JPH01273693A - Build-up welding material - Google Patents

Build-up welding material

Info

Publication number
JPH01273693A
JPH01273693A JP10323488A JP10323488A JPH01273693A JP H01273693 A JPH01273693 A JP H01273693A JP 10323488 A JP10323488 A JP 10323488A JP 10323488 A JP10323488 A JP 10323488A JP H01273693 A JPH01273693 A JP H01273693A
Authority
JP
Japan
Prior art keywords
welding
less
welding material
corrosion resistance
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10323488A
Other languages
Japanese (ja)
Inventor
Osamu Tanaka
治 田中
Shogo Natsume
夏目 松吾
Yoshizo Hashimoto
橋本 芳造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10323488A priority Critical patent/JPH01273693A/en
Publication of JPH01273693A publication Critical patent/JPH01273693A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To impart sufficient corrosion resistance and wear resistance in environment where low-gravity heavy oils contg. V and S are used by specifying the contents of C, Si, Cr, Al+Ti, N, etc., in an Ni-base alloy build-up welding material. CONSTITUTION:The build-up welding material used for welding of the engine valves, valve seats, etc., of an internal combustion engine is constituted of the compsn. contg., by weight %, 0.01-0.50% C, 0.1-2.0% Si, 35-60% Cr, 0.5-4.0% Al+Ti (0.5-3.0% in case of only the Ti), and 0.01-0.2% N, and contg. further >=1 kinds of <=2% Mn, <=3% V, <=1% Nb, <=5% Mo, and <=5% W, and the balance consisting of Ni or Ni and <=30% Co and inevitable impurities. This welding material is used as a TIG welding rod and powder welding material and is widely utilized for corrosion resistant and wear resistant overlaying.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、肉盛溶接材料に係り、より詳しくは、耐熱、
耐食、耐摩耗肉盛に使用される溶接材料に関するもので
、主としてディーゼルエンジン用バルブ、ボイラーチュ
ーブ等の肉盛に適する。 (従来の技術) 内燃機のエンジンバルブ、バルブシートは高温の燃焼ガ
スに曝され、高温での金属間摩耗も受ける部品であるこ
とから、摩耗を受ける部分に肉盛溶接して用いることが
多い。 従来より、耐熱、耐食、耐摩耗用の肉盛材料としてはC
o−Cr−W合金(ステライト合金)やNi−Cr−8
i−B合金(コルモノイ合金)がよく知られている。こ
れらの合金は高温における硬度が高く、耐食性も良好で
あり、更には溶接性にも優れていることから、エンジン
バルブへの肉盛に多用されている。 (発明が解決しようとする課題) 燃料としてガソリンを用いるエンジンのバルブについて
は、これらの肉感材料で特に問題はなく、良好な性能が
得られている。しかし、重油を燃料とするディーゼルエ
ンジン(特に船舶用エンジン)においては、最近の使用
環境の変化により、従来のステライト合金やコルモノイ
合金では十分な性能が得られなくなっている。 すなわち、重油には、不純物としてV(バナジウム)や
S(イオウ)が含まれており、これらは高温時において
極めて強い腐食性を示す成分である。 良質な重油を用いている場合は、VやSが少ないため、
バルブ等の腐食もあまり問題とならないが。 近年、燃料費削減のため、低質重油の使用が増加してき
ており、低質重油にはこれらの成分が多く含まれている
ため、従来の肉盛材料では耐食性が不十分でバルブ寿命
の低下を来たしている。 このため、低質重油に対する耐食性の向上を図る対策と
して、従来より、v、S腐食にはN1−Cr(20%以
上)系合金が有用であることが知られており、ボイラー
チューブへの溶射等では一部使用されている。しかし、
通常のNi−Cr合金は硬さが低く、耐摩耗性が不十分
でエンジンバルブへ適用することは困難である。 また、特開昭56−84193号にみられるように、N
i−Cr合金を改良して熱処理により硬さを得ることも
試みられているが、熱処理温度として800’C以上が
必要であり、これでは一般に用いられる母材は劣化する
ため、実用上大きな制約となっている。 本発明は、上記従来技術の問題点を解決し、高温におい
て十分な酎V、耐S腐食性と耐摩耗性を兼ね備え得る硬
質肉盛溶接材料を提供することを目的とするものである
。 CRMを解決するための手段) 前記目的を達成するため、本発明者等は、溶接後に特別
の熱処理を必要とせずに所期の性質を具備し得るNi基
合金を見い出すべく、その成分組成について鋭意研究を
重ねた。その結果、特定の種々の元素の含有量をバラン
スよく調整することにより、可能であることが判明し、
ここに本発明をなしたのである。 すなわち、本発明に係る硬質肉盛溶接材料は、Ni基合
金であッテ、C:0.01〜0.50%、Si:0.1
〜2.0%、Cr:35〜60%、Afl+Ti:0.
5〜4.0(但し、Tiのみの場合は0.5〜3.0%
)及びN:0.01〜0.2%を含み、更に、Mn:2
%以下、v:3%以下、Nb:1%以下、Mo:5%以
下、W:5%以下及びFe:5%以下のうちの1種又は
2種以上を含み、残部がN1或いはNiと30%以下の
Co並びに不可避的不純物からなることを特徴とするも
のである。 以下に本発明を更に詳細に説明する。 (作用) 本発明における化学成分の限定理由は次のとおりである
。 C: Cは固溶体を強化する成分である。しかし、0゜01%
より少ないと十分な硬さを得ることができず、また0、
50%を超えると溶接時に割れを発生する。したがって
、C量は0.01〜0.50%の範囲とする。 Si: Siは作業性を安定させるために必要な成分である。し
かし、0.1%以下では母材とのなじみが悪く、一方、
2.0%を超えると渦流れがよくなりすぎて溶着不良を
発生する。したがって、Si量は0.1〜2.0%の範
囲とする。 Cr: 耐食、耐熱性を得るために必要な成分であり、35%以
上で効果がある。35%未満では耐熱性が不十分で、酸
化し易くなり、耐食性も劣化する。 また65%を超えると急速に脆化して、溶着金属は極め
て割れ易くなる。したがって、Cr量は35〜60%の
範囲とする。 Al、Ti: AlはNiと金属間化合物を形成して硬さを得る成分で
ある。しかし、0.5%未満では十分な硬さが得られな
い。また、Al2は溶接棒を製造する場合の鋳造性を改
良する成分でもある。N i −Cr系は鋳造性の悪い
材料で細径の溶接棒の製造が難しいが、これに八〇を0
.5%以上添加すると良好な鋳造が可能となる。Al1
が4%以上になると逆に酸化物が多くなり、鋳造性を阻
害するため、Al量は0.5〜4.0%が適当である。 なお、A2の一部又は全部をTiと等量で置き換えるこ
とが可能であるが、Tiのみの場合は。 3.0%を超えると耐ブローホール性を悪くするので、
その添加量は3.0%以下に抑える必要がある。 したがって、Alのみの添加のときのAl量及びAl+
Tiの量は0.5〜4.0%の範囲とし、Tiのみの添
加のときのTi量は0.5〜3.0の範囲とする。 N: NはCrと窒化物を形成して硬さを安定させる効果があ
る。しかし、0.01%未満ではこの効果が得られず、
また0、2%を超えると溶湯の流動性が悪くなり、鋳造
性を阻害する。したがって。 N量は0.01〜0.2%の範囲とする。 上記各成分に加えて、硬さをより安定とするために次の
成分のうちの少なくとも1種の添加が必要である。 Nb: Nbは1%以下の添加により、高温硬さを安定にする効
果があるが、1%を超えると鋳造性を阻害すると共に脆
化するので好ましくない。 Mn: Mnは固溶体を強化して常温での硬さを安定とし1作業
性も良くする(主としてなじみ)が、2%を超える量を
添加するとスラグ発生量が多くなるので好ましくない。 W: WはMnと同様の効果があるが、作業性には寄与しない
、添加量は5%までは効果が認められる。 しかし、5%を超えると溶接金属の耐割れ性を悪くする
ので好ましくない。 Fe: Feは硬さを若干高くする作用があり、また鋳造性を良
くする成分である。但し、耐食性を悪くする成分でもあ
るため、添加量は5%以下とすべきである。 ■= ■は3%以下の添加で500℃までの高温硬さを安定に
する効果がある。しかし、3%を超えると耐割れ性を阻
害するので好ましくない。 Mo: MoはWと同様の効果がある。しかし、5%を超えると
溶接金属の耐割れ性を悪くするので、5%以下とする。 なお−Moは当量のWと置換しても同様の効果がある。 なお、本発明はNi基合金であり、残部はNi及び不可
避的不純物からなるが、Niの一部をCoに置き換えて
も基本特性は同様のものが得られる。 但し、Coが30%を超えると硬さが低下するため、N
iをCOに置換する場合は30%以下とする。 不可避的不純物としての酸素は500ppm、水素は1
80ppm以下に抑えることが望ましい、それぞれこの
値を超えるとブローホール等の増加傾向がみられ、特に
本溶接材料を粉末プラズマ溶接用として用いた場合に融
合不良が発生し易くなる。 以上の成分を有する溶接材料は、主としてTIG溶接溶
接粉末溶接材料として提供される。 TIG溶接溶接粉る場合は、一般に鋳造法で製造するの
が良い、鋳造方法としてはシェルモールド法、減圧吸引
法、連続鋳造法等があり、細径棒を鋳造できる方法であ
ればどのような方法によっても良い。溶接棒径としては
、溶接作業性、経済性の各面より一般に3.2〜6.0
+amφが実用的である。なお、本溶接材料にはAR,
Tiが含まれているので、酸素−アセチレンガス溶接は
困難である。 粉末材料として提供する場合は粉体プラズマ溶接用とし
て用いるのが好ましい、粉末としては60〜350メツ
シュ程度とすることが良好な溶接作業性を確保するため
に望ましい、粉末の製造方法はガスアトマイズ法による
ものが最も適している。勿論、水アトマイズ法により製
造することも可能であるが、ガス成分が多くなりやすく
、特に酸素を低く抑えるのが難しく、溶接材料の製法と
してあまり好ましくない。 本発明による溶接材料はディーゼルエンジンバルブ以外
にも重油を燃料として用いる機器の耐食、耐摩耗肉感に
広く利用できることは云うまでもない。 (実施例) 次に本発明の実施例を示す。 実施例1 本例は溶接棒として利用した例である。 第1表に示す化学成分を有する溶接棒を用い、以下の溶
接条件のTIG溶接により肉盛溶接した。 作業性及び割れ状況を調べると共に耐食テスト及び硬さ
測定を行った結果を第2表に示す。 〈溶接条件〉 溶接棒径:5.0φ鋳造棒 電流: 150A(DC8P) 予熱温度:2.00℃ 母材:5M50A 19tX100X200u(+n+a)積層法:2層盛
(3パス/1層) シールドガス:Al  15Q/winなお、耐食試験
方法には、3tX 10wX40 Q(mm)の寸法の
試験片を用い、耐V腐食の評価の場合は、V、O,%+
Na、 S 0.15%の腐食溶液を20 B/cm”
塗布し、900℃X3hr(大気)に加熱して腐食減量
を測定し、また耐S腐食の評価の場合は、前記腐食溶液
をNa、30.90%+NaCQ10%に代えた以外は
同じ条件で塗布、加熱し。 腐食減量を測定した。 第2表より以下の如く考察される。 Nα1〜Na 5は本発明例であって、良好な作業性を
示し、割れのない溶着金属が得られた。また耐食性も良
好で、耐V腐食20mg/am2以下、耐S腐食5mg
/Cm以下となり、ステライトやコルモノイに比べて良
好な値を示している。また硬さもI−Iv400以上が
得られ、十分な耐摩耗性が期待できる。 一方、比較例Nα6はCが低いため、硬さがHv320
と低く、更にFe量が多いため、耐食性が悪い。 比較例Nα7はMnが多いのでスラグを発生し、作業性
が悪い、更にAflとTiが不足しているため、硬さは
低くなっている。 比較例Nα8はCrが不足して耐食性不良であり、低S
Lによるなじみ不良も起こっている。更にNbが高すぎ
るため、割れが発生している。 比較例Nα9はCが多すぎるため、割れを発生している
。 比較例Nn1OはSiが高すぎてコールドラップとなり
、高Crによる割れも発生している。 比較例N(111はTiが多すぎてブローホールを発生
し、Wも多すぎて割れを発生している。 比較例Nα12は高Alで割れを発生している。 比較例Nn13はAlが低すぎて硬さがです、高Nによ
りなじみが悪くなっている。また■が高すぎて割れを発
生している。 比較例NQ14はステライト合金であり、作業性、硬さ
は問題ないが、耐食性が悪い。 比較例NQ15はコルモノイ合金であり、作業性1  
は良いが、200℃予熱では割れを発生している。 耐食性も不十分である。 [以下余白1 ス」11A 本例は粉体プラズマ溶接の粉末として利用した例である
。 第3表に示す化学成分を有する粉末をガスアトマイズ法
により製造し、これを用いて以下の溶接条件の粉体プラ
ズマ肉盛溶接を行った。 く溶接条件〉 母 材:SCM445 19tX100wX300Q(mm) 電 流:160A  DC3P 予熱温度:200℃ 積層法:2層法(3バス/1層) その結果、Na 1、Na2は作業性が特に良好で。 割れのない施工ができた。一方、Na3は粒度が粗いた
め、粉末が若干溶けに<<、融合がやや不足気味となる
傾向がみられた。また、&4は逆に粒度が細かすぎて粉
末の飛散が若干多くなり、ノズルがやや詰まり易くなる
傾向が生じた。しかし。 いずれの場合も、実施例1の本発明例と同様1割れがな
く、■腐食及びS腐食に対する耐食性が優れ、硬さも十
分であった。
(Industrial Application Field) The present invention relates to overlay welding materials, and more specifically, heat-resistant,
This relates to welding materials used for corrosion-resistant and wear-resistant overlays, and is mainly suitable for overlaying diesel engine valves, boiler tubes, etc. (Prior Art) Engine valves and valve seats of internal combustion engines are parts that are exposed to high-temperature combustion gas and also undergo metal-to-metal wear at high temperatures, so they are often used by overlay welding on the parts that are subject to wear. Traditionally, C has been used as a build-up material for heat resistance, corrosion resistance, and wear resistance.
o-Cr-W alloy (stellite alloy) and Ni-Cr-8
The i-B alloy (Colmonoy alloy) is well known. These alloys have high hardness at high temperatures, good corrosion resistance, and excellent weldability, so they are often used for overlaying engine valves. (Problems to be Solved by the Invention) Regarding the valves of engines that use gasoline as fuel, there are no particular problems with these sensuous materials, and good performance has been obtained. However, in diesel engines (particularly marine engines) that use heavy oil as fuel, due to recent changes in the usage environment, it is no longer possible to obtain sufficient performance with conventional stellite alloys and colmonoy alloys. That is, heavy oil contains V (vanadium) and S (sulfur) as impurities, and these are components that exhibit extremely strong corrosive properties at high temperatures. When using high quality heavy oil, V and S are low, so
Corrosion of valves, etc. is not much of a problem. In recent years, the use of low-quality heavy oil has increased in order to reduce fuel costs.As low-quality heavy oil contains many of these components, conventional overlay materials have insufficient corrosion resistance and shorten valve life. ing. Therefore, as a measure to improve corrosion resistance against low-quality heavy oil, it has been known that N1-Cr (20% or more) alloys are effective against V and S corrosion, and thermal spraying on boiler tubes, etc. It is partially used. but,
Ordinary Ni-Cr alloys have low hardness and insufficient wear resistance, making it difficult to apply them to engine valves. Also, as seen in Japanese Patent Application Laid-Open No. 56-84193, N
Attempts have been made to improve the i-Cr alloy and obtain hardness through heat treatment, but this requires a heat treatment temperature of 800'C or higher, which deteriorates the commonly used base material, which poses a major practical limitation. It becomes. The object of the present invention is to solve the problems of the above-mentioned prior art and to provide a hard overlay welding material that can have sufficient corrosion resistance and wear resistance at high temperatures. Means for Solving CRM) In order to achieve the above object, the present inventors investigated the composition of Ni-based alloys in order to find a Ni-based alloy that can have the desired properties without requiring special heat treatment after welding. I have done extensive research. As a result, it was found that it is possible to achieve this by adjusting the content of various specific elements in a well-balanced manner.
This is where the present invention was made. That is, the hard overlay welding material according to the present invention is a Ni-based alloy, C: 0.01 to 0.50%, Si: 0.1
~2.0%, Cr: 35-60%, Afl+Ti: 0.
5 to 4.0 (however, in the case of Ti only, 0.5 to 3.0%
) and N: 0.01 to 0.2%, and further contains Mn: 2
% or less, v: 3% or less, Nb: 1% or less, Mo: 5% or less, W: 5% or less, and Fe: 5% or less, and the balance is N1 or Ni. It is characterized by comprising 30% or less of Co and unavoidable impurities. The present invention will be explained in more detail below. (Function) The reasons for limiting the chemical components in the present invention are as follows. C: C is a component that strengthens the solid solution. However, 0°01%
If it is less, sufficient hardness cannot be obtained, and if it is less than 0,
If it exceeds 50%, cracks will occur during welding. Therefore, the amount of C is set in the range of 0.01 to 0.50%. Si: Si is a necessary component to stabilize workability. However, if it is less than 0.1%, the compatibility with the base material is poor;
If it exceeds 2.0%, vortex flow becomes too strong, resulting in poor welding. Therefore, the amount of Si is set in the range of 0.1 to 2.0%. Cr: A necessary component to obtain corrosion resistance and heat resistance, and is effective at 35% or more. If it is less than 35%, heat resistance will be insufficient, oxidation will easily occur, and corrosion resistance will also deteriorate. Moreover, if it exceeds 65%, it will rapidly become brittle and the welded metal will become extremely susceptible to cracking. Therefore, the Cr content is set in the range of 35 to 60%. Al, Ti: Al is a component that forms an intermetallic compound with Ni to obtain hardness. However, if it is less than 0.5%, sufficient hardness cannot be obtained. Furthermore, Al2 is also a component that improves castability when manufacturing welding rods. Ni-Cr is a material with poor castability and it is difficult to manufacture small diameter welding rods.
.. Adding 5% or more enables good casting. Al1
If the Al content exceeds 4%, the amount of oxide increases and the castability is impaired, so the appropriate Al content is 0.5 to 4.0%. Note that it is possible to replace part or all of A2 with an equal amount of Ti, but in the case of using only Ti. If it exceeds 3.0%, the blowhole resistance will deteriorate, so
The amount added needs to be suppressed to 3.0% or less. Therefore, the amount of Al and Al+ when only Al is added
The amount of Ti is in the range of 0.5 to 4.0%, and when only Ti is added, the amount of Ti is in the range of 0.5 to 3.0. N: N forms a nitride with Cr and has the effect of stabilizing hardness. However, if it is less than 0.01%, this effect cannot be obtained,
Moreover, if it exceeds 0.2%, the fluidity of the molten metal deteriorates, inhibiting castability. therefore. The amount of N is in the range of 0.01 to 0.2%. In addition to the above components, it is necessary to add at least one of the following components to make the hardness more stable. Nb: Nb has the effect of stabilizing high-temperature hardness when added in an amount of 1% or less, but if it exceeds 1%, it impairs castability and causes embrittlement, which is not preferable. Mn: Mn strengthens the solid solution, stabilizes the hardness at room temperature, and improves workability (mainly due to break-in), but if it is added in an amount exceeding 2%, the amount of slag generated increases, which is not preferable. W: W has the same effect as Mn, but does not contribute to workability, and is effective up to 5%. However, if it exceeds 5%, it is not preferable because it deteriorates the cracking resistance of the weld metal. Fe: Fe has the effect of slightly increasing hardness and is a component that improves castability. However, since it is a component that worsens corrosion resistance, the amount added should be 5% or less. ■= ■ Addition of 3% or less has the effect of stabilizing high-temperature hardness up to 500°C. However, if it exceeds 3%, cracking resistance will be impaired, which is not preferable. Mo: Mo has the same effect as W. However, if it exceeds 5%, the cracking resistance of the weld metal deteriorates, so the content should be 5% or less. Note that even if -Mo is replaced with an equivalent amount of W, the same effect can be obtained. Note that although the present invention is a Ni-based alloy, and the remainder consists of Ni and unavoidable impurities, the same basic characteristics can be obtained even if a part of Ni is replaced with Co. However, if Co exceeds 30%, the hardness decreases, so N
When replacing i with CO, the content should be 30% or less. Oxygen as an unavoidable impurity is 500 ppm, hydrogen is 1
It is desirable to suppress the content to 80 ppm or less; if this value is exceeded, blowholes and the like tend to increase, and poor fusion tends to occur particularly when the present welding material is used for powder plasma welding. Welding materials having the above components are mainly provided as TIG welding powder welding materials. When producing TIG welding powder, it is generally best to manufacture it by casting. Examples of casting methods include shell molding, vacuum suction, and continuous casting. It depends on the method. The diameter of the welding rod is generally 3.2 to 6.0 from the viewpoint of welding workability and economy.
+amφ is practical. In addition, this welding material includes AR,
Oxygen-acetylene gas welding is difficult because of the Ti content. When provided as a powder material, it is preferable to use it for powder plasma welding.As a powder, it is desirable to have a mesh size of about 60 to 350 to ensure good welding workability.The method of manufacturing the powder is by gas atomization. is most suitable. Of course, it is also possible to manufacture by water atomization, but the gas components tend to increase, and it is particularly difficult to keep oxygen to a low level, so this is not a very preferable method for manufacturing welding materials. It goes without saying that the welding material of the present invention can be widely used for corrosion and wear resistance of equipment that uses heavy oil as fuel, in addition to diesel engine valves. (Example) Next, an example of the present invention will be shown. Example 1 This example is an example of use as a welding rod. Overlay welding was performed by TIG welding under the following welding conditions using a welding rod having the chemical composition shown in Table 1. Table 2 shows the results of examining workability and cracking conditions, as well as corrosion resistance tests and hardness measurements. <Welding conditions> Welding rod diameter: 5.0φ Casting rod Current: 150A (DC8P) Preheating temperature: 2.00℃ Base material: 5M50A 19tX100X200u (+n+a) Lamination method: 2 layers (3 passes/1 layer) Shielding gas: Al 15Q/winThe corrosion resistance test method uses a test piece with dimensions of 3tX 10wX40Q (mm), and in the case of evaluating V corrosion resistance, V, O,%+
Na, S 0.15% corrosion solution at 20 B/cm”
The corrosion loss was measured by heating at 900°C for 3 hr (atmosphere), and for the evaluation of S corrosion resistance, the coating was applied under the same conditions except that the corrosion solution was replaced with Na, 30.90% + NaCQ 10%. , heated. Corrosion loss was measured. The following considerations can be made from Table 2. Nα1 to Na5 are examples of the present invention, and exhibited good workability, and welded metals without cracks were obtained. It also has good corrosion resistance, with V corrosion resistance of 20 mg/am2 or less and S corrosion resistance of 5 mg.
/Cm or less, which is a better value than stellite and colmonoy. Further, a hardness of I-Iv400 or higher can be obtained, and sufficient wear resistance can be expected. On the other hand, because the comparative example Nα6 has a low C content, its hardness is Hv320.
Furthermore, since the amount of Fe is large, the corrosion resistance is poor. Comparative Example Nα7 has a large amount of Mn, so it generates slag, resulting in poor workability.Furthermore, it lacks Afl and Ti, so its hardness is low. Comparative example Nα8 lacks Cr, has poor corrosion resistance, and has low S
Poor compatibility due to L also occurs. Furthermore, cracks occur because the Nb content is too high. Comparative Example Nα9 has too much C, so cracks occur. In Comparative Example Nn1O, the Si content was too high, resulting in cold lap, and cracks also occurred due to the high Cr content. Comparative example N (111 has too much Ti, which causes blowholes, and too much W, which causes cracks. Comparative example Nα12 has a high Al content, which causes cracks. Comparative example Nn13 has a low Al content. The hardness is too high, and the conformability is poor due to the high N. Also, the ■ is too high, causing cracks.Comparative example NQ14 is a stellite alloy, and there are no problems in workability and hardness, but the corrosion resistance is poor. Comparative example NQ15 is a Colmonoy alloy and has workability of 1.
Although the temperature was good, cracking occurred when preheating to 200°C. Corrosion resistance is also insufficient. [1 space below] 11A This example is an example in which the powder is used as a powder for powder plasma welding. Powders having the chemical components shown in Table 3 were produced by a gas atomization method, and were used to perform powder plasma overlay welding under the following welding conditions. Welding conditions> Base material: SCM445 19tX100wX300Q (mm) Current: 160A DC3P Preheating temperature: 200℃ Lamination method: 2 layer method (3 baths/1 layer) As a result, Na 1 and Na 2 have particularly good workability. Construction was completed without cracking. On the other hand, since the particle size of Na3 was coarse, there was a tendency for the powder to dissolve slightly<< and for fusion to be slightly insufficient. On the other hand, &4 had a particle size that was too fine, resulting in slightly more powder scattering, and a tendency for the nozzle to become slightly clogged. but. In any case, there was no single crack as in the invention example of Example 1, and the corrosion resistance against (1) corrosion and S corrosion was excellent, and the hardness was also sufficient.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、Ni基合金の化
学成分をバランスよく調整したので、耐熱性、耐摩耗性
は勿論のこと、特に高温における耐V、耐S腐食性に優
れた肉盛溶接材料を提供することができる。しかも、溶
着金属に特別の熱処理を要することなく特性を得ること
ができるので、実用上の効果は大きい。特にv、Sを含
む低質重油を使用する環境に曝される各種機器、部品の
肉  ゛盛溶接材料として好適である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
(Effects of the Invention) As detailed above, according to the present invention, the chemical components of the Ni-based alloy are adjusted in a well-balanced manner. It is possible to provide an overlay welding material with excellent corrosion resistance. Moreover, since the properties can be obtained without requiring special heat treatment of the weld metal, the practical effect is great. In particular, it is suitable as an overlay welding material for various equipment and parts that are exposed to environments where low-quality heavy oil containing V and S is used. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] Ni基合金であって、重量%で(以下、同じ)、C:0
.01〜0.50%、Si:0.1〜2.0%、Cr:
35〜60%、Al+Ti:0.5〜4.0%(但し、
Tiのみの場合は0.5〜3.0%)及びN:0.01
〜0.2%を含み、更に、Mn:2%以下、V:3%以
下、Nb:1%以下、Mo:5%以下、W:5%以下及
びFe:5%以下のうちの1種又は2種以上を含み、残
部がNi或いはNiと30%以下のCo並びに不可避的
不純物からなることを特徴とする硬化肉盛溶接材料。
Ni-based alloy, in weight% (hereinafter the same), C: 0
.. 01-0.50%, Si: 0.1-2.0%, Cr:
35-60%, Al+Ti: 0.5-4.0% (however,
0.5-3.0% in case of Ti only) and N: 0.01
~0.2%, and further one of Mn: 2% or less, V: 3% or less, Nb: 1% or less, Mo: 5% or less, W: 5% or less, and Fe: 5% or less. or a hardfacing welding material comprising two or more of these, the remainder being Ni or Ni and 30% or less of Co and unavoidable impurities.
JP10323488A 1988-04-25 1988-04-25 Build-up welding material Pending JPH01273693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10323488A JPH01273693A (en) 1988-04-25 1988-04-25 Build-up welding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10323488A JPH01273693A (en) 1988-04-25 1988-04-25 Build-up welding material

Publications (1)

Publication Number Publication Date
JPH01273693A true JPH01273693A (en) 1989-11-01

Family

ID=14348763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10323488A Pending JPH01273693A (en) 1988-04-25 1988-04-25 Build-up welding material

Country Status (1)

Country Link
JP (1) JPH01273693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017098A1 (en) * 1994-12-02 1996-06-06 Toyota Jidosha Kabushiki Kaisha High-chromium nickel alloy with excellent resistances to wear and lead corrosion and engine valve
EP3915717A1 (en) 2020-05-26 2021-12-01 Daido Steel Co., Ltd. Ni-based alloy, and ni-based alloy product and methods for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233089A (en) * 1985-08-02 1987-02-13 Daido Steel Co Ltd Alloy powder for building up of powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233089A (en) * 1985-08-02 1987-02-13 Daido Steel Co Ltd Alloy powder for building up of powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017098A1 (en) * 1994-12-02 1996-06-06 Toyota Jidosha Kabushiki Kaisha High-chromium nickel alloy with excellent resistances to wear and lead corrosion and engine valve
EP3915717A1 (en) 2020-05-26 2021-12-01 Daido Steel Co., Ltd. Ni-based alloy, and ni-based alloy product and methods for producing the same
US11732331B2 (en) 2020-05-26 2023-08-22 Daido Steel Co., Ltd. Ni-based alloy, and Ni-based alloy product and methods for producing the same

Similar Documents

Publication Publication Date Title
JP5486093B2 (en) Wear-resistant cobalt base alloy and engine valve
JP5742447B2 (en) High hardness overlaying alloy powder
US20120267420A1 (en) Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design
JP5486092B2 (en) High toughness cobalt base alloy and engine valve
CA2491754C (en) Wear-resistant, corrosion-resistant cobalt-based alloys
JPS586779B2 (en) Wear-resistant iron-nickel-cobalt alloy
US5422071A (en) Heat resistant iron/steel weld material
CN112192090B (en) Chromium carbide enhanced nickel-aluminum-based flux-cored wire for hardfacing and preparation method thereof
JP6156316B2 (en) Overlaying alloy powder, overlaying alloy member using the same, and engine valve
CN109454357A (en) A kind of nickel-base welding rod and preparation method thereof
US20040011435A1 (en) Wear-resistant, corrosion-resistant cobalt-based alloys
JP2014111265A (en) Cladding powder alloy
US2783144A (en) Hard facing alloy
JPH01273693A (en) Build-up welding material
JPH055599B2 (en)
JP2019157176A (en) Copper-based alloy
JPS5940212B2 (en) Co-based alloy for engine valves and valve seats of internal combustion engines
JP2673593B2 (en) Built-in engine valve for intake
JPS62179891A (en) Ni welding material for hard facing
JP3855257B2 (en) Cr-Ni-Nb-Fe base alloy for overlaying
JPS61113742A (en) High-hardness heat-resistant alloy
JPS5970744A (en) High-hardness ni alloy for valve and valve seat for engine
JP3332771B2 (en) Corrosion and heat resistant Ni-base casting alloy for waste incinerator
JPH02205294A (en) Overplaying alloy having excellent high-temperature tensile creep characteristic
JPS62156095A (en) Ni-base high toughness heat resisting alloy for hard facing