JPH01272961A - Nondestructive inspecting method for ceramic-joined body - Google Patents

Nondestructive inspecting method for ceramic-joined body

Info

Publication number
JPH01272961A
JPH01272961A JP63101680A JP10168088A JPH01272961A JP H01272961 A JPH01272961 A JP H01272961A JP 63101680 A JP63101680 A JP 63101680A JP 10168088 A JP10168088 A JP 10168088A JP H01272961 A JPH01272961 A JP H01272961A
Authority
JP
Japan
Prior art keywords
ceramic
joined
bonded body
ultrasonic
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63101680A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Ichiro Furumura
古村 一朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63101680A priority Critical patent/JPH01272961A/en
Publication of JPH01272961A publication Critical patent/JPH01272961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To accurately decide the strength of a ceramic-joined body and its joined surface internal defect by inspecting the joining state of the ceramic- joined body from pieces of image information obtained by ultrasonic wave C scanning and radiation CT. CONSTITUTION:A metallic member 1 consisting of molybdenum is inserted into the recessed part of a ceramic member 2 consisting principally of silicon nitride and a stress buffer material 3 made of titanium is interposed between them; and a soldering material 4 is further interposed between respective layers and heated under a vacuum to joint the both, thereby forming the ceramic and metal-joined body. Then the ultrasonic wave C scanning is performed from both surfaces of the members 1 and 2 to obtain images of respective joined parts. Then, tomographic images of the periphery of the joined part are obtained by the X-ray CT. A crack 5 is observed in the member 2 through those images. Consequently, the internal defect, etc., of the joined part defect can accurately be decided.

Description

【発明の詳細な説明】 [発明の]」的] (産業上の利用分野) 本発明は、セラミックス部材と金属部材あるいはセラミ
ックス部材とセラミックス部材とを接合一体化したセラ
ミックス接合体の接合状態を非破壊で検査する方法に関
する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is directed to non-destructive bonding of a ceramic bonded body in which a ceramic member and a metal member or a ceramic member and a ceramic member are integrated. Concerning methods of destructive testing.

(従来の技術) 近年、セラミックス部材の耐熱性、耐食性、耐摩耗性等
の各種特性を牛かし、かつセラミックス部材の脆くて信
頼性に欠けるという欠点を補うためにセラミックス部材
に金属部材をたとえば適当なろう材を用いて接合したり
、また同様にセラミックス部材とセラミックス部材とを
接合して利用するということがよく行われている。
(Prior Art) In recent years, in order to enhance the various properties of ceramic members such as heat resistance, corrosion resistance, and wear resistance, and to compensate for the drawbacks of ceramic members such as brittleness and lack of reliability, metal members have been added to ceramic members, for example. It is common practice to use a suitable brazing material for joining, or to join ceramic members together.

ところで、このようなセラミックス−金属接合体やセラ
ミックス−セラミックス接合体は、その作製後に接合の
良否を判定するために接合部の非破壊検査が必要とされ
ている。このようなセラミックス接合体の非破壊検査は
、接合体の一端より超音波を送り込み、反対側の端部に
てこの超音波の受信時の出力の差を測定したり、または
反射波の出力時間の差や検出エコーの大きさを測定する
ことによって接合不良による空隙やクラック等を検出す
る超音波探傷法や、セラミックス接合体にX線を当てて
、その吸収程度の差により不良を検出するX線透過検査
法等により行われている。
Incidentally, such a ceramic-metal bonded body or a ceramic-ceramic bonded body requires non-destructive testing of the bonded portion after fabrication in order to determine the quality of the bond. Non-destructive testing of such ceramic bonded bodies involves sending ultrasonic waves from one end of the bonded body and measuring the difference in output when the ultrasonic waves are received at the opposite end, or measuring the output time of reflected waves. The ultrasonic flaw detection method detects voids and cracks caused by poor bonding by measuring the difference in the amount of radiation and the size of detected echoes, and the This is done using the radiographic inspection method, etc.

(発明が解決しようとする課題) しかしなから、超音波探傷法やX線透過法といった従来
の方法では、単純な形状の接合体には適用可能であるが
、複雑形状の場合、超音波やX線の入反射特性か複雑と
なって欠陥の検出を行うことか困難であった。
(Problem to be solved by the invention) However, although conventional methods such as ultrasonic flaw detection and The incidence and reflection characteristics of X-rays are complicated, making it difficult to detect defects.

また、接合部におけるろう材分布や接合界面の健全性と
いったような接合部内部の状態まで正確に把握しうるこ
とは困難であった。
Furthermore, it has been difficult to accurately grasp the internal state of the joint, such as the brazing material distribution in the joint and the soundness of the joint interface.

これは、超音波探傷法ではクラック程度の単純な欠陥の
検出しかできず、一方X線透過法ではろう4AのX線吸
収係数かセラミックス部材や金属部材より小さかったり
、あるいはろう材中の構成成分の組合わせ方により接合
状態を示す像が得られなかったり、また得られた像が不
鮮明であったりするため使用範囲か限定されるという問
題があるためである。
This is because the ultrasonic flaw detection method can only detect simple defects such as cracks, while the X-ray transmission method detects that the X-ray absorption coefficient of solder 4A is smaller than that of ceramic members or metal members, or that the constituent components in the filler metal This is because, depending on the combination of the two, it may not be possible to obtain an image showing the bonded state, or the obtained image may be unclear, resulting in a problem that the range of use is limited.

本発明はこのような従来技術の課題に対処するためにな
されたもので、多角的に接合状態を検査して接合界面近
傍のクラックや接合部内部の接合体強度に影響を与える
、例えばろう材分布、ろう祠の偏析、剥離部等を正確に
判定することのできるセラミックス接合体の非破壊検査
方法を提供することを目的とする。
The present invention has been made to address the problems of the prior art, and it inspects the joint condition from multiple angles to check for cracks near the joint interface and for problems that affect the strength of the joint inside the joint, such as brazing filler metal. The object of the present invention is to provide a non-destructive inspection method for a ceramic bonded body that can accurately determine distribution, segregation of solder deposits, peeled parts, etc.

[発明の構成] (課題を解決するための手段) 本発明のセラミックス接合体の非破壊検査方法は、セラ
ミックス部材と金属部材あるいはセラミックス部材とセ
ラミックス部材とを接合一体化してなるセラミックス接
合体の接合状態を検査するにあたり、前記セラミックス
接合体の接合面に対して平行方向に超音波Cスキャンを
行い前記セラミックス接合体の接合部を平面的に画像化
するとともに、前記セラミックス接合体の少なくとも接
合部近傍を放射線CTにより断層状に画像化し、これら
超音波Cスキャンおよび放射線CTによる画像情報から
多角的に接合状態を検査することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The non-destructive testing method for a ceramic bonded body of the present invention is a method for bonding a ceramic bonded body formed by bonding and integrating a ceramic member and a metal member or a ceramic member and a ceramic member. In inspecting the condition, ultrasonic C-scanning is performed in a direction parallel to the bonding surface of the ceramic bonded body to image the bonded portion of the ceramic bonded body in a two-dimensional manner, and at least the vicinity of the bonded portion of the ceramic bonded body is imaged in a two-dimensional manner. It is characterized in that it is imaged in tomographic form using radiation CT, and the bonding state is inspected from multiple angles based on the image information obtained from these ultrasonic C scans and radiation CT.

本発明における超音波Cスキャンによる検出は、セラミ
ックス接合体の接合面に対して平行な一端面上を探触子
を走査させて超音波を送り込み、この透過または反射超
音波強度の平面分布を、コンピュータ支援により画像処
理することによって、探触点下における状態を平面的に
輝点または暗点、さらには透過・反射超音波強度を階調
化のうえ擬似カラーにて直接CRT上に描かせるか、あ
るいは記録紙上に描かせて行う。使用する超音波の周波
数は、セラミックス接合体を構成する素材等によって適
宜設定されるものであるが、5〜508H2程度が好ま
しい。
Detection by ultrasonic C-scanning in the present invention involves sending an ultrasonic wave by scanning a probe over one end surface parallel to the bonding surface of the ceramic bonded body, and measuring the planar distribution of the transmitted or reflected ultrasonic intensity. By computer-assisted image processing, the state below the probe point can be drawn two-dimensionally as bright spots or dark spots, and furthermore, the intensity of transmitted and reflected ultrasonic waves can be gradated and drawn directly on the CRT in pseudo color. , or by drawing it on recording paper. The frequency of the ultrasonic waves to be used is appropriately set depending on the material constituting the ceramic bonded body, and is preferably about 5 to 508H2.

また、本発明における放射線CT(コンピユーテッドト
モグラフィ)による検出は、セラミックス接合体の少な
くとも接合部近傍の全周方向から一定厚さの透過放射線
データを収集し、この透過放射線強度を前述の超音波C
スキャンと同様に画像処理して断層画像に再構成して行
う。さらに、各断層画像データを再処理して断面変換処
理で立体構築することにより、接合部に対して垂直方向
の画像を得ることも可能である。この放射線CTは、断
層画像から異物やクラ・ツク等の欠陥の検出やろう4A
分布やろう材の偏析等の検■の他に、例えば得られたデ
ータの単位体積当りのX線吸収度(CT値)から密度測
定や物質同定を行うことも可能である。
Furthermore, in the detection using radiation CT (computed tomography) in the present invention, transmitted radiation data of a constant thickness is collected from the entire circumference direction at least near the joint of the ceramic bonded body, and the transmitted radiation intensity is determined to exceed the above-mentioned range. Sound wave C
Similar to a scan, the image is processed and reconstructed into a tomographic image. Furthermore, by reprocessing each tomographic image data and constructing a three-dimensional image using cross-sectional conversion processing, it is also possible to obtain an image in a direction perpendicular to the junction. This radiation CT can detect defects such as foreign objects and cracks from tomographic images.
In addition to checking the distribution and segregation of the brazing filler metal, it is also possible to measure the density and identify substances from the X-ray absorbance per unit volume (CT value) of the obtained data, for example.

この放射線CT法に使用する放射線としては、X線か一
般的であるが、セラミ・ノクス接合体を11へ1成する
素材かX線吸収度の大きい、例えばZrO2、Cr20
3 、Pe等の場合には高出力X線やγ線を使用するこ
とにより同様に行える。なお、X線の適用可能なセラミ
ックス部材としては、5i304、SiC,An203
、SiO2等容種のものが挙げられる。
The radiation used in this radiation CT method is generally X-rays, but it is also possible to use materials that form the ceramic-nox composite or materials with high X-ray absorption, such as ZrO2 and Cr20.
In the case of 3, Pe, etc., the same method can be performed by using high-power X-rays or γ-rays. Note that ceramic members to which X-rays can be applied include 5i304, SiC, and An203.
, SiO2 equivalent type.

(作 用) そして、上記手段を用いることにより、検査対象となる
セラミックス接合体の接合部を超音波Cスキャン法によ
る平面的な画像によれば、超音波の透過・反射の不連続
性、すなわち接合界面の連続性による接合強度分布やろ
う材分布等の接合部の平面内分布が明確に検圧できる。
(Function) By using the above means, it is possible to detect discontinuities in the transmission and reflection of ultrasonic waves by using a flat image of the bonded part of the ceramic bonded body to be inspected using the ultrasonic C-scan method. The in-plane distribution of the joint, such as the joint strength distribution and brazing filler metal distribution due to the continuity of the joint interface, can be clearly measured.

なお、超音波透過・反射分解能の調整により、接合部近
傍の被接合物であるセラミックス部材内に生じるクラッ
ク等を検出し、クラックの面分布を画像化したり、セラ
ミックス接合体の接合面に対する垂直方向の距離をBス
フ−1表示で表すことも可能である。
In addition, by adjusting the ultrasonic transmission/reflection resolution, it is possible to detect cracks that occur in ceramic members that are objects to be joined near the joint, and to visualize the surface distribution of cracks, and to visualize the surface distribution of the cracks in the direction perpendicular to the joint surface of the ceramic joint. It is also possible to express the distance in B-suf-1 notation.

また、セラミックス接合体の接合部近傍の放射線CT法
による断層画像によれば、接合界面近傍で生じるセラミ
ックス部材側の内部クラックの検出や、例えばX線吸収
度の大きい元素を含むろうHの分布や偏析、異物の混入
等が検出できる。
Furthermore, according to tomographic images obtained by radiation CT near the joints of ceramic joints, it is possible to detect internal cracks on the ceramic member side that occur near the joint interface, and to detect, for example, the distribution of wax H containing elements with high X-ray absorption. Segregation, contamination of foreign substances, etc. can be detected.

そして、この両者の情報を多角的に判定することにより
、接合体強度の推定も可能となる。
By evaluating both of these pieces of information from multiple angles, it is also possible to estimate the strength of the bonded body.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 第1図に示すように、外径75+nm X厚さ 5mm
の円板状のモリブデンからなる金属部1’ 1と、一方
の面に金属部材1の挿入用四部を有する外径90mmX
厚さ20mmのほぼ円板状の窒化ケイ素を主成分とする
セラミックス部材2とを、セラミックス部材2の四部に
金属部材1を挿入し、これらの間に厚さ1mmのチタン
からなる応力緩衝材3を介在させ、さらに各層の間に2
重量%Ti−71重量%Ag−27重量%Cuろうから
なるろう材4を介在させて真空中、840°Cの温度で
6分間加熱して両者を接合してセラミックス−金属接合
体を作製した。
Example 1 As shown in Fig. 1, outer diameter 75+nm x thickness 5mm
A metal part 1' made of disk-shaped molybdenum and having four parts for inserting the metal member 1 on one side, with an outer diameter of 90 mm
A ceramic member 2 having a thickness of 20 mm and having a substantially disk shape mainly composed of silicon nitride is inserted, and a metal member 1 is inserted into the four parts of the ceramic member 2, and a stress buffering material 3 made of titanium and having a thickness of 1 mm is inserted between them. interposed between each layer, and 2 layers between each layer.
A ceramic-metal bonded body was produced by heating the two in vacuum at a temperature of 840°C for 6 minutes with a brazing filler metal 4 made of a solder material of %Ti-71%Ag-27%Cu by weight interposed therebetween to produce a ceramic-metal bonded body. .

このセラミックス−金属接合体について、超音波Cスキ
ャン法とX線CT法とにより接合部を検査した。
The joint portion of this ceramic-metal bonded body was inspected using an ultrasonic C-scan method and an X-ray CT method.

まず、金属部材1側とセラミックス部材2側の両端面か
ら超音波Cスキャン(周波数LOMHz、スキャンピッ
チ0.25 mm)を行い、各々接合部の画像を得た。
First, ultrasonic C-scanning (frequency LOMHz, scan pitch 0.25 mm) was performed from both end faces of the metal member 1 side and the ceramic member 2 side, and images of the joints were obtained for each.

次いで、接合部近傍をX線CT(120keV、  3
00mAパルスX線)により複数の断層画像を得た。
Next, the vicinity of the joint was subjected to X-ray CT (120 keV, 3
Multiple tomographic images were obtained using 00 mA pulsed X-rays).

超音波Cスキャンによるセラミックス部材側からの画像
により接合端からセラミックス部月内部へ伸びていると
思われるクラックが検出された。
An ultrasonic C-scan image taken from the ceramic member side detected a crack that appeared to be extending from the joint end to the inside of the ceramic member.

次いて、X線CTによる複数の断層画像によりこのクラ
ックを確認したところ、接合端よりセラミックス部材の
中心方向にクラックが進展したことか判明した。
Next, when this crack was confirmed using a plurality of tomographic images obtained by X-ray CT, it was found that the crack had progressed from the joint end toward the center of the ceramic member.

このクラックは窒化ケイ素とモリブデンとの熱膨脹係数
差に起因する残留応力により発生したものと思われ、確
認のためにセラミックス接合体を切断して内部の目視検
査を行ったところ、第1図に示すように、セラミックス
部材2内部にクラック5が観察され、超音波Cスキャン
およびX線CTの画像による非破壊検査結果と同一結果
が得られた。
This crack is thought to have occurred due to residual stress caused by the difference in coefficient of thermal expansion between silicon nitride and molybdenum.To confirm this, we cut the ceramic bonded body and visually inspected the inside, as shown in Figure 1. As shown, cracks 5 were observed inside the ceramic member 2, and the same results as those of the non-destructive inspection using ultrasonic C-scan and X-ray CT images were obtained.

実施例2 第2図に示すように、外径80mmで中央部に直径25
+n+n X高さI 5mmの凸部を有する円板状の窒
化ケイ素を主成分とするセラミックス部材2と、中心孔
を有する外径80mmのモリブデンからなる金属部材]
とを嵌合し、これらの間に厚さ 0.2mmの銅からな
る応力緩衝材3を介在させ、各層の間に実施例1で使用
したものと同一のろう材4を介在させて実施例1と同一
条件で加熱接合してセラミックス−金属接合体を得た。
Example 2 As shown in Figure 2, the outer diameter is 80 mm and the center part has a diameter of 25 mm.
+n+n
A stress buffering material 3 made of copper having a thickness of 0.2 mm was interposed between these layers, and a brazing material 4, which was the same as that used in Example 1, was interposed between each layer. A ceramic-metal bonded body was obtained by heating and bonding under the same conditions as No. 1.

このセラミックス接合体についても実施例1と同様に超
音波CスキャンとX線CTとにより接合部を検査した。
Regarding this ceramic bonded body, the bonded portion was also inspected using ultrasonic C-scan and X-ray CT in the same manner as in Example 1.

X線CTによる画像からはろう祠か均一に分布している
ように思われたが、超音波Cスキャンによるセラミック
ス部材側および金属部月例からの画像からはともに、接
合界面の不均一性、すなわちろう材分布の不均一による
接合強度のばらつきが確認された。この検査結果が接合
体の特性と一致するかを確認するため、このセラックス
接合体の接合強度を測定したところ、1.2kg/−と
健全なセラミックス−金属接合体より若干低い値が得ら
れ、非破壊検査結果と一致していることが確認された。
From the X-ray CT image, it appeared that the wax was evenly distributed, but from the ultrasonic C-scan images from both the ceramic component side and the metal component side, it was found that there was non-uniformity at the bonding interface, i.e. It was confirmed that there were variations in bonding strength due to non-uniform distribution of brazing filler metal. In order to confirm whether this test result matches the characteristics of the bonded body, we measured the bonding strength of this ceramics bonded body, and found that it was 1.2 kg/-, which is slightly lower than a healthy ceramic-metal bonded body. It was confirmed that the results were consistent with the non-destructive test results.

実施例3 外径60+nm X高さ10InI11の円板状の窒化
ケイ素を主成分とするセラミックス部材と同一形状の銅
相・545Cからなる金属部材との間に実施例1と同一
のろう祠を介在させ、さらに人工的に欠陥を作製するた
めに直径0,05〜l 、 Otn+のタングステン粒
を介在させて実施例1と同一条件で両者を加熱接合して
セラミックス−金属接合体を作製した。
Example 3 The same brazing hole as in Example 1 was interposed between a disc-shaped ceramic member mainly composed of silicon nitride with an outer diameter of 60 + nm and a height of 10 InI11 and a metal member made of copper phase 545C with the same shape. Further, in order to create artificial defects, tungsten grains with a diameter of 0.05 to 1 Otn+ were interposed, and the two were heated and bonded under the same conditions as in Example 1 to produce a ceramic-metal bonded body.

得られたセラミックス接合体について実施例1と同様に
超音波CスキャンとX線CTで接合部を検査したところ
、超音波Cスキャンによる画像からはろう材分布が不均
一であることが判明し、さらにX線CTによる画像から
ろう材中のAgが偏析していることが判明した。また、
X線CTによる画像からは介在させたタングステン粒が
接合界面に分散していることが確認でき、直径0.2+
n+nのものまで判定することが可能であった。
When the bonded portion of the obtained ceramic bonded body was inspected using ultrasonic C-scan and X-ray CT in the same manner as in Example 1, it was found that the brazing material distribution was non-uniform from the ultrasonic C-scan image. Furthermore, it was found from X-ray CT images that Ag in the brazing filler metal was segregated. Also,
From the X-ray CT image, it was confirmed that the interposed tungsten grains were dispersed at the bonding interface, and the diameter was 0.2+
It was possible to judge up to n+n.

[発明の効果] 以上説明したように本発明方法によれば、超音波Cスキ
ャンにより得られる接合部の平面的な情報をX線CTに
より得られる内部および深さ方向の情報で補足して多角
的に接合状態を把握し、またX線CTでは検出しにくい
X線吸収係数の小さいろう材の分布は超音波Cスキャン
により検出てき、両者の検査方法を組合わせてより詳し
い接合部内部までの情報を得ることが可能となり、これ
により接合状態、接合体強度、接合面内部欠陥等を正確
に判定することが可能となる。
[Effects of the Invention] As explained above, according to the method of the present invention, planar information of the joint obtained by ultrasonic C-scanning is supplemented with internal and depth direction information obtained by X-ray CT to obtain a polygonal image. In addition, the distribution of filler metal with a small X-ray absorption coefficient, which is difficult to detect with X-ray CT, can be detected by ultrasonic C-scan, and by combining both inspection methods, it is possible to obtain a more detailed inspection of the inside of the joint. It becomes possible to obtain information, thereby making it possible to accurately determine the bonding state, the strength of the bonded body, defects inside the bonding surface, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例で使用したセラ
ミックス−金属接合体の各々の断面図である。 1・・・・・・・・・金属部材 2・・・・・・・・・セラミックス部材3・・・・・・
・応力緩衝材 4・・・・・・・ろう材 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 −
FIGS. 1 and 2 are sectional views of ceramic-metal bonded bodies used in one embodiment of the present invention. 1...Metal member 2...Ceramic member 3...
・Stress buffer material 4・・・Brazing metal applicant Toshiba Corporation Representative Patent attorney Sasu Suyama −

Claims (1)

【特許請求の範囲】[Claims] (1)セラミックス部材と金属部材あるいはセラミック
ス部材とセラミックス部材とを接合一体化してなるセラ
ミックス接合体の接合状態を検査するにあたり、 前記セラミックス接合体の接合面に対して平行方向に超
音波Cスキャンを行い前記セラミックス接合体の接合部
を平面的に画像化するとともに、前記セラミックス接合
体の少なくとも接合部近傍を放射線CTにより断層状に
画像化し、これら超音波Cスキャンおよび放射線CTに
よる画像情報から多角的に接合状態を検査することを特
徴とするセラミックス接合体の非破壊検査方法。
(1) When inspecting the bonding state of a ceramic bonded body formed by bonding a ceramic member and a metal member or a ceramic member and a ceramic member, ultrasonic C-scanning is performed in a direction parallel to the bonding surface of the ceramic bonded body. The bonded portion of the ceramic bonded body is imaged in a two-dimensional manner, and at least the vicinity of the bonded portion of the ceramic bonded body is imaged in a tomographic manner using radiation CT, and a multifaceted image is obtained from the image information obtained by these ultrasonic C scans and radiation CT. A method for non-destructive testing of ceramic bonded bodies, characterized by inspecting the bonded state.
JP63101680A 1988-04-25 1988-04-25 Nondestructive inspecting method for ceramic-joined body Pending JPH01272961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101680A JPH01272961A (en) 1988-04-25 1988-04-25 Nondestructive inspecting method for ceramic-joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101680A JPH01272961A (en) 1988-04-25 1988-04-25 Nondestructive inspecting method for ceramic-joined body

Publications (1)

Publication Number Publication Date
JPH01272961A true JPH01272961A (en) 1989-10-31

Family

ID=14307062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101680A Pending JPH01272961A (en) 1988-04-25 1988-04-25 Nondestructive inspecting method for ceramic-joined body

Country Status (1)

Country Link
JP (1) JPH01272961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189349A (en) * 2005-01-06 2006-07-20 Kawasaki Heavy Ind Ltd Nondestructive defect inspection system
CN102095798A (en) * 2010-11-04 2011-06-15 西安航空动力股份有限公司 Method for detecting brazing rate of brazed parts by ultrasonic immersed C-scanning
CN108802074A (en) * 2018-08-02 2018-11-13 赵克 The detection method of zirconium oxide bilayer All-ceramic restoration body piercing porcelain internal flaw

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189349A (en) * 2005-01-06 2006-07-20 Kawasaki Heavy Ind Ltd Nondestructive defect inspection system
CN102095798A (en) * 2010-11-04 2011-06-15 西安航空动力股份有限公司 Method for detecting brazing rate of brazed parts by ultrasonic immersed C-scanning
CN108802074A (en) * 2018-08-02 2018-11-13 赵克 The detection method of zirconium oxide bilayer All-ceramic restoration body piercing porcelain internal flaw
CN108802074B (en) * 2018-08-02 2020-11-06 赵克 Method for detecting internal defects of zirconia double-layer all-ceramic restoration body decorative ceramic

Similar Documents

Publication Publication Date Title
JP2016520202A (en) Improved inspection method by ultrasonic transmission
Subbaratnam et al. Immersion and TOFD (I-TOFD): a novel combination for examination of lower thicknesses
Thomas Overview of nondestructive evaluation technologies
JPH01272961A (en) Nondestructive inspecting method for ceramic-joined body
JP2001201465A (en) Nondestructive inspection method using x-rays
Passini et al. Ultrasonic inspection of AA6013 laser welded joints
Lamarre et al. Complete inspection of friction stir welds in aluminum using ultrasonic and eddy current arrays
Gieske et al. Nondestructive evaluation (NDE) of composite/metal bond interface of a wind turbine blade uskng an acousto-ultrasonic technique
Schwarz et al. Lamb wave tomographic imaging system for aircraft structural health assessment
Murri et al. Defects in thick composites and some methods to locate them
JPS59148864A (en) Ultrasonic flaw detecting method of square billet
JPH0269644A (en) Non-destructive inspection method for ceramics body
Choi et al. Nondestructive evaluation of shoes bonded area defect composed of EVA materials
Broberg Imaging and analysis methods for automated weld inspection
Sawrav et al. ELIMINATION OF FAILURES OF NARROW GROOVE WELD JOINTS, THOROUGH PHASE ARRAY INVESTIGATION
Singh et al. Investigation of the effect of thermal cycle on SS/CRZ brazed joint sample
JPH0269645A (en) Joined ceramics body and non-destructive inspection method for joined ceramics body
JP3635266B2 (en) Inspection method for joints between lead or lead alloy and steel
Baaklini et al. Ceramic Matrix Composites Characterization with X‐Ray Microtomography and Ultrasonics
JP2761928B2 (en) Non-destructive inspection method and device
Tapphorn et al. Neutron radiography of composite materials-a comparison study of advanced NDE imaging techniques
Saiprasanna Kumar et al. Sub-Surface Flaw Detection of GFRP Components Using Non-Destructive Methods
Miyasaka et al. Detection of Delaminations Located at Ceramic/Metal Jointed Interface by Scanning Acoustic Microscopy
Hena et al. Detection and size estimation of inclusions in a complex shaped CFRP specimen using thermography, air-coupled ultrasound and x-ray laminography.
Benson Evaluation of damage evolution and material behavior in SigmaTi-6242 composite using nondestructive methods