JPH0127523B2 - - Google Patents

Info

Publication number
JPH0127523B2
JPH0127523B2 JP57163438A JP16343882A JPH0127523B2 JP H0127523 B2 JPH0127523 B2 JP H0127523B2 JP 57163438 A JP57163438 A JP 57163438A JP 16343882 A JP16343882 A JP 16343882A JP H0127523 B2 JPH0127523 B2 JP H0127523B2
Authority
JP
Japan
Prior art keywords
conductor
compression
stranded
wire
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57163438A
Other languages
Japanese (ja)
Other versions
JPS5954113A (en
Inventor
Susumu Koishihara
Katsuyuki Isaka
Fumio Yoshida
Kyoshi Nipponsugi
Tsutomu Tanji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16343882A priority Critical patent/JPS5954113A/en
Publication of JPS5954113A publication Critical patent/JPS5954113A/en
Publication of JPH0127523B2 publication Critical patent/JPH0127523B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、それ自身の撚線導体が、横断面平型
又は扇型に成形された素線を用いてこれの撚合せ
又は集合により構成された電力ケーブルに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power cable in which the stranded conductor itself is constructed by twisting or assembling strands having a flat or fan-shaped cross section. be.

一般に、電力ケーブルの撚線導体は、横断面円
形の所謂丸型素線が用いられており、これの撚合
せ又は集合後の完成された撚線導体の占積率は、
78.5%(π/4に相当)と低く、その結果、導体
外径が大きくなり、特に導体の上に多くの被覆を
施す電力ケーブル等では、非常に不経済なものと
なつている。
Generally, so-called round wires with a circular cross section are used for the stranded conductors of power cables, and the space factor of the completed stranded conductors after twisting or assembly is as follows:
It is as low as 78.5% (equivalent to π/4), and as a result, the outer diameter of the conductor becomes large, making it extremely uneconomical, especially in power cables and the like where a large amount of coating is applied on the conductor.

従来、かかる問題を克服するために、次の二つ
の施策が為されていた。
Conventionally, the following two measures have been taken to overcome this problem.

先ず、第一の策としては、丸型素線を撚合せ又
は集合して所定の撚線導体とした後で、この導体
をダイス又はロールによつて圧縮加工し、もつて
占積率の向上に資したものである。このものによ
る占積率は、90%程度(略88〜92%)まで向上す
ることができる。このときの占積率の向上分即
ち、包絡内面積の減少分に相当する圧縮率は略10
〜15%である。圧縮率をそれ以上高めようとして
も、素線がただダイス又はロールの後方に伸びる
だけで、占積率の向上にはつながらないことが経
験上知られている。
First, as a first measure, after twisting or gathering round wires to form a predetermined stranded conductor, this conductor is compressed using dies or rolls, thereby improving the space factor. This contributed to the The space factor with this can be improved to about 90% (approximately 88 to 92%). At this time, the compression ratio corresponding to the improvement in the space factor, that is, the reduction in the area within the envelope, is approximately 10
~15%. It is known from experience that even if an attempt is made to further increase the compression ratio, the strands simply extend to the rear of the die or roll, and this does not lead to an improvement in the space factor.

上記のものは、例えば特公昭7―2074号、特開
昭50―147585号公報に開示されているが、これら
のものでは、占積率が上記したように、圧縮加工
後の占積率が90%程度までしか向上できず、この
ものによつては、コンパクト化を図るには自ら限
界があつた。
The above-mentioned products are disclosed in, for example, Japanese Patent Publication No. 7-2074 and Japanese Patent Application Laid-open No. 147585-1985, but in these products, the space factor after compression processing is This could only be improved to about 90%, and there was a limit to how compact this product could be.

そこで、上記した占積率向上の限界を打破する
ものとして、次の第二の施策が提案されている。
Therefore, the following second measure has been proposed to overcome the above-mentioned limitations on improving the space factor.

すなわち、第二の策は、第1図に例示したよう
に、撚線導体を構成する素線1をその撚合せ又は
集合する前に予め横断面平型又は扇型に成形し、
この成形素線を集合又は撚合せることにより、占
積率を大幅に向上させた撚線導体とするものであ
る。このものによれば、占積率は、略95〜98%と
飛躍的に向上させることができ、上記第一のもの
にとつて変わり得るが、その一方で、撚線導体と
して完成した後で、成形素線相互に緩みや笑いが
生じて導体接続に悪影響を及ぼしたり、又、時に
は成形素線のエツジが立つて導体の上に施す被覆
に致命的な悪影響を及ぼすことから、従来、この
撚線導体を用いた電力ケーブルの実用化が立ち遅
れていた。
That is, the second method is to form the strands 1 constituting the stranded conductor into a flat or fan-shaped cross section before twisting or gathering them, as illustrated in FIG.
By gathering or twisting these shaped strands, a stranded wire conductor with a significantly improved space factor can be obtained. According to this, the space factor can be dramatically improved to approximately 95-98%, and can be changed from the first method above, but on the other hand, after completing the stranded wire conductor, Conventionally, this method has been used because the formed wires may become loose or loose with each other, adversely affecting the conductor connection, and sometimes the edges of the formed wires may stand up and have a fatal adverse effect on the coating applied to the conductor. The practical application of power cables using stranded conductors was delayed.

上記第二の策によるものは、例えば特公昭34―
6337号公報に開示されている。
For example, the second measure mentioned above is
It is disclosed in Publication No. 6337.

しかして、同公報にも開示されているもので
は、横断面円型の丸型素線を用いてこれを異形ダ
イスを通すことにより、完成後の圧縮導体として
の最終形状の角形に予め成形し、しかる後に丸型
ダイスによつて成形された素線を集合せしめて占
積率の高い丸型導体を得るものであり、素線の成
形と集合とを同一プロセスで行うものである。
However, in the method disclosed in the same publication, a round wire with a circular cross section is passed through a deformed die to be preformed into the final square shape of the completed compressed conductor. Thereafter, the wires formed using a round die are assembled to obtain a round conductor with a high space factor, and the shaping and assembly of the wires are performed in the same process.

かかる方法によつて得られた丸型導体では、丸
型素線を最終の完成された姿として成形した後に
集合するものであるから、集合した後には何等の
特別な加工が加えられていない。従つて、このも
のにより享受できる利点は、占積率向上と素線の
笑い防止に留められている。
The round conductors obtained by this method are assembled after forming the round strands into the final completed form, so no special processing is applied after the round conductors are assembled. Therefore, the advantages that can be enjoyed by this method are limited to improving the space factor and preventing the strands from collapsing.

以上、説明した通り、撚線導体の占積率を向上
せしめたものとしては、従来から丸型素線を集合
(撚合せ)した後に圧縮加工して得られる第一の
方法による撚線導体と、予め平型、扇型或いは角
型に成形した成形素線としてこれを集合(撚合
せ)して得られる第二の方法による撚線導体とが
提案されており、占積率の向上という観点からは
第二の方法による撚線導体が圧倒的に優れてい
る。
As explained above, the first method that improves the space factor of stranded conductors is the first method, which is obtained by gathering (twisting) round wires and then compressing them. A second method has been proposed in which a stranded wire conductor is obtained by assembling (twisting) formed wires that have been previously formed into a flat, fan-shaped, or square shape, and from the viewpoint of improving the space factor. The stranded wire conductor made by the second method is overwhelmingly superior.

更に、この撚線導体によれば、成形素線が所謂
楔型を呈することから、第1図に示すように中空
部10を有する構造にでき、これを油通路として
利用すれば、導体自身が油通路を確保することと
なつて、油通路確保用スパイラル管を省略した
OFケーブルを提供することができる。
Furthermore, according to this stranded wire conductor, since the formed wire has a so-called wedge shape, it can be structured to have a hollow part 10 as shown in FIG. 1, and if this is used as an oil passage, the conductor itself can be In order to secure the oil passage, the spiral pipe for securing the oil passage was omitted.
OF cable can be provided.

しかしながら、上記のように優れた特長があり
ながら、前にも述べたように、完成した撚線導体
において、成形素線に有する残留応力等の影響に
から成形素線相互にゆるみや笑いが生じて、導体
接続作業を困難にしたり、又、第6図に例示して
いるように、成形素線1のエツジ1eが立ち、こ
の導体の上に施す被覆に対して突起を形成する状
態となり、該被覆に致命的な悪影響を及ぼすとい
う欠陥があつた。特に、この種の撚線導体を高電
圧電力ケーブルに用いる場合には、当該成形素線
のエツジ立ち等の欠陥は、電極不整箇所となつて
電界集中を引き起こしその上に施す絶縁被覆の電
気的絶縁強度を著しく低下せしめることがあり、
これが電力ケーブルとして実用化を妨げる大きな
要因となつていた。従つて、従来は主に第一の例
による撚線導体を用いて電力ケーブルの実用化が
なされてきた。
However, despite having the above-mentioned excellent features, as mentioned earlier, in the completed stranded wire conductor, the formed strands may become loose or loose due to the influence of residual stress in the formed strands. This may make the conductor connection work difficult, or, as illustrated in FIG. 6, the edge 1e of the formed wire 1 will stand up and form a protrusion on the coating applied to the conductor. There was a defect that had a fatal adverse effect on the coating. In particular, when this type of stranded conductor is used in high-voltage power cables, defects such as raised edges in the formed strands become irregularities in the electrodes, causing electric field concentration and causing electrical damage to the insulation coating applied over the stranded conductors. This may significantly reduce the insulation strength.
This was a major factor preventing its practical use as a power cable. Therefore, in the past, power cables have mainly been put into practical use using the stranded conductor according to the first example.

本発明は、以上の実情を踏まえてなされたもの
であつて、横断面平型又は扇型の成形素線を集合
又は撚合せて構成される撚線導体、即ち、第二の
方法により得られる撚線導体を電力ケーブルの導
体として採用することを根底とし、そして当該第
二の方法により得られた撚線導体の欠陥つまりゆ
るみ、笑いを防止することは勿論、エツジ立ちを
も生じさせないように改善した撚線導体とするこ
とにより、より一層のコンパクト化に対応できる
電力ケーブルの実用化を推進しようとするもので
ある。従つて、その点が本発明の解決すべき課題
(目的)となるものである。
The present invention has been made based on the above-mentioned circumstances, and provides a stranded wire conductor constructed by gathering or twisting formed wires having a flat or fan-shaped cross section, that is, a stranded wire conductor obtained by the second method. It is based on the use of stranded wire conductors as conductors of power cables, and the stranded wire conductors obtained by the second method are prevented from becoming defective, that is, from loosening and cracking, as well as from forming edges. By using an improved stranded conductor, the aim is to promote the practical use of power cables that can be made even more compact. Therefore, this point is the problem (object) to be solved by the present invention.

そして、本発明によれば、本願発明者等の日夜
を違わない試行錯誤と努力の結果、遂に当該成形
素線による撚線導体の持つ欠陥を解消できる解決
策を見出した。
According to the present invention, as a result of constant trial and error and efforts by the inventors of the present invention, a solution has finally been found that can eliminate the defects in the stranded wire conductor made of the shaped wire.

その解決策とは、横断面略平型又は扇型の成形
素線によつてこれの撚合せ又は集合により構成さ
れた撚線導体では、占積率の点からすれば十分で
あつてそれ以上何等の加工を加えることを要しな
いという常識を打ち破り、占積率向上状態に撚合
せ又は集合したる後に、敢えて軽度の圧縮を加え
ることにより、各成形素線に対して塑性変形を生
じさせるものである。
The solution is that a stranded wire conductor constructed by twisting or aggregating formed wires with a substantially flat or fan-shaped cross section is sufficient from the point of view of the space factor. Breaking away from the common sense that no processing is required, each formed strand undergoes plastic deformation by purposely applying mild compression after being twisted or assembled to improve the space factor. It is.

かかる軽度の圧縮は、従来の丸型素線による撚
線導体に対する占積率向上の観点からなされる圧
縮加工とは次元が異なり、平型又は扇型素線が既
に保有する占積率向上への有為性に影響を及ぼす
ことなく、該成形素線の残留応力を消滅せしめる
という観点からなされるものである。従つて、成
形素線には、塑性変形が加えられても、その原形
を保有させるという、相反するような二つの条件
を満足させた上で加工を施すものである。
Such mild compression is different from conventional compression processing performed from the perspective of improving the space factor of stranded wire conductors using round strands, and it is not possible to improve the space factor that flat or fan-shaped strands already have. This is done from the viewpoint of eliminating residual stress in the formed wire without affecting the significance of the wire. Therefore, processing is performed on the formed wire after satisfying two contradictory conditions: retaining its original shape even if plastic deformation is applied to it.

そして、上記の条件を満足する軽度の圧縮につ
いては、発明者等が種々検討し失敗を繰り返した
挙句、或る特定範囲のみが有効であることを初め
て突き止めたのである。
As for light compression that satisfies the above conditions, the inventors have made various studies and, after repeated failures, have discovered for the first time that it is effective only within a certain specific range.

即ち、圧縮の程度は、成形素線が撚合せ又は集
合したる後に圧縮を加えることを前提として、圧
縮加工後の撚線導体の包絡内面積つまり第2図の
ロにおいてハツチングされた面積S0(ロ)が、圧縮加
工前包絡内面積つまり第2図のイにおいてハツチ
ングされた面積S0に対して0.2〜5.0%減少した範
囲にすることにある。
In other words, the degree of compression is determined by the area within the envelope of the stranded conductor after compression processing, that is, the hatched area S 0 in B of Figure 2, assuming that compression is applied after the formed wires are twisted or assembled. (b) is to be in a range that is reduced by 0.2 to 5.0% with respect to the area within the envelope before compression processing, that is, the area S 0 hatched in A of FIG.

かかる特定範囲内で選ばれる最適圧縮程度は、
成形素線の構成、形状、材質によつて異なる。
The optimal degree of compression selected within such a specific range is
It varies depending on the composition, shape, and material of the formed wire.

しかして、成形素線の構成、形状、材質の如何
を問わず、圧縮の程度が0.2%減少する域を下回
る程に小さ過ぎると、各成形素線の残留応力が十
分に消滅させることができず、緩みや笑い防止は
達成されていても、エツジ立ちが以前として生ず
る傾向を示す。一方、圧縮の程度が5.0%減少す
る域を越えてさらに大きく減少させる程に大きく
した場合には、加工硬化により完成された撚線導
体の曲げ剛性が増加し、ケーブル本来に求められ
る可撓性が不十分となつて、曲げなどを伴う取り
扱い性が極めて悪くなる。
However, regardless of the composition, shape, or material of the formed wire, if the degree of compression is too small to fall below the 0.2% reduction range, the residual stress in each formed wire cannot be sufficiently eliminated. However, even if the prevention of looseness and laughter is achieved, there is a tendency for edge-standing to occur as before. On the other hand, if the degree of compression is increased beyond the range of 5.0%, and the bending stiffness of the completed stranded conductor increases due to work hardening, the flexibility required for the cable is increased. As a result, handling properties such as bending become extremely poor.

このように、本発明における圧縮の程度は、従
来の第一の方法により得られた撚線導体における
ような、占積率向上を目的として撚線導体に対し
て圧縮率が10〜15%の範囲になることはあり得
ず、独自に究明されたものである。
As described above, the degree of compression in the present invention is such that the compression ratio is 10 to 15% for the stranded wire conductor obtained by the first conventional method for the purpose of improving the space factor. It cannot be a range, and has been independently investigated.

尚、軽度の圧縮加工で、それにより成形素線が
容易に塑性変形を生じせしめ且つ圧縮が過度にな
つた場合でも完成後の導体の剛性を著しく増加さ
せることがないようにするためには、成形素線と
しては焼鈍材を用いることが望ましい。
In addition, in order to ensure that the formed wire does not easily undergo plastic deformation due to mild compression processing, and that even if compression becomes excessive, the rigidity of the completed conductor does not increase significantly. It is desirable to use an annealed material as the shaped wire.

軽度の圧縮を加える具体的手段としては、硬い
ダイス、ロール又はその他の手段が適用可能であ
る。
Specific means for applying mild compression include hard dies, rolls, or other means.

第3図及び第4図を引用し、本発明の一実施例
を説明する。この実施例は、成形素線21,2
2,23…の撚合せ又は集合による層が2層から
なり、且つ中空部200を有する、所謂中空撚合
導体の場合である。
An embodiment of the present invention will be described with reference to FIGS. 3 and 4. In this embodiment, the shaped wires 21, 2
This is the case of a so-called hollow twisted conductor which has two layers formed by twisting or aggregating layers 2, 23, . . . and has a hollow portion 200.

即ち、横断面扇型の成形素線21,22,23
…が撚合せられて、それらの楔効果により中心部
に油通路として利用できる中空部200を形成し
つつ所定の撚線導体20が形成されている。
That is, formed wires 21, 22, 23 having a fan-shaped cross section
... are twisted together, and a predetermined twisted wire conductor 20 is formed while forming a hollow portion 200 in the center that can be used as an oil passage due to their wedge effect.

各成形素線21,22,23…に対しては、そ
れらの撚合せの後に前述した範囲の中から選択さ
れた程度の圧縮が加えられて、各成形素線にその
原形を保持した状態での塑性変形が与えられるこ
とによつて、各成形素線の残留応力を消滅させて
あるものである。
After twisting, each formed strand 21, 22, 23... is compressed to a degree selected from the above-mentioned range, so that each formed strand retains its original shape. The residual stress in each formed strand is eliminated by applying plastic deformation of .

このようにするための具体的手段の一例が、第
4図に示してある。即ち、横断面扇型の成形素線
21,22,23…は、撚合機(図示せず)に装
備されたボビン41,42,43…から撚り出さ
れ、金属製ダイス40に集束されて、各成形素線
は当該ダイス40にて撚合せられたる後に直ちに
金属ダイス400によつて前記した範囲内で軽度
に圧縮加工されて塑性変形されるものである。そ
して、上記のようにして構成される1層目が構成
されたならば、2層目を構成する横断面扇型の成
形素線210,220,230…が別な金属製ダ
イス41によつて集束されて、1層目の撚合素線
周上に撚合せられ、その後直ちに金属製ダイス4
10によつて前記した範囲内で軽度に圧縮加工さ
れて塑性変形されるものである。
An example of a specific means for doing so is shown in FIG. That is, the formed wires 21, 22, 23... having a fan-shaped cross section are twisted from bobbins 41, 42, 43... equipped in a twisting machine (not shown), and are bundled into a metal die 40. After each formed wire is twisted by the die 40, it is immediately compressed and plastically deformed by a metal die 400 within the above-mentioned range. Once the first layer is formed as described above, the formed wires 210, 220, 230, etc. having a fan-shaped cross section and forming the second layer are formed by another metal die 41. It is focused and twisted around the first layer of twisted strands, and then immediately passed through a metal die 4.
10, the material is slightly compressed and plastically deformed within the range described above.

第3図は、そのようにして製作された撚線導体
20を用いて、これの周上に、遮蔽用カーボン紙
による内部遮蔽層S1、絶縁紙による絶縁層Z、遮
蔽用カーボン紙、金属化成紙による外部遮蔽層S2
を、そしてさらに金属シースSH、外装Bを順次
施して構成されたOFケーブルとして構成した例
である。このようなOFケーブルによれば、成形
素線の緩みや笑いが無くなるので、導体上の全て
の被覆を剥ぎ取つて剥き出しにした導体20を切
断しても、素線がバラバラにならず、導体接続作
業を容易に行うことができる。のみならず、成形
素線のエツジ立ちが無くなるので、被覆特に絶縁
層Zに対して電界集中を惹起させるような突起を
形成せずに済み、絶縁層Zに所定の電気的絶縁強
度を保有させることが可能となる。
FIG. 3 shows a stranded wire conductor 20 manufactured in this way, and on its circumference an internal shielding layer S 1 of shielding carbon paper, an insulating layer Z of insulating paper, shielding carbon paper, and metal. External shielding layer S 2 with synthetic paper
This is an example in which an OF cable is constructed by sequentially applying a metal sheath SH and a sheath B. According to such an OF cable, there is no looseness or looseness of the formed strands, so even if the conductor 20, which is exposed by stripping off all the covering on the conductor, is cut, the strands will not fall apart and the conductor Connection work can be easily performed. In addition, since the edges of the formed strands are eliminated, there is no need to form protrusions that would cause electric field concentration on the coating, especially on the insulating layer Z, and the insulating layer Z can maintain a predetermined electrical insulation strength. becomes possible.

上記の効能を確認する意味で、発明者等は、銅
製の扇型成形素線を用いて、導体断面積が630mm2
の中空導体による132kvOFケーブル(油浸紙絶
縁油入電力ケーブル)を、上記実施例に基づくも
のと、従来の方法によるものと2種類を製作し
た。そして、両者はともに、遮蔽用カーボン紙、
絶縁紙(9mm厚さ)、遮蔽用カーボン紙、金属化
成紙を順次施し、真空乾燥したる後に鉛被を施
し、鉛被内に絶縁油を注油したる後に、内圧補強
として金属テープを巻き付け、更に防食層として
ポリ塩化ビニル被覆を施してある。
In order to confirm the above-mentioned effects, the inventors used a copper fan-shaped wire with a conductor cross-sectional area of 630 mm 2
Two types of 132kvOF cables (oil-immersed paper insulated oil-filled power cables) using hollow conductors were manufactured: one based on the above example and one using a conventional method. And both of them are shielding carbon paper,
Insulating paper (9mm thick), shielding carbon paper, and metal chemical paper were applied in sequence, and after vacuum drying, a lead coating was applied, and after lubricating the lead coating with insulating oil, a metal tape was wrapped to reinforce the internal pressure. Furthermore, a polyvinyl chloride coating is applied as an anti-corrosion layer.

これらのケーブルの電気的絶縁強度を確認する
ために、雷インパルス電圧による絶縁破壊試験を
実施した。試験方法は、常温にて負極性雷インパ
ルス電圧を400kvから50kv昇圧で各々の電圧を3
回ずつ印加する方法をとつた。その試験の結果、
次の通りであつた。
In order to confirm the electrical insulation strength of these cables, a dielectric breakdown test using lightning impulse voltage was conducted. The test method was to boost the negative lightning impulse voltage from 400kv to 50kv at room temperature and increase each voltage 3 times.
A method was adopted in which the voltage was applied once at a time. As a result of that test,
It was as follows.

従来の中空導体によるもの→550kv2回目で
絶縁破壊。
Conventional hollow conductor → dielectric breakdown at 550kv second time.

本発明の中空導体によるもの→800kv3回目
で絶縁破壊。
Due to the hollow conductor of the present invention → dielectric breakdown at 800kv for the third time.

上記の結果から明らかなように、本発明に基づ
く中空導体使用の電力ケーブルによれば、その電
気的絶縁強度が従来のものに比べて、約45%向上
していることが認められた。これは132kvOFケ
ーブルに要求される雷インパルス電圧に対する当
該絶縁強度は、一般に650kvであるところから、
本発明によるケーブルは、その要求を十分満足す
る結果が得られ、これを実用に供し得ることが確
認された。
As is clear from the above results, it was confirmed that the electrical insulation strength of the power cable using a hollow conductor according to the present invention was improved by about 45% compared to the conventional cable. This is because the insulation strength against lightning impulse voltage required for 132kvOF cable is generally 650kv.
It was confirmed that the cable according to the present invention fully satisfies the requirements and can be put to practical use.

上記のような電気的強度の差が何故生ずるのか
を確認するため、試験が完了した上記2種類のケ
ーブルを解体し、内部の構造を仔細に観察してみ
た。すると、従来のものによる導体には、素線相
互の緩みと笑いが僅かに認められる上に、第6図
に示したように、成形素線1にエツジ1eが立つ
傾向がみられ、そして絶縁破壊点が成形素線のエ
ツジの立つた部分に一致して生じていた。これは
完成された撚線導体において、残留応力が完全に
消滅してないために生じた致命的な悪影響である
と考察される。他方、本発明による導体には、素
線相互の緩みや笑いが全くみられないのは勿論の
こと、成形素線のエツジが立つという兆候が全く
認められなかつた。
In order to confirm why the above-mentioned difference in electrical strength occurs, we disassembled the two types of cables mentioned above and carefully observed their internal structures. As a result, in the conventional conductor, not only the wires were slightly loose and loose, but also the formed wire 1 tended to have an edge 1e as shown in Fig. 6, and the insulation The breaking point occurred at the edge of the formed wire. This is considered to be a fatal adverse effect caused by residual stress not completely disappearing in the completed stranded wire conductor. On the other hand, in the conductor according to the present invention, not only was there no mutual loosening or looseness of the strands, but there was also no sign that the formed strands had any sharp edges.

尚更に、本発明のケーブルを用いて、導体接続
作業に供するため、導体を露出して切断してみた
が、各成形素線がゆるんだりほぐれるといつた現
象は皆無であり、又、剛性が大きく取り扱いが困
難となることも認められなかつた。そして所定の
導体接続作業を円滑に進行することができた。
Furthermore, when using the cable of the present invention to expose and cut the conductor for use in conductor connection work, there was no phenomenon that each formed wire became loose or unraveled, and the rigidity was It was also not found that handling would be significantly difficult. In addition, the specified conductor connection work was able to proceed smoothly.

これらの結果からいえることは、従来のものに
比べて、本発明によるケーブル即ち、成形した素
線を集合(撚合せ)する過程で特定範囲の軽度の
圧縮加工を施して、各成形素線に軽度の塑性変形
を生ぜしめることによつて、初めて素線の残留応
力が完全に消滅することができたことの裏付けが
なされ、本発明による軽度の圧縮加工による効果
の重要性を認識できた。
What can be said from these results is that compared to conventional cables, the cable according to the present invention, that is, the molded wires are subjected to a slight compression process in a specific range in the process of gathering (twisting) them, and each molded wire is It was confirmed that residual stress in the strands could be completely eliminated only by causing mild plastic deformation, and the importance of the effect of mild compression processing according to the present invention was recognized.

このようなことから、スパイラル管を要せずに
自己の中空部を油通路としてなり、而も占積率が
95〜98%というこの種導体の優れた特長を遺憾無
く発揮したOFケーブルの実用化に成功すること
ができたものであり、経済効果は非常に大きいも
のといえる。
Because of this, the hollow part of the self can be used as an oil passage without the need for a spiral pipe, and the space factor can be reduced.
We were able to successfully put into practical use an OF cable that fully demonstrated the excellent features of this type of conductor, with a ratio of 95 to 98%, and the economic effects can be said to be extremely large.

尚、以上の実施例では、中空導体とする例につ
いて述べてきたが、本発明によれば、充実型導体
に対しても適用可能である。即ち、第5図にその
例を示しているように、中央の横断面円形の丸型
導体500を軸として、その周上に上述した通り
の成形素線を撚合配置するものである。本実施例
において、第3図と同一要素部分は、それに付与
した符号を引用してあるので、これらの要素の特
徴については前述した説明を参照されたい。
In the above embodiments, hollow conductors have been described, but the present invention is also applicable to solid conductors. That is, as an example is shown in FIG. 5, the above-described formed wires are twisted and arranged around a central round conductor 500 having a circular cross section as an axis. In this embodiment, the same elements as those in FIG. 3 are referred to by the reference numerals assigned thereto, so please refer to the above description for the characteristics of these elements.

以上、説明してきた通り、本発明の電力ケーブ
ルによれば、横断面平型又は扇型の成形素線を集
合又は撚合せて構成される撚線導体、即ち、冒頭
に述べた第二の方法により得られる撚線導体をケ
ーブル導体として採用することを根底とし、そし
て当該第二の方法により得られた撚線導体の欠陥
つまりゆるみ、笑いを防止することは勿論、エツ
ジ立ちを生じさせないように改善した撚線導体と
することにより、より一層のコンパクト化に対応
できる電力ケーブルの実用化を図るという、所期
の目的が初めて達成されたものであり、これによ
り経剤的な電力ケーブルを提供することができ、
実益はじつに大きいものといえる。
As explained above, according to the power cable of the present invention, a stranded wire conductor is formed by gathering or twisting shaped wires having a flat or fan-shaped cross section, that is, the second method described at the beginning. It is based on the fact that the stranded conductor obtained by the second method is used as a cable conductor, and the stranded conductor obtained by the second method is not only prevented from becoming defective, that is, loosening and cracking, but also to prevent the formation of edges. By using an improved stranded conductor, the intended purpose of creating a practical power cable that can be made even more compact has been achieved for the first time, thereby providing a cost-effective power cable. can,
The actual profits can be said to be quite large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、横断面扇型の成形素線により構成さ
れた撚線導体の例を示す横断面説明図、第2図の
イ及びロは、横断面扇型成形素線による撚線導体
の圧縮前及び圧縮後の状況を示す横断面説明図、
第3図は本発明にかかる電力ケーブルの一実施例
を示す横断面説明図、第4図は扇型成形素線によ
る集合及び軽度の圧縮加工例を示す説明図、第5
図は本発明にかかる電力ケーブルの応用例を示す
横断面説明図、さらに第6図は扇型成形素線を集
合した後の状況を示す横断面説明図であり、図
中、21,22,23は横断面扇型の成形素線、
20は撚線導体、200は油通路として利用され
る中空部、Zは絶縁層、40,41は集合ダイ
ス、400,410は軽度に圧縮するための金属
性ダイスである。
Fig. 1 is a cross-sectional explanatory diagram showing an example of a stranded conductor made of formed wires with a fan-shaped cross section, and A and B in Fig. 2 are cross-sectional views of stranded conductors made of formed wires with a fan-shaped cross section. A cross-sectional explanatory diagram showing the situation before and after compression,
FIG. 3 is an explanatory cross-sectional view showing one embodiment of the power cable according to the present invention, FIG.
The figure is an explanatory cross-sectional view showing an application example of the power cable according to the present invention, and FIG. 6 is an explanatory cross-sectional view showing the situation after the fan-shaped wires are assembled. 23 is a shaped wire with a fan-shaped cross section;
20 is a twisted wire conductor, 200 is a hollow portion used as an oil passage, Z is an insulating layer, 40 and 41 are collective dies, and 400 and 410 are metal dies for mild compression.

Claims (1)

【特許請求の範囲】[Claims] 1 それ自身の撚線導体が、横断面平型又は扇型
の成形素線によつてこれの撚合せ又は集合により
構成されており、当該成形素線は、これの撚合せ
又は集合時の撚線導体に対して更に軽度の圧縮を
加えることによつて、軽度の塑性変形を生じさせ
たものであり、前記軽度の圧縮の程度は、圧縮後
の撚線導体の包絡線内面積S0′が圧縮前のそれS0
に対して0.2〜5.0%減少する範囲であることを特
徴とする電力ケーブル。
1 The stranded wire conductor itself is constructed by twisting or assembling formed wires with a flat or fan-shaped cross section, and the formed wires are twisted or assembled together. Slight plastic deformation is caused by further applying slight compression to the wire conductor, and the degree of said slight compression is equal to the area within the envelope of the stranded wire conductor after compression S 0 ′ is before compression it S 0
A power cable characterized in that the power cable is reduced by 0.2 to 5.0%.
JP16343882A 1982-09-20 1982-09-20 Power cable Granted JPS5954113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16343882A JPS5954113A (en) 1982-09-20 1982-09-20 Power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16343882A JPS5954113A (en) 1982-09-20 1982-09-20 Power cable

Publications (2)

Publication Number Publication Date
JPS5954113A JPS5954113A (en) 1984-03-28
JPH0127523B2 true JPH0127523B2 (en) 1989-05-30

Family

ID=15773886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16343882A Granted JPS5954113A (en) 1982-09-20 1982-09-20 Power cable

Country Status (1)

Country Link
JP (1) JPS5954113A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581485A (en) * 1981-06-29 1983-01-06 中沢 助市 Scissors
JPH072074A (en) * 1993-04-16 1995-01-06 Robert Bosch Gmbh Valve gear for skid control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581485A (en) * 1981-06-29 1983-01-06 中沢 助市 Scissors
JPH072074A (en) * 1993-04-16 1995-01-06 Robert Bosch Gmbh Valve gear for skid control device

Also Published As

Publication number Publication date
JPS5954113A (en) 1984-03-28

Similar Documents

Publication Publication Date Title
US10032544B2 (en) Terminal treatment apparatus for a coaxial cable to separate a sheath from a conductor
US5732875A (en) Method for producing a sector conductor for electric power cables
JP2007317477A (en) Twisted-wire conductor
JPH0561726B2 (en)
JPH0127523B2 (en)
JPH0127522B2 (en)
JPH0127524B2 (en)
JPH0336252B2 (en)
JP3680604B2 (en) Shielded wire
JP2021061208A (en) Electric wire connection structure
JP7394814B2 (en) Communication cable and its manufacturing method
JP2938265B2 (en) Sleeve for connecting sector-shaped conductor and method for connecting sector-shaped conductor using the same
JP7405789B2 (en) Electric wires and wire harnesses
JPH0797456B2 (en) Method of manufacturing conductor for wiring
JP7427637B2 (en) heat resistant wire
JP7502230B2 (en) Electric wire with terminal, wire harness, and method for manufacturing electric wire with terminal
JP7242148B2 (en) Compression stranded conductors, insulated wires and wire harnesses
US20240212886A1 (en) Compressed stranded conductor, method of manufacturing compressed stranded conductor, insulated electric wire, and wire harness
JPS6039931Y2 (en) composite cable
JPS6119461Y2 (en)
US20180197651A1 (en) Electrical conductors having increased current carrying capacity
JP3516042B2 (en) Flat shielded cable
JPH0158807B2 (en)
DE19522628C2 (en) Process for manufacturing a sector conductor for electrical power cables
JPH054652Y2 (en)