JPH01271035A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH01271035A
JPH01271035A JP9782588A JP9782588A JPH01271035A JP H01271035 A JPH01271035 A JP H01271035A JP 9782588 A JP9782588 A JP 9782588A JP 9782588 A JP9782588 A JP 9782588A JP H01271035 A JPH01271035 A JP H01271035A
Authority
JP
Japan
Prior art keywords
mold
copper plate
long side
magnet
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9782588A
Other languages
Japanese (ja)
Inventor
Mikio Suzuki
幹雄 鈴木
Toru Kitagawa
北川 融
Tatsuo Obata
小畠 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9782588A priority Critical patent/JPH01271035A/en
Publication of JPH01271035A publication Critical patent/JPH01271035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent surface defect of a cast slab by arranging cooling groove and cooling box at back face of long side in a mold and also arranging two or more pairs of electromagnet at the specific position of the mold. CONSTITUTION:The cooling groove 32 and the cooling boxes 34, 35 are arranged at each back face of the long side copper plate 31 in the mold. Further, each one pair of the electromagnets 36, 37 are arranged at the back face sides to the long side mold copper plate 31 and the short side mold copper plate 38. In this case, the position of the electromagnets 36, 38 is regulated in the range of 50-250mm from the upper end of the back face of the mold long side copper plate 31 and magnetic pole 45a, etc., at upper part is positioned at near discharging hole of a submerged nozzle and the magnetic pole 45b, etc., at lower part is positioned so as not to exceed from the lower end of the mold. As the arrangement of the electromagnets 36, 37 is decided to the optional position, flowing control of the molten steel in the mold is freely executed, and wave movement of the molten steel surface is damped. By this method, the development of the surface defect in the cast slab is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスラブの連続鋳造において、直流磁石を用いて
鋳型内の溶鋼の湯面波動を制御し、良好な鋳片を製造す
る鋼の連続鋳造用鋳型に間する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for continuously casting slabs, in which the surface waves of molten steel in the mold are controlled using DC magnets to produce good slabs. Place in casting mold.

[従来の技術] 第5図は従来のスラブの連続鋳造機の鋳型内の溶鋼及び
パウダーの状態を示す図である。この図を参照しながら
従来の技術を説明する。鋳型1内の溶鋼8の表面には溶
鋼の酸化防止と保温、凝固シェル9と鋳型1との間の潤
滑、非金属介在物の吸着等の役目をするモールドパウダ
ー5がある。
[Prior Art] FIG. 5 is a diagram showing the state of molten steel and powder in a mold of a conventional continuous slab casting machine. The conventional technology will be explained with reference to this figure. On the surface of the molten steel 8 in the mold 1, there is mold powder 5, which functions to prevent oxidation and heat retention of the molten steel, lubricate between the solidified shell 9 and the mold 1, and adsorb nonmetallic inclusions.

このモールドパウダー5が溶18と接する面は溶鋼の熱
で溶融パウダー6になっており、その反対の大気側は粉
状のパウダー7となって溶鋼の表面を覆っている。溶融
パウダー6は消耗するので一定のモールドパウダー厚さ
を維持するために、溶融パウダー6の消耗量に見合うだ
けの量が補給される。第5図に示すように鋳型1の中央
に鉛直に設けられた浸漬ノズル2の先端の吐出孔3は、
鋳型1の短辺方向に対向して開孔している。溶鋼はこの
吐出孔3から鋳型1内に吐出される。溶鋼の吐出流4は
鋳型1の短辺方向にハの字状になって溶湯内に拡散され
る。
The surface of this mold powder 5 that comes into contact with the molten steel 18 becomes molten powder 6 due to the heat of the molten steel, and the opposite side to the atmosphere becomes powder 7 that covers the surface of the molten steel. Since the molten powder 6 is consumed, an amount corresponding to the consumed amount of the molten powder 6 is replenished in order to maintain a constant mold powder thickness. As shown in FIG. 5, the discharge hole 3 at the tip of the immersion nozzle 2 provided vertically in the center of the mold 1 is
The holes are opened opposite to each other in the short side direction of the mold 1. Molten steel is discharged into the mold 1 from the discharge hole 3. The discharge stream 4 of molten steel is diffused into the molten metal in a V-shape in the direction of the short side of the mold 1.

[発明が解決しようとする課題] 第6図は溶鋼の湯面波動を示す図である。しかしながら
この溶鋼の吐出流4は鋳型1に沿って形成した凝固シェ
ル9に衝突して上下の2つの流れ、反転流11と侵入流
12に分かれ、鋳型1面の凝固シェル9に沿って上昇す
る反転流11は溶鋼8の湯面を盛り上げるとともに、湯
面波動10を発生させる。特に溶鋼吐出量が3Tb上の
高速鋳造においては、吐出流速が大きくなるため鋳型1
表面に形成された凝固シェル9に、衝突後の溶鋼の上昇
流も大きくなり溶鋼表面の湯面波動10が大きくなる。
[Problems to be Solved by the Invention] FIG. 6 is a diagram showing surface waves of molten steel. However, this discharge flow 4 of molten steel collides with the solidified shell 9 formed along the mold 1 and is divided into two upper and lower flows, a reverse flow 11 and an intrusion flow 12, which ascend along the solidified shell 9 on the mold 1 surface. The reverse flow 11 raises the surface of the molten steel 8 and generates surface waves 10. Particularly in high-speed casting where the molten steel discharge amount is 3 Tb or more, the discharge flow rate becomes large, so the mold 1
The upward flow of the molten steel after colliding with the solidified shell 9 formed on the surface becomes large, and the surface waves 10 on the surface of the molten steel become large.

この溶鋼表面の湯面波動を調整する方法として直流磁石
をバックプレートの背面に配設して、溶鋼吐出流に直流
磁場を印加し、吐出流にブレーキをかけ吐出流の流速を
制御する方法がある。第7図はバックプレートの背面に
直流磁石を配設した従来の鋳型長辺銅板を示す図で、(
a)は正面図で、(b)は冷却水の水箱側から見た側面
断面図で、(c)は第7図(a)の線A−A’に沿った
平面断面図である。21は鋳型長辺銅板、22は冷却溝
、23.24は冷却箱で、詳しくは23は上部の冷却箱
、24は下部の冷却箱、25はOリング、26はボルト
、27は直流磁石、28はバックプレートである。鋳型
長辺銅板21裏面には冷却溝22が縦方向に切削されて
いる。その面にバックプレート28が配設されている。
One way to adjust the surface waves of the molten steel is to place a DC magnet on the back of the back plate, apply a DC magnetic field to the molten steel discharge flow, apply a brake to the discharge flow, and control the flow velocity of the discharge flow. be. Figure 7 shows a conventional copper plate on the long side of a mold with a DC magnet placed on the back of the back plate.
7(a) is a front view, FIG. 7(b) is a side sectional view seen from the cooling water box side, and FIG. 7(c) is a plan sectional view taken along line AA' in FIG. 7(a). 21 is a copper plate on the long side of the mold, 22 is a cooling groove, 23 and 24 are cooling boxes, specifically 23 is an upper cooling box, 24 is a lower cooling box, 25 is an O-ring, 26 is a bolt, 27 is a DC magnet, 28 is a back plate. Cooling grooves 22 are cut in the longitudinal direction on the back surface of the long side copper plate 21 of the mold. A back plate 28 is arranged on that surface.

冷却溝22とバックプレート28の空隙に冷却水を通す
、バックプレート28の上方と下方に冷却箱23が配置
されており、鋳型長辺銅板21を冷却する。冷却水は下
部の冷却箱24に給水され、冷却溝22、上部の冷却箱
23を通って系外に排水される。鋳型長辺銅板21と冷
却箱23の接続は冷却箱23.24の裏面よりボルト2
6により鋳型長辺銅板21に締着する。又、鋳型長辺銅
板21と冷却箱23.24の冷却水が外部に漏れないよ
うに、鋳型長辺銅板21と冷却箱23.24の間にOリ
ング25を配置する。
Cooling boxes 23 are disposed above and below the back plate 28 to allow cooling water to pass through the gap between the cooling groove 22 and the back plate 28, and cool the long side copper plate 21 of the mold. Cooling water is supplied to the lower cooling box 24, passes through the cooling groove 22 and the upper cooling box 23, and is drained out of the system. The long side copper plate 21 of the mold and the cooling box 23 are connected by bolts 2 from the back of the cooling box 23 and 24.
6 to fasten it to the long side copper plate 21 of the mold. Further, an O-ring 25 is placed between the mold long side copper plate 21 and the cooling box 23.24 to prevent the cooling water from leaking to the outside.

そして溶鋼表面の湯面の波動をコントロールする方法と
して直流磁石27を冷却箱23と24の中央部に配設し
、溶鋼吐出流に直流磁場を印加し、吐出流にブレーキを
かけて吐出流の流速を抑えているが、最近、連続鋳造機
の生産性を上げるために一層の高速鋳造(例えば3 T
on/win以上)を行うと、この方式では吐出流にブ
レーキをかけても吐出流の流速を完全に抑えることがで
きず、鋳型短辺銅板部付近の溶鋼表面の湯面波動が大き
くなり、良好な表面性状を有する鋳片を得られないとい
う問題があった。この発明は係る事情に鑑みてなされた
ものであって、浸漬ノズル部の吐出流にブレーキをかけ
る直流磁石と、鋳型短辺銅板部付近の溶鋼表面の湯面の
波動を制御する直流磁石を設置し、鋳型内の湯面変動を
抑制をすることによりパウダー巻き込みの減少を図り、
鋳片の表面欠陥を防止することを目的とする。
As a method of controlling the wave motion of the molten steel surface, a DC magnet 27 is placed in the center of the cooling boxes 23 and 24, and a DC magnetic field is applied to the molten steel discharge flow to apply a brake to the discharge flow. However, recently, in order to increase the productivity of continuous casting machines, even higher speed casting (for example, 3 T
(on/win or higher), this method cannot completely suppress the flow velocity of the discharge flow even if the brake is applied to the discharge flow, and the surface waves of the molten steel near the copper plate on the short side of the mold become large. There was a problem in that it was not possible to obtain slabs with good surface properties. This invention was made in view of the above circumstances, and includes a DC magnet that brakes the discharge flow from the submerged nozzle and a DC magnet that controls the wave motion of the molten steel surface near the copper plate on the short side of the mold. By suppressing fluctuations in the molten metal level within the mold, we aim to reduce powder entrainment.
The purpose is to prevent surface defects in slabs.

[課題を解決するための手段] この発明の鋼の連続鋳造用鋳型は、鋳型長辺銅板の裏面
を冷却するための銅板裏面に横方向に切削された冷却溝
と、前記冷却溝を覆うバックプレートと、前記バックプ
レートの両端に配設されて鋳型長0辺銅板の冷却溝に冷
却水を給排水する冷却箱とによって構成された連続鋳造
鋳造鋳型に、鋳型長辺銅板の裏面の上端から50〜25
0■の範囲に2対以上の直流磁石を配して磁場を印加し
ながら鋳造することを特徴とする。
[Means for Solving the Problems] The mold for continuous casting of steel according to the present invention includes cooling grooves cut horizontally on the back surface of the copper plate for cooling the back surface of the long side copper plate of the mold, and a back cover covering the cooling grooves. A continuous casting casting mold consisting of a plate and a cooling box disposed at both ends of the back plate for supplying and draining cooling water to the cooling grooves of the copper plate on the long side of the mold is placed in a continuous casting mold with a diameter of 50 mm from the upper end of the back surface of the copper plate on the long side of the mold. ~25
It is characterized in that two or more pairs of DC magnets are arranged in a range of 0.0 mm and casting is performed while applying a magnetic field.

[作用] この発明による鋼の連続鋳造用鋳型は鋳型長辺銅板の裏
面に横方向に切削され冷却溝が設置されているので、冷
却溝に冷却水を供給する冷却箱が鋳型長辺銅板の両端に
配置できる。そうすると浸漬ノズルの吐出孔位置に相当
する範囲(鋳型幅の中央部で鋳型長辺銅板の上端から1
50〜250mm)と吐出流が短辺面の凝固シェルに衝
突して上昇する反転流を制御する位置(鋳型短辺銅板の
両端から100mm位置で、かつ鋳型長辺銅板の上端か
ら50〜150mmの範囲)に直流磁石を配置すると浸
漬ノズルの吐出流にブレーキをかかり、鋳型長辺銅板部
付近の溶鋼表面の湯面の波動を制御することができる。
[Function] The mold for continuous casting of steel according to the present invention has cooling grooves cut horizontally on the back surface of the copper plate on the long side of the mold, so that the cooling box that supplies cooling water to the cooling grooves is installed on the back side of the copper plate on the long side of the mold. Can be placed at both ends. Then, the area corresponding to the discharge hole position of the immersion nozzle (at the center of the mold width, 1 minute from the top of the copper plate on the long side of the mold)
50 to 250 mm) and a position where the discharge flow collides with the solidified shell on the short side to control the upward reverse flow (100 mm from both ends of the copper plate on the short side of the mold, and 50 to 150 mm from the top of the copper plate on the long side of the mold). If a DC magnet is placed in the area), it will brake the discharge flow from the immersion nozzle and control the wave motion of the molten steel surface near the copper plate on the long side of the mold.

[実施例] 以下本発明の実施例を図面を参照しながら具体的に説明
する。第1図は本発明の実施例の鋳型長371銅板を示
す図で、(a>は鋳型長辺銅板の正面図、(b)は第1
図(a)の線A−A’に沿った断面図である。第2図は
本発明の実施例の鋳型長辺銅板の裏面に配設された冷却
水箱を示す図で、(a)は冷却水箱等の正面図、(b)
は第2図<a)の線B−B’矢視の断面図である。31
は鋳型長辺銅板、32は冷却溝、33は冷却箱のバック
プレート、34.35は冷却箱で、詳しくは34は鋳型
長辺銅板冷却水の給水側の冷却箱、35は鋳型長辺銅板
冷却水の排水側の冷却箱(設備の配置上34.35が逆
になることもある)、36は直流磁石で、この冷却箱の
バックプレート33の裏面側に配設した。
[Examples] Examples of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a diagram showing a copper plate with a mold length of 371 according to an embodiment of the present invention, (a> is a front view of the copper plate on the long side of the mold, and (b) is a view of the copper plate on the long side of the mold.
It is a sectional view along line AA' of figure (a). FIG. 2 is a diagram showing a cooling water box arranged on the back side of the copper plate on the long side of the mold according to an embodiment of the present invention, (a) is a front view of the cooling water box, etc., and (b)
is a sectional view taken along line BB' in FIG. 2<a). 31
32 is the mold long side copper plate, 32 is the cooling groove, 33 is the back plate of the cooling box, 34, 35 is the cooling box, in detail, 34 is the mold long side copper plate cooling box on the cooling water supply side, 35 is the mold long side copper plate A cooling box on the cooling water drainage side (34 and 35 may be reversed due to the arrangement of the equipment), 36 is a DC magnet, and is arranged on the back side of the back plate 33 of this cooling box.

ここでは鋳型長辺銅板31の片側の例で説明したが、こ
れと同様なものは溶鋼を挟んで反対側にも相対向して配
置されている。
Although the explanation has been given here with an example of one side of the long-side copper plate 31 of the mold, a similar one is also arranged facing each other on the opposite side with the molten steel in between.

(実施例1) 第3図はこの発明の一実施例の鋳型長辺銅板のバックプ
レートに直流磁石を配設した図で(a)は平面図で、(
b)は正面図である。31は鋳型長辺銅板(31aは前
面鋳型長辺銅板、31bは後面鋳型長辺銅板)、32は
冷却溝、33は冷却箱のバックプレート、34.35は
冷却箱で、詳しくは、34は鋳型長辺銅板冷却水の給水
側の冷却箱、35は鋳型長辺銅板冷却水の排水側の冷却
箱(設備の配置上34.35が逆になることもある>、
36.37は直流磁石(36は第1直流磁石、37は第
2直流磁石)、38は鋳型短辺銅板、39は鋳型短辺銅
板の冷却水の冷却箱、40は0リングで、41はボルト
である。鋳型長辺銅板31の幅中央で、浸漬ノズルの吐
出孔部に設置した直流磁石を第1直流磁石36といい、
磁極の断面形状は10100X200のものを用いた。
(Example 1) Fig. 3 is a diagram showing a DC magnet arranged on the back plate of a long side copper plate of a mold according to an embodiment of the present invention, and (a) is a plan view;
b) is a front view. 31 is the long side copper plate of the mold (31a is the long side copper plate of the front mold, 31b is the long side copper plate of the rear mold), 32 is the cooling groove, 33 is the back plate of the cooling box, 34.35 is the cooling box. 35 is a cooling box on the water supply side of the copper plate cooling water on the long side of the mold, and 35 is a cooling box on the drainage side of the copper plate cooling water on the long side of the mold (34 and 35 may be reversed due to equipment layout).
36.37 is a DC magnet (36 is a first DC magnet, 37 is a second DC magnet), 38 is a copper plate on the short side of the mold, 39 is a cooling box for the cooling water of the copper plate on the short side of the mold, 40 is an O ring, and 41 is a It's a bolt. The DC magnet installed in the discharge hole of the immersion nozzle at the center of the width of the copper plate 31 on the long side of the mold is referred to as a first DC magnet 36.
The magnetic pole used had a cross-sectional shape of 10100×200.

第1直流磁石36aの一方の磁極45aは鋳型長辺銅板
31の上端から150〜250mmの位置に相当する場
所、第1直流磁石36aの他方の磁極45bは鋳型長辺
銅板31の上端から750〜850 mmの位置に相当
する場所に設置した。第1直流磁石36aの一方の磁極
45aが設置された鋳型長辺銅板31の上端から150
〜2501m5の範囲は、浸漬ノズルの吐出孔があるあ
る場所で、この磁石で吐出流を制御することができる。
One magnetic pole 45a of the first DC magnet 36a is located at a position corresponding to 150 to 250 mm from the upper end of the mold long side copper plate 31, and the other magnetic pole 45b of the first DC magnet 36a is located 750 to 750 mm from the upper end of the mold long side copper plate 31. It was installed at a location corresponding to a position of 850 mm. 150 meters from the upper end of the mold long side copper plate 31 on which one magnetic pole 45a of the first DC magnet 36a is installed.
The range of ~2501 m5 is a certain place where the discharge hole of the immersion nozzle is located, and the discharge flow can be controlled with this magnet.

第1直流磁石36aの他方の磁極45bは鋳型長辺銅板
31の上端から750〜850Il1mの位置は、鋳型
長辺銅板の下端から飛び出でない範囲であり、この範囲
に設置した0通常の鋳型長辺銅板の高さは900mmで
あるため、他方の磁極45bを750〜8501III
11の範囲は磁極が鋳型下端から飛出ない位置である。
The other magnetic pole 45b of the first DC magnet 36a is located at a position of 750 to 850 Il1m from the upper end of the mold long side copper plate 31, in a range where it does not protrude from the lower end of the mold long side copper plate, and the long side of the normal mold installed in this range is Since the height of the copper plate is 900mm, the height of the other magnetic pole 45b is 750~8501III.
The range 11 is a position where the magnetic pole does not protrude from the lower end of the mold.

前面鋳型長辺銅板31aの第1直流磁石を36a、後面
鋳型長辺銅板31bの第1直流磁石を36bとした。磁
束の方向が鋳型の厚み方向に貫通するように前面鋳型長
辺銅板31aの第1直流磁石36aと後面鋳型長辺銅板
31bの第1直流磁石36bに、磁極として、N極とS
極(磁極45a、46a、45b、46b相当する)を
設定した。即ち、前面鋳型長辺銅板31aの第1直流磁
石36aの上側の磁極45aをN極、下側の磁極45.
bをS極とすれば、後面鋳型長辺銅板31bの第1直流
磁石36bの上側の磁極46aをS極、下側の磁極46
bをN極とした。またこの逆であってもさしつかえない
、一方、鋳型短辺銅板38付近で、鋳型長辺銅板31の
背面に磁極が配置された直流磁石を第2直流磁石37a
といい、鋳型短辺銅板38と前面鋳型長辺銅板31aと
後面鋳型長辺銅板31bを挟み込むように配置した。そ
の設置位置は鋳型短辺銅板38から10011m離れた
鋳型長辺銅板31の浸漬ノズル側よりの範囲で、鋳型長
辺銅板31の上端から50〜150mmの範囲とした。
The first DC magnet of the long side copper plate 31a of the front mold was 36a, and the first DC magnet of the long side copper plate 31b of the rear mold was 36b. The first DC magnet 36a of the front mold long side copper plate 31a and the first DC magnet 36b of the rear mold long side copper plate 31b are provided with N and S poles as magnetic poles so that the direction of magnetic flux penetrates in the thickness direction of the mold.
Poles (corresponding to magnetic poles 45a, 46a, 45b, and 46b) were set. That is, the upper magnetic pole 45a of the first DC magnet 36a of the long side copper plate 31a of the front mold is the N pole, and the lower magnetic pole 45.
If b is the S pole, the upper magnetic pole 46a of the first DC magnet 36b of the rear mold long side copper plate 31b is the S pole, and the lower magnetic pole 46 is the S pole.
b was set as the north pole. On the other hand, in the vicinity of the copper plate 38 on the short side of the mold, the DC magnet whose magnetic pole is arranged on the back side of the copper plate 31 on the long side of the mold is connected to the second DC magnet 37a.
The mold short side copper plate 38, the front mold long side copper plate 31a, and the rear mold long side copper plate 31b are arranged so as to be sandwiched therebetween. The installation position was in the range from the immersion nozzle side of the mold long side copper plate 31 which was 10011 m away from the mold short side copper plate 38, and in the range of 50 to 150 mm from the upper end of the mold long side copper plate 31.

この第2直流磁石37aには、磁極47a、47bが配
置されている。この第2直流磁石37aには鋳型短辺銅
板38と連動して動くようにしである。即ち、スラブ幅
が変化しても常に鋳型短辺銅板38からの相対位置が変
わらないようにした。なお鋳型短辺銅板38は相対向す
る位置にもあり、かつ第2直流磁石37bがあり、その
磁極は48a、48bとなる。この配置も第2直流磁石
37aと同じである0本発明の連続鋳造用鋳型を使って
鋳造したスラブを圧延し、製品の表面疵の発生状況を調
べた結果を第1表に示す、この時の鋳造条件はスラブ幅
は1000mm、スラブ厚みは220mm、引き抜き速
度2.5m/mia、浸漬ノズルの内径は80mmΦ、
浸漬ノズルの吐出孔径は75mmΦ、浸漬ノズル内側の
底部の形状は逆Y型であり、浸漬ノズルの吐出孔の角度
は水平に対して25度下向きのものを用いた。各々の直
流磁石の磁束密度は021000.2000ガウスの場
合について比較した。第1表に示すように磁束密度を上
げることにより製品の表面疵の発生率は減少している。
Magnetic poles 47a and 47b are arranged on this second DC magnet 37a. This second DC magnet 37a is designed to move in conjunction with the copper plate 38 on the short side of the mold. That is, even if the slab width changes, the relative position from the short side copper plate 38 of the mold always remains unchanged. The short side copper plates 38 of the mold are also located at opposing positions, and there is also a second DC magnet 37b, the magnetic poles of which are 48a and 48b. This arrangement is also the same as the second DC magnet 37a. Table 1 shows the results of rolling a slab cast using the continuous casting mold of the present invention and investigating the occurrence of surface defects on the product. The casting conditions are: slab width 1000mm, slab thickness 220mm, drawing speed 2.5m/mia, inner diameter of immersion nozzle 80mmΦ,
The diameter of the discharge hole of the immersion nozzle was 75 mmΦ, the shape of the bottom inside the immersion nozzle was an inverted Y shape, and the angle of the discharge hole of the immersion nozzle was 25 degrees downward with respect to the horizontal. The magnetic flux density of each DC magnet was compared in the case of 021000.2000 Gauss. As shown in Table 1, the incidence of surface defects on products is reduced by increasing the magnetic flux density.

第1表 ※は磁束密度は各々の直流磁石とも同じ※※は表面疵の
発生率= (表面疵の発生コイル/観察コイル)X100(実施例
2) 第4図は本発明の他の実施例の図であり、鋳型長辺銅板
の冷却水箱のバックプレートに直流磁石を配設した図で
ある。第4図において、(a)は平面図、(b)は側面
図である。鋳型長辺銅板と冷却水箱等は実施例1と同一
のものを用いて、第1直流磁石は実施例1と同一の配置
であるが、第2直流磁石37は実施例1の配置と異なり
前面鋳型長辺銅板31a、後面鋳型長辺銅板31b対象
に配置した。第2直流磁石は、上端の磁極51a、52
aは、鋳型短辺銅板38から100■m離れた鋳型長辺
銅板31の浸漬ノズル側よりで、鋳型長辺銅板31の上
端から50〜150mmの範囲で、一方の磁極51.5
2bは、鋳型短辺銅板38から100mm離れた鋳型長
辺銅板31の浸漬ノズル側より、鋳型長辺銅板31の上
端から650〜750mmの範囲である。第2直流磁石
の上端の磁極51a、52bは、凝固シェルに沿って上
昇する反転流を制御し、湯面波動を一定にし、第2直流
磁石の下端の磁極51b、52bは、凝固シェルに沿っ
て下降する侵入流を制御し、非金属介在物の鋳片への巻
き込みを防止する。前面鋳型長辺銅板31aの浸漬ノズ
ルを中心に対称の位置に、第2直流磁石37bが配置さ
れている。ここでの直流磁石の上端の磁極53a。
Table 1 * shows that the magnetic flux density is the same for each DC magnet * * indicates the incidence of surface flaws = (surface flaw generation coil/observation coil) x 100 (Example 2) Figure 4 shows another example of the present invention This is a diagram in which a DC magnet is arranged on the back plate of the cooling water box of the copper plate on the long side of the mold. In FIG. 4, (a) is a plan view, and (b) is a side view. The copper plate on the long side of the mold, the cooling water box, etc. are the same as in Example 1, and the first DC magnet is arranged in the same manner as in Example 1, but unlike the arrangement in Example 1, the second DC magnet 37 is placed on the front side. The mold long side copper plate 31a and the rear mold long side copper plate 31b were arranged symmetrically. The second DC magnet has magnetic poles 51a and 52 at the upper end.
a is from the immersion nozzle side of the mold long side copper plate 31 which is 100 μm away from the mold short side copper plate 38, and in the range of 50 to 150 mm from the upper end of the mold long side copper plate 31, one magnetic pole 51.5
2b is a range of 650 to 750 mm from the upper end of the mold long side copper plate 31 from the immersion nozzle side of the mold long side copper plate 31 that is 100 mm away from the mold short side copper plate 38. The magnetic poles 51a and 52b at the upper end of the second DC magnet control the reverse flow that rises along the solidified shell and keep the surface wave motion constant, and the magnetic poles 51b and 52b at the lower end of the second DC magnet control the reverse flow that rises along the solidified shell. This prevents non-metallic inclusions from being drawn into the slab by controlling the descending intrusion flow. A second DC magnet 37b is arranged symmetrically with respect to the immersion nozzle of the front mold long side copper plate 31a. The magnetic pole 53a at the upper end of the DC magnet here.

54aは、凝固シェルに沿って上昇する反転流及び湯面
波動を同時に制御し、第2直流磁石の下端の磁極53b
、54bは、凝固シェルに沿って下降する侵入流を制御
し、非金属介在物の鋳片への巻き込みを防止する。ここ
では前面鋳型長辺銅板31a側について説明したが、こ
れと同様なものが後面鋳型長辺銅板31b側にも配置さ
れている。即ち、第1直流磁石36b、第2直流磁石3
7a’、第2直流磁石37b′である。この第2直流磁
石37には鋳型短辺銅板38と連動して動くようにしで
ある。即ち、スラブ幅が変化しても常に鋳型短辺銅板3
8からの相対位置が変わらないようにした。
54a simultaneously controls the reversal flow rising along the solidified shell and the surface wave motion, and the magnetic pole 53b at the lower end of the second DC magnet.
, 54b controls the intrusion flow descending along the solidified shell and prevents non-metallic inclusions from being entrained in the slab. Although the description has been made on the long side copper plate 31a side of the front mold, something similar to this is also arranged on the long side copper plate 31b side of the rear mold. That is, the first DC magnet 36b, the second DC magnet 3
7a' and a second DC magnet 37b'. This second DC magnet 37 is designed to move in conjunction with the copper plate 38 on the short side of the mold. In other words, even if the slab width changes, the mold short side copper plate 3 is always
The relative position from 8 did not change.

本発明の連続鋳造用鋳型を使って鋳造したスラブを圧延
し、製品の表面疵の発生状況を調べた結果を第2表に示
す、この時の鋳造条件はスラブ幅1200mm、スラブ
厚み220u、引き抜き速度2.2m/mis、浸漬ノ
ズルの内径80IlfflΦ、浸漬ノズルの吐出孔径7
5mmΦ、浸漬ノズル内側の底部の形状は逆Y型であり
、浸漬ノズルの吐出孔の角度は水平に対して25度下向
きのものを用いた。各々の直流磁石の磁束密度はOll
 000゜2000ガウスの場合について比較した。第
2表に示すように磁束密度を上げることにより製品の表
面疵の発生率は減少している。
Table 2 shows the results of rolling a slab cast using the continuous casting mold of the present invention and investigating the occurrence of surface defects on the product.The casting conditions were: slab width 1200mm, slab thickness 220u, drawing Speed 2.2m/mis, inner diameter of immersion nozzle 80IlfflΦ, discharge hole diameter of immersion nozzle 7
The diameter of the immersion nozzle was 5 mm, the shape of the bottom inside the immersion nozzle was an inverted Y shape, and the angle of the discharge hole of the immersion nozzle was 25 degrees downward with respect to the horizontal. The magnetic flux density of each DC magnet is Oll
A comparison was made for the case of 000°2000 Gauss. As shown in Table 2, the incidence of surface defects on products is reduced by increasing the magnetic flux density.

第2表 ※は磁束密度は各々の直流磁石とも同じ※※は表面疵の
発生率= (表面疵の発生コイル/観察コイル)X100[発明の
効果] この発明は冷却箱が鋳型長辺銅板の両端に配置されてい
るので、直流磁石を鋳型長辺銅板の任意の位置に設置で
きる。そのため鋳型内の溶鋼の流動を自由に制御するこ
とができ、溶鋼表面の波動を減衰させることができる。
Table 2 * shows that the magnetic flux density is the same for each DC magnet * * indicates the rate of occurrence of surface flaws = (surface flaw generation coil/observation coil) Since they are placed at both ends, the DC magnet can be placed at any position on the copper plate on the longer side of the mold. Therefore, the flow of molten steel within the mold can be freely controlled, and wave motion on the surface of the molten steel can be attenuated.

その結果、製品の表面疵の発生率が減少する。As a result, the incidence of surface defects on the product is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の鋳型長辺銅板を示す図、第2
図は本発明の実施例の鋳型長辺銅板の裏面に配設された
冷却水箱を示す図、第3図はこの発明の一実施例の鋳型
長辺銅板の冷却水箱のバックプレートに直流磁石を配設
した図、第4図は・本発明の他の実施例の鋳型長辺銅板
の冷却水箱のバックプレートに直流磁石を配設した図、
第5図は従来の一スラブの連続鋳造機の鋳型内の溶鋼及
びパウダーの状態を示す図、第6図は溶鋼の湯面波動を
示す図、第7図はバックプレートの背面に直流磁石を配
設した従来の鋳型長辺銅板を示す図である。。 31・・・鋳型長辺銅板、32は冷却溝、33・・・冷
却箱のバックプレート、 34.35・・・冷却箱、36.37・・・直流磁石、
38・・・鋳型短辺銅板、 39・・・鋳型短辺銅板の冷却水の冷却箱、40・・・
0リング、41・・・ボルト。
Figure 1 is a diagram showing the copper plate on the long side of the mold according to the embodiment of the present invention;
The figure shows a cooling water box arranged on the back side of the copper plate on the long side of the mold according to an embodiment of the present invention, and Fig. 3 shows a DC magnet installed on the back plate of the cooling water box on the copper plate on the long side of the mold according to an embodiment of the present invention. FIG. 4 is a diagram showing the arrangement of DC magnets on the back plate of the cooling water box of the long side copper plate of the mold according to another embodiment of the present invention.
Figure 5 is a diagram showing the state of molten steel and powder in the mold of a conventional single-slab continuous casting machine, Figure 6 is a diagram showing molten steel surface waves, and Figure 7 is a diagram showing a DC magnet on the back of the back plate. It is a figure which shows the conventional mold long side copper plate arrange|positioned. . 31...Mold long side copper plate, 32... Cooling groove, 33... Cooling box back plate, 34.35... Cooling box, 36.37... DC magnet,
38...Mold short side copper plate, 39...Mold short side copper plate cooling water cooling box, 40...
0 ring, 41... bolt.

Claims (1)

【特許請求の範囲】[Claims] タンディッシュから浸漬ノズルを経由して溶鋼を鋳型に
鋳造する連続鋳造用鋳型において、鋳型長辺銅板の裏面
を冷却するための銅板裏面に横方向に切削された冷却溝
と、前記冷却溝を覆うバックプレートと、前記バックプ
レートの両端に配設されて鋳型長辺銅板の冷却溝に冷却
水を給排水する冷却箱とによって構成された連続鋳造用
鋳型に、鋳型長辺銅板の裏面の上端から50〜250m
mの範囲に2対以上の直流磁石を配して磁場を印加しな
がら鋳造することを特徴とする鋼の連続鋳造方法。
In a continuous casting mold in which molten steel is cast into the mold from a tundish via an immersion nozzle, cooling grooves cut horizontally on the back surface of the copper plate for cooling the back surface of the long side copper plate of the mold, and covering the cooling grooves. A continuous casting mold consisting of a back plate and a cooling box disposed at both ends of the back plate for supplying and draining cooling water to the cooling grooves of the copper plate on the long side of the mold is placed 50 mm from the upper end of the back surface of the copper plate on the long side of the mold. ~250m
A continuous casting method for steel, characterized in that two or more pairs of DC magnets are arranged in a range of m and casting is performed while applying a magnetic field.
JP9782588A 1988-04-20 1988-04-20 Method for continuously casting steel Pending JPH01271035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9782588A JPH01271035A (en) 1988-04-20 1988-04-20 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9782588A JPH01271035A (en) 1988-04-20 1988-04-20 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH01271035A true JPH01271035A (en) 1989-10-30

Family

ID=14202504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9782588A Pending JPH01271035A (en) 1988-04-20 1988-04-20 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH01271035A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212128A (en) * 1991-11-29 1993-05-18 Exxon Research & Engineering Company Method for recovering or maintaining the activity of hydroisomerization catalysts
WO2001017713A1 (en) * 1999-09-03 2001-03-15 Abb Ab A device for continuous or semi-continuous casting of metals
WO2003041893A1 (en) * 2001-09-27 2003-05-22 Abb Ab A device and a method for continuous casting
CN104096810A (en) * 2014-06-30 2014-10-15 武汉泛洲中越合金有限公司 Horizontal continuous casting crystallizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212128A (en) * 1991-11-29 1993-05-18 Exxon Research & Engineering Company Method for recovering or maintaining the activity of hydroisomerization catalysts
WO2001017713A1 (en) * 1999-09-03 2001-03-15 Abb Ab A device for continuous or semi-continuous casting of metals
WO2003041893A1 (en) * 2001-09-27 2003-05-22 Abb Ab A device and a method for continuous casting
US6938674B2 (en) 2001-09-27 2005-09-06 Abb Ab Device and a method for continuous casting
US7305271B2 (en) 2001-09-27 2007-12-04 Abb Ab Device and a method for continuous casting
CN104096810A (en) * 2014-06-30 2014-10-15 武汉泛洲中越合金有限公司 Horizontal continuous casting crystallizer

Similar Documents

Publication Publication Date Title
JP4807462B2 (en) Steel continuous casting method
US5381857A (en) Apparatus and method for continuous casting
US7628196B2 (en) Method and apparatus for continuous casting of metals
JP2011121114A (en) Continuous casting method of steel
RU2539253C2 (en) Method and unit for regulation of flows of molten metal in crystalliser pan for continuous casting of thin flat slabs
JPH01271035A (en) Method for continuously casting steel
JP5929872B2 (en) Steel continuous casting method
JPS61193755A (en) Electromagnetic stirring method
JP2008055431A (en) Method of continuous casting for steel
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JP2001009559A (en) Method and device for continuously casting steel
JP2773154B2 (en) Steel continuous casting method
WO2023188837A1 (en) Submerged entry nozzle for continuous casting, and continuous casting method for steel
JP4910357B2 (en) Steel continuous casting method
JPH01289543A (en) Continuous casting method for steel
JPS61140355A (en) Electromagnetic stirrer for controlling molten steel flow in casting mold
JP2005021941A (en) Continuous casting device for molten metal and continuous casting method
JP3887200B2 (en) Steel continuous casting method and apparatus
JPH10305358A (en) Continuous molding of steel
JP5359653B2 (en) Steel continuous casting method
JP2002120052A (en) Device and method for controlling fluidity of molten steel in mold
JPH09150243A (en) Continuous casting method
JP2000158108A (en) Continuous steel casting method
JPS61255749A (en) Method for decreasing non-metallic inclusion in continuously cast slab