partially oxidized in a furnace in the presence of gaseous molecular oxygen and water vapor to generate a synthesis gas and to generate carbon as a by-product. The liquid hydrocarbons used here include, for example, naphtha pyrolysis oil (ethylene heavy end), aromatic hydrocarbons mixed with carbon (carbon oil), aromatic hydrocarbons mixed with C heavy oil, etc. Oil etc. can be mentioned. The water vapor is heated at a temperature of 0 to 800 K per 1 ton of liquid hydrocarbon in order to produce the desired carbon as a by-product.
'j, preferably use 4oo to 8oo. The temperature in the furnace is 12O0-1450'C, preferably 130
The temperature was 0 to 1450°C, and the pressure during the reaction was 10 to 80 atm.
Preferably the pressure is 25 to 80 atmospheres. Subsequently, the by-product carbon was heated to a temperature of 300 to 90% (0.5% at 1'C) under a nitrogen atmosphere.
Dry for 5 to 3 hours, and then dry for 1000 min under an inert gas atmosphere.
Carbon black having the specific surface area described above is produced by heat treatment at ~3000°C for 0.5 to 5 hours.

上記カーボンブラックの比表面積を限定した理由は、比
表面積が90m2/9未満にすると保液性が低下して放
電性能の低下を招き、かといって比表面積が150m2
/gを越えると前記製造過程での加熱不足を意味し、官
能基が残存して化学二酸化マンガンを還元して容量劣化
を招く。また、かかるカーボンブラックはJ I S 
K149Bによる塩酸吸液量が2OM15 g以上であ
ることが望ましい。
The reason why the specific surface area of the carbon black is limited is that if the specific surface area is less than 90 m2/9, the liquid retention property will decrease and the discharge performance will deteriorate.
If it exceeds /g, it means insufficient heating in the manufacturing process, and the functional groups remain and reduce chemical manganese dioxide, resulting in capacity deterioration. In addition, such carbon black is JIS
It is desirable that the amount of hydrochloric acid absorbed by K149B is 2OM15 g or more.

上記結着剤としては、例えばポリテトラフロロエチレン
、ポリアクリル酸、その塩類等を挙げることができる。
Examples of the binder include polytetrafluoroethylene, polyacrylic acid, and salts thereof.

上記正極を構成する活物質としての化学二酸化マンガン
、導電材としてのカーボンブラック及び結着材との配合
比率は、重量比にてgθ〜94:5〜15;I〜5の範
囲とすることが望ましい。こうした配合範囲を逸脱する
と、導電性の低下、放電容量劣化、成形性の低下を招く
恐れがある。
The compounding ratio of chemical manganese dioxide as an active material, carbon black as a conductive material, and binder constituting the positive electrode may be in the range of gθ~94:5~15; I~5 in terms of weight ratio. desirable. Deviation from such a blending range may lead to a decrease in conductivity, discharge capacity deterioration, and moldability.

[作用] 本発明によれば、正極の主成分である活物質として特定
の原料の処理、プレス成形を施して得た比表面積の大き
い化学二酸化マンガンを用いることによって、電解質と
接する界面を大きくできるため、従来の電解二酸化マン
ガンに比べて重負荷での電極反応の進行を円滑にできる
。また、導電材として使用する特定の比表面積をもつカ
ーボンブラックはアセチレンブラックに比べて粒子表面
の黒鉛化度が進んでおり、かつ吸液特性や導電性が優れ
ている。しかも、かかるカーボンブラックは粒子表面の
官能基が少ないため、活物質である化学二酸化マンガン
の劣化を防ぐことができる。
[Function] According to the present invention, the interface in contact with the electrolyte can be enlarged by using chemical manganese dioxide with a large specific surface area obtained by processing and press-molding a specific raw material as the active material that is the main component of the positive electrode. Therefore, compared to conventional electrolytic manganese dioxide, electrode reactions can proceed more smoothly under heavy loads. Further, carbon black with a specific specific surface area used as a conductive material has a higher degree of graphitization on the particle surface than acetylene black, and has excellent liquid absorption properties and conductivity. Furthermore, since such carbon black has few functional groups on the particle surface, deterioration of chemical manganese dioxide, which is an active material, can be prevented.

従って、これらの化学二酸化マンガン、カーボンブラッ
クを結着剤と共に配合した正極を構成し、電池に組込む
ことによって、重負荷放電性能を大幅に向上できる。
Therefore, by constructing a positive electrode containing these chemical manganese dioxide and carbon black together with a binder and incorporating it into a battery, heavy load discharge performance can be greatly improved.

[発明の実施例] 以下、本発明をコイン形非水溶媒電池に適用した例につ
いて第1図を参照して詳細に説明する。
[Embodiments of the Invention] Hereinafter, an example in which the present invention is applied to a coin-type non-aqueous solvent battery will be described in detail with reference to FIG.

図中の1は、ステンレス鋼製の正極容器であり、この容
器1内には正極合剤2が収納されている。この正極合剤
2は、既述した方法で得た化学二酸化マンガンを400
℃で8時間空気中で加熱したものとBET法より測定し
た比表面積が135m2/gのカーボンブラックとポリ
テトラフロロエチレンとを重量比にて87:10:3の
割合で混合し、これを外径16m、厚さ1.71[Il
、重量0.899のペレット状に成形したものである。
1 in the figure is a positive electrode container made of stainless steel, and a positive electrode mixture 2 is housed in this container 1. This positive electrode mixture 2 contains 400% of chemical manganese dioxide obtained by the method described above.
Carbon black with a specific surface area of 135 m2/g measured by the BET method and polytetrafluoroethylene were mixed in a weight ratio of 87:10:3, heated in air for 8 hours at Diameter 16m, thickness 1.71 [Il
, and was molded into pellets with a weight of 0.899.

また、前記正極合剤2上にはポリプロピレン不織布から
なるセパレータ3及び金属リチウムからなる負極4が載
置されている。前記セパレータ3には、プロピレンカー
ボネートと1.2−ジメトキシエタンの混合溶媒(重量
比で1 =1)に過塩素酸リチウムを1モル/ノの濃度
で溶解した電解液が含浸保持されている。前記正極容器
1の開口部にはバッキング5を介して負極容器Bが設け
られており、該負極容器Bのかしめ加工により正極容器
1、負極容器B内に前記正極合剤2、セパレータ3及び
負極4が密閉されている。このコイン形非水溶媒電池は
、外径2Ou、厚さ2.4 rmの寸法を有するもので
ある。
Further, on the positive electrode mixture 2, a separator 3 made of a polypropylene nonwoven fabric and a negative electrode 4 made of metallic lithium are placed. The separator 3 is impregnated with an electrolytic solution in which lithium perchlorate is dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (weight ratio: 1=1) at a concentration of 1 mol/no. A negative electrode container B is provided at the opening of the positive electrode container 1 via a backing 5, and by caulking the negative electrode container B, the positive electrode mixture 2, separator 3, and negative electrode are placed inside the positive electrode container 1, negative electrode container B. 4 is sealed. This coin-shaped non-aqueous solvent battery has an outer diameter of 2 Ou and a thickness of 2.4 rm.

比較例 電解二酸化マンガンを400℃で8時間加熱したものと
黒鉛とポリテトラフロロエチレンとを重量比にて87:
10:3の割合で混合し、ベレット状に成形した正極合
剤を用いた以外、実施例と同様なコイン形非水溶媒電池
を組立てた。
Comparative Example Electrolytic manganese dioxide heated at 400°C for 8 hours, graphite and polytetrafluoroethylene in a weight ratio of 87:
A coin-shaped nonaqueous solvent battery was assembled in the same manner as in the example except that a positive electrode mixture mixed at a ratio of 10:3 and molded into a pellet shape was used.

しかして、本実施例及び比較例の電池2O個について3
0日間貯蔵し、その後300Ω負荷をかけた時の放電持
続時間(放電終止電圧2.OV)を測定した。その結果
を下記第1表に平均値として示した。
Therefore, for 20 batteries in this example and comparative example, 3
The battery was stored for 0 days, and then the discharge duration (discharge end voltage 2.OV) was measured when a 300Ω load was applied. The results are shown in Table 1 below as average values.

第1表 [発明の効果] 以上詳述した如く、本発明によれば重負荷放電性能の優
れた非水溶媒電池を提供することができる。
Table 1 [Effects of the Invention] As detailed above, according to the present invention, a non-aqueous solvent battery with excellent heavy load discharge performance can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すコイン形非水溶媒電池
の断面図である。 l・・・正極容器、2・・・正極合剤、3・・・セノく
レータ、4・・・負極、5・・・バッキング、6・・・
負極容器。 出願人代理人 弁理士 鈴江武彦 第1図
FIG. 1 is a sectional view of a coin-shaped non-aqueous solvent battery showing one embodiment of the present invention. l...Positive electrode container, 2...Positive electrode mixture, 3...Cenoclator, 4...Negative electrode, 5...Backing, 6...
Negative electrode container. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】[Claims]  軽金属を活物質とする負極と、活物質、導電材及び結
着剤からなる正極と、非水溶媒系電解液とを具備した非
水溶媒電池において、前記正極活物質は硫酸マンガン結
晶を焙焼した三二酸化マンガン(Mn2O_3)を硫酸
溶液に浸漬して二酸化マンガン(MnO_2)とし、こ
れを水洗、乾燥、プレスして得た化学二酸化マンガンか
らなり、かつ前記導電材は比表面積が90〜150m^
2/gのカーボンブラックからなることを特徴とする非
水溶媒電池。
In a non-aqueous battery comprising a negative electrode made of a light metal as an active material, a positive electrode made of an active material, a conductive material, and a binder, and a non-aqueous electrolyte, the positive electrode active material is made by roasting manganese sulfate crystals. The conductive material is made of chemical manganese dioxide obtained by immersing manganese sesquioxide (Mn2O_3) in a sulfuric acid solution to obtain manganese dioxide (MnO_2), which is then washed with water, dried, and pressed, and the conductive material has a specific surface area of 90 to 150 m^.
A non-aqueous solvent battery comprising 2/g of carbon black.
JP63109305A 1988-05-02 1988-05-02 Nonaqueous solvent battery Pending JPH01279565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109305A JPH01279565A (en) 1988-05-02 1988-05-02 Nonaqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109305A JPH01279565A (en) 1988-05-02 1988-05-02 Nonaqueous solvent battery

Publications (1)

Publication Number Publication Date
JPH01279565A true JPH01279565A (en) 1989-11-09

Family

ID=14506827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109305A Pending JPH01279565A (en) 1988-05-02 1988-05-02 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPH01279565A (en)

Similar Documents

Publication Publication Date Title
US7491378B2 (en) Electrode structure production process
AU741721B2 (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
US3536532A (en) Primary cell for electric batteries
JP3064655B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
US4405699A (en) Manganese dioxide electrode for lithium batteries
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
JPWO2007142275A1 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
Pan et al. Synthesis, characterization and electrochemical performance of battery grade NiOOH
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
US6270925B1 (en) Lithium battery
Kijima et al. Synthesis, crystal structure, and electrochemical properties of niobium-substituted hollandite-type titanium dioxides, KxTi1–yNbyO2, with different potassium content in the tunnel space
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH10316432A (en) Production of nickel oxyhydroxide and nonaqueous electrolytic battery
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JP7272052B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JPH01279565A (en) Nonaqueous solvent battery
KR102558764B1 (en) Method for manufacturing electrode active material, electrode active material, and lithium ion battery comprising the same
JPH01307159A (en) Nonaqueous solvent battery
JPH0381268B2 (en)
JPH03225752A (en) Nonaqueous solvent battery
JPS5848357A (en) Manufacture of positive electrode for organic electrolyte battery
JPH03252055A (en) Alkaline dry cell
CN117293306A (en) Lithium-rich manganese-based material and application thereof in sulfide all-solid-state battery
CN117117120A (en) Vanadium-containing self-supplementing lithium composite phosphate positive electrode material and preparation method and application thereof