JPH0127014B2 - - Google Patents

Info

Publication number
JPH0127014B2
JPH0127014B2 JP58143461A JP14346183A JPH0127014B2 JP H0127014 B2 JPH0127014 B2 JP H0127014B2 JP 58143461 A JP58143461 A JP 58143461A JP 14346183 A JP14346183 A JP 14346183A JP H0127014 B2 JPH0127014 B2 JP H0127014B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
cement
strength
cement mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58143461A
Other languages
Japanese (ja)
Other versions
JPS6032608A (en
Inventor
Akira Hama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Iron Works Ltd
Original Assignee
Kurimoto Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Iron Works Ltd filed Critical Kurimoto Iron Works Ltd
Priority to JP14346183A priority Critical patent/JPS6032608A/en
Publication of JPS6032608A publication Critical patent/JPS6032608A/en
Publication of JPH0127014B2 publication Critical patent/JPH0127014B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は繊維強化セメント成形品に係る。 従来ガラス繊維強化セメント(以下GRCとい
う)は、その曲げ強度、衝撃抵抗を飛躍的に改善
する効果が認められ、建材などへの適用が進めら
れその利用範囲は拡大しつつある。 この場合当初から問題となるのがセメントの強
アルカリ性によつてガラス繊維を侵食され、その
優れた特性が経時的劣化をもたらすことである。
耐アルカリ性を標榜している酸化ジルコニウム
(ZrO2)添加のガラス繊維で強化したGRCでさえ
も、屋外露出1000日によつてその曲げ強度(破壊
強度MOR)は当初の平均330Kg/cm2から平均220
Kg/cm2まで低下した実験報告がある。 この欠点を防ぐため、セメント材としてフライ
アツシユ、火山灰などの混和材を多配合する発明
(特公開昭57−156361)がある。しかし大量に該
混和材を配合することは、経年的劣化比率を改善
するが、当初の強度自体を大幅に抵下してGRC
の特徴を著しく損なうので必ずしも良策とはいい
難い。 一方補強用繊維としてガラス繊維の代りに合成
繊維を使用する試みも多くナイロン、ポリエステ
ル、ポリオレフイン等を経て、全芳香族ポリアミ
ド共重合体の報告がある(特開昭57−88050公
報)。当該合成繊維は高強度高ヤング率・耐アル
カリ性に優れセメントに補強用として使用される
のに適していると報告されている。しかしその実
施例の開示によれば、1.5デニールの単糸デニー
ル繊維を12.7m/mに切断した短繊維をポルトラ
ンドセメントスラリーと混合して成形体を作り、
放置硬化、養生した後の材力が、繊維充填比率2
%では引張強度98Kg/cm2曲げ強度290Kg/cm2に過
ぎず、同4%に至つて漸く引張強度143Kg/cm2
曲げ強度398Kg/cm2に達しGRCに肩を並べること
ができる。該繊維の比重はガラス繊維のほぼ半分
であるから、4%の重量比配合は、ガラス繊維の
8%配合と同様の容積関係に相当するが、実験室
上はをもかく、かかる大量の繊維を均等に分散配
合してセメント成形体の実用品、特に建材のよう
な薄板を経済的に製作することは非常な困難性を
伴なう。又、経済的にみても繊維の費用が嵩むか
ら原価を押上げる要因ともなる。 この発明は経時的に劣化するGRCの強度を補
填するため、より耐アルカリ性の優れた合成繊維
で一部置換し、しかも作業上、経済上最も妥当な
組合せと態様よりなる繊維補強セメント成形品を
提供することを目的とする。具体的に換言すれ
ば、優れた耐アルカリ性の合成繊維をできるだけ
低い配合比に抑えつつ、その特徴であるセメント
成形品の経時的繊維劣化を改善し、効果的に強度
を持続できるガラス繊維との組合せの条件を見出
す点が発明の技術的課題である。 本発明は前記の課題を解決するため耐アルカリ
性合成長繊維を織成してなる網体を、ガラス短繊
維入りセメントモルタル中に埋設して成形するこ
とを構成要件とする。即ち、該合成繊維を単糸と
してではなく長繊維を適当なフイラメント本数集
束したものを、織成して網体を製作してセメント
内に埋設することを構成要件の一とする。 次に前記セメントモルタル中に適当量のガラス
短繊維を均等分散して配合することを構成要件の
二とする。 以下に図面と図表に基いて、本願発明の実施例
を説明する。この実施例は特許請求範囲第2項及
び第3項を特定するための基礎実験をふくむ。 耐アルカリ合成繊維としては市販中又は試供を
うけた数種の繊維について基礎実験を加えた後、
帝人株式会社提供の芳香族ポリアミド共重合体
(商品名HM―50、以下この商品名により示す)
を採用した。HM―50繊維は1.500デニールのフ
イラメント1000本をロービング状態で提供され
た。このロービングをそのままの状態、及び二重
もしくは三重に重ね合わせて1cm角の格子を形成
するように縦横互い違いに織成して第1図に示す
ようなHM―50網体1を製作した。実験に供した
HM―50網体1を構成するHM―50繊維のフイラ
メント数及びセメントモルタルに対する重量比率
を第1表に掲げる。 対照として径13ミクロンの耐アルカリ性のガラ
ス繊維の長繊維を200本結束したストランド15束
を更に1m/m径に集束し、この集束を縦横互い
違いに織成してガラス繊維網2(外観上は第1図
と同じ)を製作した。基地となるセメントモルタ
ル3の配合は、普通ポルトランドセメントに対す
る重量パーセントとして砂を80%、水を30%、減
水剤を2%として通常手段でよく混練し、この混
練物を板状セメント成形用型枠にスプレー投射す
ると同時に径13ミクロンの耐アルカリ性のガラス
繊維を25mmの長さに切断しながら、このガラス短
繊維4を圧気によつてセメントモルタル3の中に
投射する。ガラス短繊維4の投射量はセメントモ
ルタル3に対する重量パーセントとして4%とな
るように設定した。 実験は、前記セメントモルタル3及びガラス短
繊維4を板状セメント成形用型枠の底面が被覆さ
れる程度に投射し、適当なローラーによつてその
表面を圧密転動して内部の気泡を取り除き、その
上にHM―50網体1又はガラス繊維網体2を表面
全体が被覆されるように載置し、網体を形成する
繊維の空隙に十分セメントモルタル3が含浸する
ようにローラーを圧転する。網体とセメントモル
タルが十分なじんだのを見極めて、残りのセメン
トモルタル3及びガラス短繊維4の一部をその上
に投射し、ローラー圧転による投射物の均整化と
脱泡を図り、これを数回繰返して交互に投射と圧
転を施して所定寸法に仕上げた。この実験の場合
には5m/mの厚さ、縦横1mの平板に仕上げ通常
の養生手段によつて第2図に示すような繊維強化
セメント成形品を製作した。
The present invention relates to fiber-reinforced cement molded articles. Conventional glass fiber reinforced cement (hereinafter referred to as GRC) has been recognized for its ability to dramatically improve its bending strength and impact resistance, and its application to building materials is progressing and its range of use is expanding. In this case, the problem from the beginning was that the strong alkalinity of cement eroded the glass fibers, causing their excellent properties to deteriorate over time.
Even with GRC reinforced with zirconium oxide (ZrO 2 )-added glass fiber, which claims to be alkali resistant, its bending strength (rupture strength MOR) decreases from an initial average of 330 kg/cm 2 after 1000 days of outdoor exposure. 220
There is an experimental report in which it decreased to Kg/ cm2 . In order to prevent this drawback, there is an invention (Japanese Patent Publication No. 57-156361) of blending a large amount of admixtures such as fly ash and volcanic ash as a cement material. However, blending a large amount of this admixture improves the rate of deterioration over time, but it greatly reduces the initial strength itself and causes GRC
This is not necessarily a good idea as it significantly impairs the characteristics of the system. On the other hand, there have been many attempts to use synthetic fibers instead of glass fibers as reinforcing fibers, including nylon, polyester, and polyolefin, and there have been reports of fully aromatic polyamide copolymers (Japanese Unexamined Patent Publication No. 57-88050). It has been reported that the synthetic fiber has high strength, high Young's modulus, and excellent alkali resistance, and is suitable for use as reinforcement for cement. However, according to the disclosure of the embodiment, short fibers of 1.5 denier single denier fibers cut into 12.7 m/m are mixed with Portland cement slurry to make a molded body,
The strength of the material after being left to harden and cure is the fiber filling ratio of 2.
%, the tensile strength is only 98Kg/cm 2 , and the bending strength is only 290Kg/cm 2 , and when it reaches 4%, the tensile strength is 143Kg/cm 2 ,
It reaches a bending strength of 398Kg/cm 2 and is on par with GRC. Since the specific gravity of the fiber is approximately half that of glass fiber, a weight ratio of 4% corresponds to a volume relationship similar to that of an 8% glass fiber. It is extremely difficult to economically produce practical cement molded products, especially thin plates such as building materials, by uniformly dispersing and blending. Moreover, from an economic point of view, the increased cost of fibers also causes an increase in the cost of production. In order to compensate for the strength of GRC that deteriorates over time, this invention partially replaces it with synthetic fibers that have better alkali resistance, and creates fiber-reinforced cement molded products that have the most appropriate combinations and configurations from an operational and economic point of view. The purpose is to provide. In other words, while keeping the blending ratio of synthetic fibers with excellent alkali resistance to as low as possible, we can improve the fiber deterioration over time of cement molded products, which is a characteristic of synthetic fibers, and combine them with glass fibers, which can effectively maintain strength. The technical problem of the invention is to find conditions for the combination. In order to solve the above-mentioned problems, the present invention is characterized in that a net formed by weaving alkali-resistant synthetic fibers is embedded and molded in cement mortar containing short glass fibers. That is, one of the constituent requirements is that the synthetic fibers are not made into single yarns, but long fibers are bundled into an appropriate number of filaments, woven to form a net, and then buried in cement. Next, the second constituent requirement is to uniformly disperse and blend an appropriate amount of short glass fibers into the cement mortar. Embodiments of the present invention will be described below based on drawings and charts. This example includes basic experiments for specifying claims 2 and 3. After conducting basic experiments on several types of alkali-resistant synthetic fibers that are commercially available or sampled,
Aromatic polyamide copolymer provided by Teijin Limited (product name HM-50, hereinafter referred to as this product name)
It was adopted. The HM-50 fiber was provided in rovings of 1000 filaments of 1.500 denier. The HM-50 mesh body 1 as shown in FIG. 1 was manufactured by weaving the rovings as they were, or by overlapping them in double or triple layers to form a lattice of 1 cm square in alternating vertical and horizontal directions. subjected to experiment
Table 1 lists the number of filaments of HM-50 fibers constituting HM-50 net 1 and the weight ratio to cement mortar. As a control, 15 strands of 200 long fibers of alkali-resistant glass fibers with a diameter of 13 microns were further bundled to a diameter of 1 m/m, and the bundles were woven vertically and horizontally alternately to form a glass fiber network 2 (in appearance, the first (same as the figure) was manufactured. The composition of cement mortar 3, which is the base, is 80% sand, 30% water, and 2% water reducer by weight relative to ordinary Portland cement, and the mixture is well kneaded by normal means, and this kneaded mixture is molded into a mold for forming plate-shaped cement. At the same time as spraying onto the frame, alkali-resistant glass fibers having a diameter of 13 microns are cut into a length of 25 mm, and the short glass fibers 4 are sprayed into the cement mortar 3 using pressurized air. The amount of the short glass fibers 4 to be sprayed was set to be 4% by weight relative to the cement mortar 3. In the experiment, the cement mortar 3 and short glass fibers 4 were projected to the extent that the bottom surface of a plate-shaped cement molding mold was covered, and the surface was compacted and rolled using an appropriate roller to remove air bubbles inside. Place the HM-50 net 1 or the glass fiber net 2 on top of it so that the entire surface is covered, and apply pressure with a roller so that the cement mortar 3 is sufficiently impregnated into the voids of the fibers forming the net. Turn around. After determining that the net and the cement mortar have sufficiently blended together, the remaining cement mortar 3 and a portion of the short glass fibers 4 are projected onto it, and the projecting material is leveled and defoamed by rolling with rollers. This process was repeated several times to alternately perform projection and rolling to obtain the desired dimensions. In the case of this experiment, a fiber-reinforced cement molded product as shown in Fig. 2 was made into a flat plate with a thickness of 5 m/m and a length and width of 1 m, and was then cured using conventional methods.

【表】【table】

【表】 ガラス繊維網体2は集束数15束、フイラメント
数3000本、板厚5m/mのGRCに対して重量比と
して2%を採用しているのはガラス短繊維とガラ
ス長繊維網体の組合せに係る考案で好成績を示し
た出願人の実施例を踏襲するためである。(実開
昭54−143872公報) HF―50繊維はガラス繊維のほぼ半分の比重を
有するから対セメントモルタル3に対して同じ
3000本フイラメントを上限として設定したのでガ
ラス繊維網体に比べセメントモルタルに対し同一
容量比であるが、重量比でいえば半分の1%が上
限となる。更にHM―50の発明を開示した特開昭
57−88050公報において「本発明の繊維補強セメ
ント成形体に用いられるセメントスラリーと繊維
との比率は……好ましくは1〜8重量%である」
旨の記述があるが、本願発明は特殊な使用態様に
よつて、むしろ1重量%以下のHM―50配合によ
つて最大の技術効果を収める点に特徴を見出そう
とする意図がある。以上二点がHM―50の配合比
の上限をセメントモルタルの重量比1%においた
理由である。 尚、本実施例の他に、セメントモルタル3にあ
らかじめガラス短繊維4を相当量混合しておい
て、板状セメント成形用型枠へ同時に投入するプ
レミツクス法でも実施可能なことは言うまでもな
い。 以上ABCDEの各試験板から長さ25cm、幅5cm
の試験片を切り出し、支持スパン20cm、中央集中
荷重方式によつて曲げ応力測定を行つた。 第2表は各試験片5本の破壊強度(MOR)及
び弾性比例限界強度(LOP)の最高値、最低値、
平均値を示す。 第3図はその結果をグラフにおいて示したもの
である。
[Table] For the glass fiber net 2, the number of bundles is 15, the number of filaments is 3000, and the weight ratio of 2% for GRC with a plate thickness of 5 m/m is adopted for short glass fibers and long glass fiber nets. This is to follow the example of the applicant who has shown good results with a device related to the combination of the following. (Japanese Utility Model Publication No. 54-143872) Since HF-50 fiber has approximately half the specific gravity of glass fiber, it has the same density as cement mortar 3.
Since the upper limit is set at 3000 filaments, it has the same capacity ratio as cement mortar compared to the glass fiber network, but in terms of weight ratio, the upper limit is half that, 1%. Furthermore, JP-A-Sho disclosed the invention of HM-50.
57-88050, ``The ratio of the cement slurry to the fibers used in the fiber-reinforced cement molded article of the present invention is preferably 1 to 8% by weight.''
Although there is a description to that effect, the present invention is intended to be characterized in that the maximum technical effect can be achieved by a special usage mode, or rather, by incorporating HM-50 in an amount of 1% by weight or less. The above two points are the reasons why the upper limit of the blending ratio of HM-50 was set at 1% by weight of cement mortar. In addition to this embodiment, it goes without saying that a premix method can also be used in which a considerable amount of short glass fibers 4 are mixed in advance with the cement mortar 3 and the mixture is simultaneously introduced into a formwork for molding plate-shaped cement. The length is 25cm and the width is 5cm from each ABCDE test board.
A test piece was cut out, and the bending stress was measured using a centrally concentrated loading method with a support span of 20 cm. Table 2 shows the maximum and minimum values of the breaking strength (MOR) and elastic proportional limit strength (LOP) of each of the five test specimens.
Shows the average value. FIG. 3 shows the results in a graph.

【表】 次に実験の第二手段として強度の経時的劣化を
測定した。20年に及ぶ長年月の劣化を現実に測定
することは困難であるから、70℃に保持した恒温
湯に浸漬して所定日数放置し、その後引揚げて自
然乾燥1週間後に曲げ応力測定試験を行つて代替
した。恒温湯中の浸漬日数と劣化相当年数との関
係は第3表に示す。
[Table] Next, as a second means of experiment, we measured the deterioration of strength over time. Since it is difficult to actually measure deterioration over a period of 20 years, it is immersed in constant-temperature water maintained at 70℃ and left for a specified number of days, then taken out and air-dried for one week before being subjected to a bending stress measurement test. I went and replaced it. Table 3 shows the relationship between the number of days immersed in constant temperature hot water and the number of years equivalent to deterioration.

【表】 HM―50配合の試験片の内、最もその配合比の
低い試験記号Cと、ガラス繊維系の試験記号A及
びBの三点を実験の対象とした。HM―50配合の
下限に相当する試験片の結果がでれば、それ以上
高配合の試験片については実験するまでもなくア
ルカリ性による経時的劣化を改善することが明ら
かであるからである。第3図にその実験の結果を
グラフによつて示す。 この発明は上記の実施例によつて説明したよう
な構成を有するから、第3図及び第4図の実験結
果が示すような性質を示す。 即ち、まづ養生後直後の強度については、ガラ
ス短繊維のみの試験片Aに比べて僅々0.33重量%
に相当するHM―50網体を埋設しただけで曲げ応
力強度は平均50〜55Kg/cm2向上する。HM―50の
網体の格子を形成する1cm角の空間部分を通じて
セメントモルタルは貫流自在に遊動して密接なモ
ルタル層を一体形成し、HM―50網体を構成する
繊維集束体に対しても表面からセメントモルタル
が含浸して微細な繊維と繊維の空隙間を充填して
一体強固な接着層となり、HM―50を強力に捉え
て容易に分離できない複合体を構成する。HM―
50の重量%を増加してHM―50網体をより強固に
する程、これを埋設したセメント成形品の強度は
ほぼ比例的に増加して0.66重量%に至つて同容量
配合のガラス繊維網体の強度を越えることが明ら
かとなつた。HM―50網体を1重量%以上に配合
して実験すれば或ピークまでは更に強度は増え続
けるであろうが、この発明の目的に鑑み、1重量
%迄に限つたのは既述の通りである。 次に実験の第二段階においてこの発明の主たる
目的である経時的強度劣化に対するHM―50網体
の性質が明確に示される。即ち物理的性質の内弾
性比例限界強度(LOP)は、経時と共に中和反
応がすすみ炭酸カルシユーム等の生成によりセメ
ントマトリツクスが緻密になるため上昇する。
HM―50網体入りのものはHM―50が劣化しない
ためガラス繊維のみのものよりLOPの上昇傾向
は大きくなる。 しかしそれ以上顕著な相違は破壊強度
(MOR)について見られ、試験記号Cはほぼ安
定した一定水準を維持しているのとは対照的に、
ガラス繊維網2を埋設する試験記号Bも、単にガ
ラス短繊維のみ分散したAも劣化相当年数5年で
早くも大幅な減小を示し、過去の報告を裏付ける
結果となつている。 この発明は以上の実験からも明らかなように、
ガラス短繊維を均等分散した公知のセメントモル
タルに耐アルカリ性に優れた合成繊維、特に全芳
香族ポリアミド共重合体を化学成分とする公知の
繊維を、織成して網体を形成し前記セメントモル
タルに埋設することによつて、両公知技術からは
当業者が容易に想到し難い顕著、非自明の技術的
効果を得ることができる。即ち芳香族ポリアミド
共重合体については発明者自身の実験によつて推
せんする「好ましき配合範囲」から外れた低水準
の範囲にありながら網体埋設という手段を構じて
飛躍的に強度を向上することができたこと、共存
関係にあるガラス短繊維による強化作用を利用し
つつ、経時的劣化についてはガラス短繊維の欠点
を補填して全く劣化しないセメント成形品を提供
することができたことが発明の効果である。 一方、この範囲の配合比率であれば合成繊維の
原材料費の占める割合が著しく低いため原価を圧
迫する要素が取除かれるし、効果的な網体埋設と
いう配合方法は多量の最短繊維を非結束でセメン
トモルタルに分布させる作業の困難さを救済する
効果もある。
[Table] Among the test specimens containing HM-50, three test samples were used: test code C, which had the lowest blending ratio, and glass fiber test codes A and B. This is because once results are obtained for a test piece that corresponds to the lower limit of the HM-50 content, it is clear that deterioration over time due to alkalinity will be improved for test pieces with a higher content without the need for experimentation. FIG. 3 shows the results of the experiment graphically. Since this invention has the configuration as explained in the above embodiment, it exhibits properties as shown in the experimental results shown in FIGS. 3 and 4. In other words, the strength immediately after curing is only 0.33% by weight compared to test specimen A made of only short glass fibers.
The bending stress strength increases by an average of 50 to 55 kg/cm 2 simply by burying an HM-50 net corresponding to the above. Cement mortar flows freely through the 1 cm square spaces that form the lattice of the HM-50 mesh, forming a close-knit mortar layer, and also against the fiber bundles that make up the HM-50 mesh. Cement mortar is impregnated from the surface and fills the voids between the fine fibers, forming a solid adhesive layer that strongly grips HM-50 and forms a composite that cannot be easily separated. HM―
As the HM-50 mesh is made stronger by increasing the weight of 50%, the strength of the cement molded product embedded with it increases almost proportionally, reaching 0.66% by weight compared to the glass fiber mesh with the same content. It has become clear that the strength exceeds the strength of the body. If an experiment was carried out with HM-50 network mixed at 1% by weight or more, the strength would continue to increase until a certain peak, but as stated above, in view of the purpose of this invention, the content was limited to 1% by weight. It is. Next, in the second stage of the experiment, the properties of the HM-50 mesh against strength deterioration over time, which is the main purpose of this invention, are clearly demonstrated. That is, the internal elastic proportional limit strength (LOP), which is a physical property, increases over time because the neutralization reaction progresses and the cement matrix becomes denser due to the production of calcium carbonate and the like.
Since HM-50 does not deteriorate with HM-50 mesh, the LOP tends to increase more than with glass fiber only. However, a more significant difference is seen in the strength of failure (MOR), where test symbol C maintains a nearly stable constant level, whereas
Both test symbol B, in which the glass fiber net 2 was buried, and test symbol A, in which only short glass fibers were simply dispersed, showed a significant decrease as early as five years, which is the equivalent number of years of deterioration, and the results support past reports. As is clear from the above experiments, this invention
Synthetic fibers with excellent alkali resistance, especially known fibers whose chemical component is a wholly aromatic polyamide copolymer, are woven into a known cement mortar in which short glass fibers are uniformly dispersed to form a network, which is then embedded in the cement mortar. By doing so, it is possible to obtain remarkable and non-obvious technical effects that are difficult for a person skilled in the art to easily imagine from both known techniques. In other words, although the aromatic polyamide copolymer is at a low level outside the "preferred blending range" recommended by the inventor's own experiments, it has been dramatically improved in strength by embedding it in a net. By utilizing the reinforcing effect of the coexisting short glass fibers, we were able to compensate for the shortcomings of short glass fibers and provide a cement molded product that does not deteriorate at all over time. This is the effect of the invention. On the other hand, if the blending ratio is within this range, the proportion of raw material costs for synthetic fibers will be extremely low, which will eliminate the factors that put pressure on the cost, and the effective blending method of burying a net will allow a large amount of the shortest fibers to be unbound. It also has the effect of relieving the difficulty of distributing it into cement mortar.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は網体の斜視図、第2図は繊維補強セメ
ント形成品の一部切截した斜視図、第3図、第4
図は実験結果を示す図表である。 1…HM―50網体、2…ガラス繊維網体、3…
セメントモルタル、4…ガラス短繊維、5…繊維
補強セメント形成品。
Figure 1 is a perspective view of the mesh body, Figure 2 is a partially cutaway perspective view of the fiber-reinforced cement product, Figures 3 and 4.
The figure is a chart showing the experimental results. 1...HM-50 net, 2...Glass fiber net, 3...
Cement mortar, 4... short glass fibers, 5... fiber reinforced cement formed product.

Claims (1)

【特許請求の範囲】 1 耐アルカリ性合成長繊維を織成してなる網体
を、耐アルカリ性ガラス短繊維をふくむセメント
モルタル中に埋設することを特徴とする繊維補強
セメント成形品。 2 前記耐アルカリ性合成長繊維は、芳香族ポリ
アミド共重合体よりなる特許請求の範囲第1項記
載の繊維補強セメント成形品。 3 前記芳香族ポリアミド共重合体よりなる繊維
を、セメントモルタルに対し重量%で0.3%以上
1%以下の範囲で配合する特許請求の範囲第2項
記載の繊維補強セメント成形品。
[Scope of Claims] 1. A fiber-reinforced cement molded product characterized by embedding a net made of woven alkali-resistant synthetic fibers in cement mortar containing alkali-resistant short glass fibers. 2. The fiber-reinforced cement molded article according to claim 1, wherein the alkali-resistant synthetic fibers are made of an aromatic polyamide copolymer. 3. The fiber-reinforced cement molded product according to claim 2, wherein the fibers made of the aromatic polyamide copolymer are blended in an amount of 0.3% to 1% by weight based on the cement mortar.
JP14346183A 1983-08-04 1983-08-04 Fiber reinforced cement molding Granted JPS6032608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14346183A JPS6032608A (en) 1983-08-04 1983-08-04 Fiber reinforced cement molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14346183A JPS6032608A (en) 1983-08-04 1983-08-04 Fiber reinforced cement molding

Publications (2)

Publication Number Publication Date
JPS6032608A JPS6032608A (en) 1985-02-19
JPH0127014B2 true JPH0127014B2 (en) 1989-05-26

Family

ID=15339239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14346183A Granted JPS6032608A (en) 1983-08-04 1983-08-04 Fiber reinforced cement molding

Country Status (1)

Country Link
JP (1) JPS6032608A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134548A (en) * 1986-11-21 1988-06-07 旭硝子株式会社 High strength cement product
JP2516228B2 (en) * 1987-12-12 1996-07-24 株式会社竹中工務店 Reinforcement structure of inorganic board
JPH0726343Y2 (en) * 1988-12-12 1995-06-14 東レ株式会社 Carbon fiber reinforced inorganic board
US5961900A (en) * 1992-10-10 1999-10-05 Wedi; Helmut Method of manufacturing composite board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104918A (en) * 1973-02-03 1974-10-04
JPS5788050A (en) * 1980-11-18 1982-06-01 Teijin Ltd Fiber reinforced cement moldings

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174045U (en) * 1981-04-28 1982-11-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104918A (en) * 1973-02-03 1974-10-04
JPS5788050A (en) * 1980-11-18 1982-06-01 Teijin Ltd Fiber reinforced cement moldings

Also Published As

Publication number Publication date
JPS6032608A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
CA1104436A (en) Manufacture of articles made from a water-hardenable mass and a reinforcing element
Majumdar et al. Glass fibre reinforced cement
US3591395A (en) Hydraulic cementitious compositions reinforced with fibrillated plastic film
JP4562988B2 (en) Structural cladding panel
Tolêdo Filho et al. The use of sisal fibre as reinforcement in cement based composites
US4053677A (en) Light concrete monolithic slab
KR20010034589A (en) Fiber Reinforced Building Materials
EP2650125B1 (en) Fiber reinforced cementitious material and uses thereof
WO2001066485A2 (en) Lightweight cementitious building material
GB2187446A (en) Concrete components
CS203045B2 (en) Thermal and sound insulating concretes
US4021258A (en) Concrete structure and method of preparing same
JPH0127014B2 (en)
KR101569273B1 (en) Reinforcing concrete composition comprising fiber using by waste fish net for and method for producing the same
US3466822A (en) Self-healing reinforced concrete structures and process for the preparation thereof
US4465719A (en) Lightweight concrete and structural element incorporating same
CA1046304A (en) Concrete structures and method of preparing same
US6797370B1 (en) Thin-walled component made from hydraulically hardened cement paste material and method for the production thereof
EP1341976B1 (en) Reinforcement fiber bundle and production method of such reinforcement fiber bundle
Thomas Fibre composites as construction materials
DE2322271A1 (en) PROCESS FOR MECHANICAL STRENGTHENING OF MOLDABLE AND / OR HARDENABLE MASSES
Filho et al. The use of sisal fibre as reinforcement in cement based composites
JPS60215559A (en) Fiber for cement mortar or concrete reinforcement and product therefrom
US20080127863A1 (en) Flexible concrete compositions and methods for manufacturing them
WO2001000921A1 (en) Multilayer cementitious structure