JPH01270379A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH01270379A
JPH01270379A JP9944488A JP9944488A JPH01270379A JP H01270379 A JPH01270379 A JP H01270379A JP 9944488 A JP9944488 A JP 9944488A JP 9944488 A JP9944488 A JP 9944488A JP H01270379 A JPH01270379 A JP H01270379A
Authority
JP
Japan
Prior art keywords
optical
light
semiconductor laser
amplified
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9944488A
Other languages
Japanese (ja)
Inventor
Takashi Takamura
高村 孝士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9944488A priority Critical patent/JPH01270379A/en
Publication of JPH01270379A publication Critical patent/JPH01270379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To effect optical amplification without an optical isolator by a method wherein light rays to be amplified are injected into an optical gain medium of a semiconductor laser from a direction different from that of an optical resonant axis of the semiconductor laser. CONSTITUTION:A resonant axis-wise (perpendicular to a projecting light) resonant plane 207 and a resonant plane 209 are asymmetrically coated so as to obtain reflectivities of 95% and 10% respectively, and incident plane 208, which light rays 210 to be amplified is incident on, is coated to obtain a reflectivity of 3% (transmissivity of 97%) so as to enable the light rays 210 to be effectively incident on. Here, a bias current is so set as to keep the semiconductor laser near an oscillation threshold to make it project laser rays in a direction of a resonant axis. And, an incident path of the light rays 210 is made to be an optical waveguide possessed of a gain, and when the light 210 is incident, it is guided to a stripe-like optical gain section 213 through a waveguide action and optically amplified.

Description

【発明の詳細な説明】 [卒業上の11用分野1 本発明は光通信や光論理回路などに用いられる光増幅器
及び半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Graduation Field 1] The present invention relates to optical amplifiers and semiconductor lasers used in optical communications, optical logic circuits, and the like.

[従来の技術] 従来の技術としては、半導体レーザを発振閾値近傍にま
で順電流を沫し、半導体レーザ端面から被増幅光を注入
する方式が知られていた。
[Prior Art] As a conventional technique, a method has been known in which a forward current is applied to a semiconductor laser to near the oscillation threshold, and amplified light is injected from the end face of the semiconductor laser.

〔発明が解決しようとする課題] しかしながら、従来の光増幅は半導体レーザ端面から光
注入を行なうため、戻り光による被増幅光源への干渉が
生じてしまい、光アイソレークなどの特殊な部品を用い
なければならなかった。
[Problems to be Solved by the Invention] However, in conventional optical amplification, light is injected from the end facet of a semiconductor laser, which causes interference with the light source to be amplified by the returned light, and requires the use of special components such as optical isolators. I had to.

また、半導体レーザ端面に効率よく被増幅光を入射する
ためには半導体レーザ端面に無反射コートを施す必要が
あるが、この処置は同時に半導体レーザの発振閾値の増
加を伴なうため、自己発熱による動作の不安定性が生じ
てしまう。
In addition, in order to efficiently inject the amplified light into the semiconductor laser end face, it is necessary to apply an anti-reflection coating to the semiconductor laser end face, but this treatment also increases the oscillation threshold of the semiconductor laser, resulting in self-heating. This causes instability in operation.

そこで、本発明は従来のこのような問題点を解決するた
め、光アイソレータなどが不要となる光増幅を行なうこ
とにある。
Therefore, in order to solve these conventional problems, the present invention aims to perform optical amplification that does not require an optical isolator or the like.

〔課題を解決するための手段] 以上のような問題点を解決するため、本発明の光増幅器
は、 (1)半導体レーザに被増幅光を注入する光増幅器にお
いて、前記被増幅光が前記半導体レーザの光共振軸方向
とは異なる方向から前記半導体レーザの光利得媒体に注
入されること。
[Means for Solving the Problems] In order to solve the above problems, the optical amplifier of the present invention has the following features: (1) In an optical amplifier that injects light to be amplified into a semiconductor laser, the light to be amplified is injected into the semiconductor laser. Injection into the optical gain medium of the semiconductor laser from a direction different from the optical resonance axis direction of the laser.

(2)半導体し・−ザの光共振軸方向とは異なる方向か
ら前記半導体レーザの光利得媒体への光導波部を有する
こと。
(2) It has an optical waveguide section that connects the optical gain medium of the semiconductor laser from a direction different from the optical resonance axis direction of the semiconductor laser.

を特徴としている。It is characterized by

[実 施 例1 以下に本発明の実施例を図面にもとづいて説明する。[Implementation Example 1] Embodiments of the present invention will be described below based on the drawings.

(実施例−1) 本発明の第1の実施例として、面発光型の光増幅器につ
いて第1図を用いて説明する。
(Example 1) As a first example of the present invention, a surface-emitting optical amplifier will be described with reference to FIG.

第1図は、n−GaAs基板101にn−Al2o、s
 Gao、t Asクラッド層102、Ga、A s活
性層103、P−Al2o、x Gao、t Asクラ
ッド層104、P−Al2o、+ Gao、s Asキ
ャップ層106を液相成長法(LPE法)を用いて順次
積層した後、P−Al2o、+ Gao、s Asキャ
ップ層106をエツチングし、SiO□105を積層し
た後、n−GaAs基板101をエツチングし、電極1
07,109を蒸着したものに反射膜108を形成した
ものであるに こで、電極107は反射鏡も兼ね、反射膜108との間
で共振器を形成している。
FIG. 1 shows n-Al2o, s on an n-GaAs substrate 101.
A Gao, t As cladding layer 102, a Ga, As active layer 103, a P-Al2o, After sequentially laminating the P-Al2o, +Gao, and SAs cap layer 106, and layering the SiO□105, the n-GaAs substrate 101 is etched, and the electrode 1 is etched.
The electrode 107 also serves as a reflecting mirror and forms a resonator with the reflecting film 108.

そして、反射lit 08の反射率制御により、反射M
108側から光出力が得られるように設計を行なってい
る。
Then, by controlling the reflectance of the reflection lit 08, the reflection M
The design is such that optical output can be obtained from the 108 side.

また、紙面に示した面には低反射コート(反射率3%)
を施しである。
In addition, the surface shown in the paper is coated with a low reflection coating (3% reflectance).
is alms.

次に、この光増幅器の動作について説明する。Next, the operation of this optical amplifier will be explained.

電極109.107より発振閾値近傍に電流バイアスを
与λる。
A current bias is applied near the oscillation threshold from electrodes 109 and 107.

この状態で被増幅光110を入射すると、この光増幅素
子で光が増幅され、出射光111が得られる。
When the amplified light 110 is incident in this state, the light is amplified by this optical amplification element, and an output light 111 is obtained.

この光増幅では出射光111と被増幅光110とはまっ
たく独立した光束であるため、出射光111の被増幅光
源への戻り光は0.01%以下であり、光アイソレータ
などを必要とせずにすむ。
In this optical amplification, the emitted light 111 and the amplified light 110 are completely independent light fluxes, so the amount of light returned to the amplified light source of the emitted light 111 is less than 0.01%, and there is no need for an optical isolator. Finish.

また、入射面に低反射コートを施しても発振閾値などに
変化がないため、被増幅光110と光増幅器との結合を
密にとることができ、利得にして40dB (100倍
)が得られた。
Furthermore, even if a low-reflection coating is applied to the incident surface, there is no change in the oscillation threshold, etc., so the amplified light 110 can be closely coupled to the optical amplifier, and a gain of 40 dB (100 times) can be obtained. Ta.

(実施例−2) 本発明の第2の実施例として被増幅光を導くための光導
波路をもつ光増幅器について第2図を用いて説明する。
(Embodiment 2) As a second embodiment of the present invention, an optical amplifier having an optical waveguide for guiding light to be amplified will be described with reference to FIG.

第2図は、n−GaAs基板201を反応性イオンビー
ムエツチング(RIBE)法により1字状にエツチング
した後、n−A(2゜5Gao、yAsクラッド層20
2、GaAs活性層203、P−AQo、s Gao、
y Asクラッド層204、n−GaAsブロック層2
05をLPE法で形成した後、Zn拡散領域206を形
成した半導体レーザである。
FIG. 2 shows an n-GaAs substrate 201 etched into a single character shape by reactive ion beam etching (RIBE), and then etched with an n-A (2°5 Gao, yAs cladding layer 20).
2. GaAs active layer 203, P-AQo, s Gao,
y As cladding layer 204, n-GaAs block layer 2
This is a semiconductor laser in which a Zn diffusion region 206 is formed after forming 05 by the LPE method.

また、共振軸方向(出射光211と垂直な)共振面20
7には反射率95%、共振面209には10%の反射率
を得られるように非対称コートを施し、発振閾値の低減
と光利得の増加をはかっている。また、被増幅光210
の入射面208には3%の反射率(97%透過)のコー
ティングを施し、被増幅光210を効率よく入射させて
いる。
In addition, the resonance surface 20 in the resonance axis direction (perpendicular to the emitted light 211)
7 has a reflectance of 95%, and the resonant surface 209 is coated with an asymmetric coating to obtain a reflectance of 10%, thereby reducing the oscillation threshold and increasing the optical gain. In addition, the amplified light 210
The incident surface 208 of is coated with a 3% reflectance (97% transmission) to allow the amplified light 210 to enter efficiently.

ここで、この半導体レーザを発振閾値近傍に電流バイア
スすると、共振軸方向にはレーザ光が射出される。
Here, when this semiconductor laser is biased with current near the oscillation threshold, laser light is emitted in the direction of the resonance axis.

また、被増幅光210の入射径路は利得をもつ導波路と
なる。
Further, the incident path of the amplified light 210 becomes a waveguide having a gain.

ここで、被増幅光210を入射すると、導波路作用によ
りストライブ状の光利得部212に導かれ、光増幅が行
なわれる。
Here, when the to-be-amplified light 210 is incident, it is guided to a striped optical gain section 212 by a waveguide effect, and optical amplification is performed.

なお、実施例−1,2ではAj2GaAs系の化合物半
導体を用いた例で説明したが、これはもちろん他のII
I −V族、例久ばInP系のものを用いてもよい。
In addition, in Examples 1 and 2, an example using an Aj2GaAs-based compound semiconductor was explained, but this is of course applicable to other II
An I-V group, for example, an InP type material may be used.

また、光共振器部には分布帰還(DFB)構造や分布反
射(DBR)構造を用いてもよい。
Furthermore, a distributed feedback (DFB) structure or a distributed reflection (DBR) structure may be used in the optical resonator section.

[発明の効果] 本発明の光増幅器には以下に示すような効果な有する。[Effect of the invention] The optical amplifier of the present invention has the following effects.

(1)被増幅光と出力光が異なる光路をとるため、出力
光が被増幅光源にまわり込むことがない。
(1) Since the amplified light and the output light take different optical paths, the output light does not go around to the amplified light source.

そのため、半導体レーザなと戻り光に対して動作が不安
定になる光源を用いても安定した増幅が行な大、発長安
定性を特に要求される光通信等において極めて応用上重
要である。
Therefore, even if a light source such as a semiconductor laser whose operation is unstable due to the return light is used, stable amplification can be performed, and it is extremely important in applications such as optical communications where particularly high growth stability is required.

また、従来被増幅光を効率よく注入して利得をとろうと
すると、増幅用半導体レーザ自体の動作が外部光路との
干渉により動作特性が不安定になったが、本発明の光増
幅器ではだと^結合効率100%としても御坊増幅用半
導体レーザの動作には影響を及ぼさず、安定して高利得
を得ることができる。
In addition, when conventionally trying to obtain gain by efficiently injecting the light to be amplified, the operation characteristics of the amplifying semiconductor laser itself became unstable due to interference with the external optical path, but with the optical amplifier of the present invention, Even if the coupling efficiency is 100%, it does not affect the operation of the Gobo amplification semiconductor laser, and a high gain can be stably obtained.

また、光アイソレータを必要としないため、光学系が簡
素になり、モノリシック集積回路を構成することができ
る。
Furthermore, since no optical isolator is required, the optical system is simplified and a monolithic integrated circuit can be constructed.

また、個別部品で構成してたときには、低価格高信頼性
を得ることができる。
Furthermore, when it is composed of individual parts, low cost and high reliability can be obtained.

(It)半導体レーザの構造にかかわらず増幅動作がで
きる。
(It) Amplification operation is possible regardless of the structure of the semiconductor laser.

実施例−1で示したように1面発光型レーザ構造を用い
ても光増幅が行な^る。すると、基板表面から光出力を
取り出せるため、二次元集積化が容易であり、並列演算
回路の構造を得ることができ、画像認識等の応用分野で
は数十倍の演算速度を得ることができる。また、面発光
型であるため、端面発光型にしばしば生じる光学的損傷
(C00)が生じず、光増幅素子を駆動する電子回路が
極めて容易となる上、高信頼性が得られる。
As shown in Example 1, optical amplification can also be performed using a single surface emitting laser structure. Then, since the optical output can be taken out from the substrate surface, two-dimensional integration is easy and a parallel arithmetic circuit structure can be obtained, and in application fields such as image recognition, the arithmetic speed can be several tens of times faster. Furthermore, since it is a surface-emitting type, optical damage (C00) that often occurs in edge-emitting types does not occur, and the electronic circuit for driving the optical amplification element is extremely simple, and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例−1を説明するための面発光型
光増幅器の正面図である。 第2図は本発明の実施例−2を説明するための光増幅器
の斜視図である。 101− ・・n−GaAs基板 102−−− n−Afio、i Gao、v Asク
ラッド層 103・・・GaAs活性層 104 ・・・P  AAo、m Gao、t Asク
ラッド層 105・ ・ ・SiOx 106 ・−・P−Afio、+ Gao、e Asキ
ャップ層 107・・・電極 108・・・反射膜 109・・・電極 iio・・・被増幅光 111・・・出射光 201 = −・n−GaAs基板 202 ・・・n  AAa、z Gao、t Asク
ラッド層 203 ・−−GaAs活性層 204− ・−P−AQo、x Gao、t Asクラ
ッド層 205−−− n−GaAsブロック層206・・・Z
n拡散領域 207・・・共振面 208・・・入射面 209・・・共振面 210・・・被増幅光 211・・・出射光 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)71j /10
FIG. 1 is a front view of a surface-emitting optical amplifier for explaining Example 1 of the present invention. FIG. 2 is a perspective view of an optical amplifier for explaining Embodiment 2 of the present invention. 101-... n-GaAs substrate 102--- n-Afio, i Gao, v As cladding layer 103... GaAs active layer 104... P AAo, m Gao, t As cladding layer 105... SiOx 106・-・P-Afio, +Gao, e As cap layer 107...electrode 108...reflection film 109...electrode iio...amplified light 111...outgoing light 201 = -・n-GaAs Substrate 202... n AAa, z Gao, t As cladding layer 203 - - GaAs active layer 204 - - P-AQo, x Gao, t As cladding layer 205 - - n-GaAs block layer 206... Z
n diffusion region 207...resonance surface 208...incident surface 209...resonance surface 210...amplified light 211...outgoing light and above Applicant: Seiko Epson Co., Ltd. Agent Patent Attorney: Masa Homare Kamiyanagi ( 1 other person) 71j /10

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザに被増幅光を注入する光増幅器にお
いて、前記被増幅光が前記半導体レーザの光共振軸方向
とは異なる方向から前記半導体レーザの光利得媒体に注
入されることを特徴とする光増幅器。
(1) An optical amplifier that injects light to be amplified into a semiconductor laser, characterized in that the light to be amplified is injected into an optical gain medium of the semiconductor laser from a direction different from the optical resonance axis direction of the semiconductor laser. optical amplifier.
(2)半導体レーザの光共振軸方向とは異なる方向から
前記半導体レーザの光利得媒体への光導波部を有するこ
とを特徴とする請求項1記載の光増幅器。
(2) The optical amplifier according to claim 1, further comprising an optical waveguide portion extending from a direction different from the optical resonance axis direction of the semiconductor laser to the optical gain medium of the semiconductor laser.
JP9944488A 1988-04-22 1988-04-22 Optical amplifier Pending JPH01270379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9944488A JPH01270379A (en) 1988-04-22 1988-04-22 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9944488A JPH01270379A (en) 1988-04-22 1988-04-22 Optical amplifier

Publications (1)

Publication Number Publication Date
JPH01270379A true JPH01270379A (en) 1989-10-27

Family

ID=14247551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9944488A Pending JPH01270379A (en) 1988-04-22 1988-04-22 Optical amplifier

Country Status (1)

Country Link
JP (1) JPH01270379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013084A1 (en) * 1994-10-21 1996-05-02 Besse Pierre Andre Process for controlling saturation and non-linear effects in optical semiconductor amplifiers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013084A1 (en) * 1994-10-21 1996-05-02 Besse Pierre Andre Process for controlling saturation and non-linear effects in optical semiconductor amplifiers

Similar Documents

Publication Publication Date Title
US6768758B1 (en) Semiconductor laser, semiconductor optical amplifier, and production method thereof
US5400353A (en) Tapered semiconductor laser gain structure with cavity spoiling grooves
US6459715B1 (en) Master-oscillator grating coupled power amplifier with angled amplifier section
US6445724B2 (en) Master oscillator vertical emission laser
US5272711A (en) High-power semiconductor laser diode
KR100243417B1 (en) High power semiconductor laser with ridge waveguide structure
JPS5844785A (en) Semiconductor laser
CN1327582C (en) Semiconductor laser device and optical pickup apparatus using the same
JPH08330671A (en) Semiconductor optical element
US5555544A (en) Tapered semiconductor laser oscillator
JP2000269600A (en) High-power broad-band optical source and optical amplifier device
JPH01270379A (en) Optical amplifier
JPS63108788A (en) Optical integrated circuit
JP2555954B2 (en) Semiconductor laser
GB2298958A (en) Optical integrated semiconductor laser and waveguide
JP2781211B2 (en) Optical logic element
JPH05335691A (en) Light input type semiconductor laser
JPH03145179A (en) Traveling wave oscillation type semiconductor laser
JPH09199786A (en) Semiconductor laser
JP2002111129A (en) Semiconductor optical device
JP3154419B2 (en) Semiconductor optical amplifier
WO2000072450A2 (en) Master oscillator grating coupled power amplifier with angled amplifier section
JPS60263490A (en) Semiconductor laser device
JPS63276290A (en) Semiconductor laser and using method thereof
JPH05206567A (en) Semiconductor laser