JPH01269222A - Magnetic disk and production thereof - Google Patents

Magnetic disk and production thereof

Info

Publication number
JPH01269222A
JPH01269222A JP9550988A JP9550988A JPH01269222A JP H01269222 A JPH01269222 A JP H01269222A JP 9550988 A JP9550988 A JP 9550988A JP 9550988 A JP9550988 A JP 9550988A JP H01269222 A JPH01269222 A JP H01269222A
Authority
JP
Japan
Prior art keywords
magnetic disk
magnetic
layer
disk according
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9550988A
Other languages
Japanese (ja)
Inventor
Makoto Kito
鬼頭 諒
Yuichi Kokado
雄一 小角
Makiko Ito
伊藤 真貴子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9550988A priority Critical patent/JPH01269222A/en
Publication of JPH01269222A publication Critical patent/JPH01269222A/en
Priority to US07/755,589 priority patent/US5275850A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the infiltration of moisture into a magnetic layer in the state of high humidity than with an amorphous carbide film and to improve the wear resistant and corrosion resistant characteristics of the magnetic disk by forming the magnetic layer on the substrate of the magnetic disk and forming the amorphous carbon fluoride film by a bias CVD method on the magnetic layer. CONSTITUTION:The thin magnetic metallic film layer 2 is coated on the substrate 1 of the magnetic disk 1 and the amorphous carbon fluoride film formed by the bias CVD method is coated as a protective layer 3 on the magnetic layer 2. A lubricating layer 4 consisting of a liquid lubricating agent of a perfluoroalkyl system is further coated at need on the protective layer 3 consisting of the amorphous carbon fluoride film. The infiltration of the moisture in the magnetic layer in the state of high humidity than with the amorphous carbide film is prevented by formation of the amorphous carbon fluoride film formed by the bias CVD method, by which the wear resistance and corrosion resistance are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク1こ係り、特に磁気ディスクに好
適な保護層lこ関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic disk, and particularly to a protective layer suitable for a magnetic disk.

〔従来の技術〕[Conventional technology]

一般に記録再生磁気ヘッド(以下ヘッドと呼ぶ)1と磁
気記録媒体で構成する磁気記録装置の記録再生方法には
次のような方法がある。すなわち操作開始前にヘッドと
磁気記録媒体面とを接触状態でセットした後、磁気記録
媒体に回転を与えることによりヘッドと磁気記録媒体面
との間に空気層のギャップを作り、この状態で記録再生
する方法である(コンタクト・スタート・ストップ方式
。以下C8Sと呼ぶ)。C8Sでは、磁気記録媒体の回
転開始時・回転停止時にヘッドと磁気記録媒体面は接触
・摩擦状態となる。
In general, there are the following methods for recording and reproducing a magnetic recording device comprising a recording/reproducing magnetic head (hereinafter referred to as a head) 1 and a magnetic recording medium. That is, before starting the operation, the head and the magnetic recording medium surface are set in contact, and then an air gap is created between the head and the magnetic recording medium surface by giving rotation to the magnetic recording medium, and recording is performed in this state. This is a reproduction method (contact start/stop method, hereinafter referred to as C8S). In C8S, the head and the magnetic recording medium surface come into contact and friction when the magnetic recording medium starts rotating and stops rotating.

この接触摩擦状態におけるヘッドと磁気記録媒体との間
に生ずる接触摩擦力はヘッドおよび磁気記録媒体を摩耗
させ、ついにはヘッドおよび磁性媒体に傷を生じせしめ
、いわゆるヘッドクラッシュに至る。また、上記接触摩
擦状態においてヘッドのわずかな姿勢の変化がヘッドに
かかる荷重を不拘一番こさせ、ヘッドおよび磁気記録媒
体面屹傷をつける場合もある。また、磁性媒体がCo−
Ni。
The contact friction force generated between the head and the magnetic recording medium in this contact friction state wears out the head and the magnetic recording medium, and eventually causes scratches on the head and the magnetic medium, resulting in a so-called head crash. Further, in the above-mentioned contact friction state, a slight change in the posture of the head causes an unrestricted load to be applied to the head, which may cause scratches on the surface of the head and the magnetic recording medium. Moreover, the magnetic medium is Co-
Ni.

co−Ni−Cr、 Co−Ni−Pなどの金属媒体の
場合高湿度条件lこおいて腐蝕を生じる。この摩耗や腐
蝕を防ぐために、IEEB TRANSACTION 
on MAGNETIC3,voL。
In the case of metal media such as co-Ni-Cr and Co-Ni-P, corrosion occurs under high humidity conditions. To prevent this wear and corrosion, IEEB TRANSACTION
on MAGNETIC3, vol.

MAG−17,No、 4. JULY 1981″D
ATAPOINT THINFILMMEDIAN l
こ示されているグラファイトのスパッタ膜や特公昭60
−28053に示されているポリ珪酸被膜を磁性媒体の
上に形成する方法が考案されている。
MAG-17, No. 4. JULY 1981″D
ATAPOINT THINFILMMEDIAN l
The sputtered graphite film shown here and the 1980s
A method of forming a polysilicate film on a magnetic medium as shown in No. 28053 has been devised.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したいづれの公知例も十分な耐摩耗性や防蝕性を有
していない。そこで新たに炭化水素のバイアスCVDで
硬質な炭素膜を形成し保護膜として形成する方法が考案
されている。この方法を用いると耐摩耗性や防蝕性が改
善され、とくに耐摩耗性は大巾に改善される。しかしな
がら、防蝕性についてはまだ不十分でありさらに一層の
改良が必要である。
None of the above-mentioned known examples have sufficient wear resistance or corrosion resistance. Therefore, a new method has been devised in which a hard carbon film is formed as a protective film by bias CVD of hydrocarbons. When this method is used, abrasion resistance and corrosion resistance are improved, and in particular, abrasion resistance is greatly improved. However, the corrosion resistance is still insufficient and further improvement is required.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は基体上に磁性層が形成され、該磁性
層上にアモルファスフッ化炭素膜とくにバイアスCVD
法により形成されたアモルファスフッ化炭素膜が形成さ
れていることを特徴とする磁気ディスク及びその製造方
法を提供するものである。
That is, in the present invention, a magnetic layer is formed on a substrate, and an amorphous fluorocarbon film, particularly a bias CVD film, is formed on the magnetic layer.
The present invention provides a magnetic disk characterized in that it has an amorphous fluorocarbon film formed by a method, and a method for manufacturing the same.

〔作用〕[Effect]

本発明に係るアモルファスフッ化炭素膜を有する磁気デ
ィスクが耐食性にすぐれていることは後に述べる実施例
で示すが、アモルファスフッ化炭素膜はアモルファス炭
素膜よりも撥水性で表面エネルギーが小さいことが高湿
状態において水分の侵入を防ぎ耐食性を良好にしている
と考えられる。
The fact that the magnetic disk having the amorphous fluorocarbon film according to the present invention has excellent corrosion resistance will be shown in the examples described later. It is thought that this prevents moisture from entering in wet conditions and improves corrosion resistance.

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

図は本発明の磁気ディスクの断面図で基板1はアルミ合
金又はポリエステル、ポリイミドなどのプラスチックス
又は窒化ケイ素、炭化ケイ素などのセラミックス又はス
テンレス、チタン合金などの金属又はガラス板である。
The figure is a sectional view of the magnetic disk of the present invention, and the substrate 1 is made of aluminum alloy, plastic such as polyester or polyimide, ceramic such as silicon nitride or silicon carbide, metal such as stainless steel or titanium alloy, or a glass plate.

次にこの基板1の上に金属薄膜磁性層2としてCo−N
i、 Co−Ni−P、 Co−Ni−Cr、 Co−
Pt、 Co−rNi−Pt。
Next, on this substrate 1, a metal thin film magnetic layer 2 is formed of Co-N.
i, Co-Ni-P, Co-Ni-Cr, Co-
Pt, Co-rNi-Pt.

Co−Ni−Mo、 Co−V 等の金属を被覆する。Coating with metal such as Co-Ni-Mo, Co-V, etc.

次に該金属薄膜磁性層2の上に保護層3としてバイアス
CVD法形で形成したアモルファスふつ化炭素膜を被覆
する。本発明に用いられるアモルファスふつ化炭素膜は
硬質で少くともビッカース硬度1500以上であり通常
ビッカース硬度2000〜5000の範囲にある。この
膜はバイアスCVDによって得られるもので蒸着、スパ
ッタリング、バイアスのないCVDなど他の方法では得
ることが出来ない。ここで述べるバイアスとは基板に向
っての電圧降下が100〜IKVのことを意味し、DC
放電において基板に負の電圧をかけたり、低周波、ラジ
オ波、交流電圧を基板に印加し基板側に自己バイアスを
生じさせることによって実現することができる。アモル
ファスフッ化炭素膜中のフッ素ト炭素の比は、フッ素が
多い程耐蝕性は向上するが、あまり多くなると硬度が低
下し耐摩耗性が低下する。したがってフッ素は炭素と等
モルないしそれ以下にする必要がある。本フッ化炭素膜
を形成するには、CF4  CHsF+CHF5 Ic
!F6 +c2H,Ft +CaFa +C3H!F6
1c4F8104F10などのガス又はこれのガスとC
へ+ Cx Hs + Cs八、C5Hto などの混
合ガスを用いることが適している。
Next, the metal thin film magnetic layer 2 is coated with an amorphous carbon fluoride film formed by a bias CVD method as a protective layer 3. The amorphous carbon fluoride film used in the present invention is hard and has a Vickers hardness of at least 1500 or more, and usually has a Vickers hardness in the range of 2000 to 5000. This film is obtained by bias CVD and cannot be obtained by other methods such as evaporation, sputtering, or CVD without bias. The bias mentioned here means a voltage drop of 100 to IKV towards the substrate, and the DC
This can be achieved by applying a negative voltage to the substrate during discharge, or by applying low frequency, radio waves, or alternating current voltage to the substrate to generate a self-bias on the substrate side. Regarding the ratio of fluorocarbon in the amorphous fluorocarbon film, the more fluorine there is, the better the corrosion resistance will be, but if it is too much, the hardness will be lowered and the wear resistance will be lowered. Therefore, the amount of fluorine must be equal to or less than that of carbon. To form this fluorocarbon film, CF4 CHsF + CHF5 Ic
! F6 +c2H, Ft +CaFa +C3H! F6
Gas such as 1c4F8104F10 or this gas and C
It is suitable to use a mixed gas such as H+CxHs+Cs8, C5Hto, or the like.

さらに必要に応じてアモルファスふつ化炭素膜上にパー
フルオロアルキル系の液体潤滑剤を被覆することができ
る。これらはデュポン社よりタライトックス、モンテフ
ロス社よりホンプリンの商標で市販されている。
Furthermore, a perfluoroalkyl liquid lubricant can be coated on the amorphous carbon fluoride film if necessary. These are commercially available under the trademarks Talytox from DuPont and Honprin from Montefros.

次に実施例により本発明を説明する。Next, the present invention will be explained with reference to examples.

(実施例1) アルミ合金の上に下地層としてNi−P  めっき膜が
被覆され、表面粗さ0.005μm に仕上げされた基
板1の上に金属薄膜磁性層2としてCo−Ni合金を0
.06μmスパッタリングで形成した。次にCKガス8
00F、ガス20の割合で混合したガスを用いてガス圧
50 mTorr、  RF放電電力500 Wの条件
下での自己バイアスCVD法で形成したアモルファスふ
つ化炭素膜の保護膜3を0.05μmの厚さに被覆し、
磁気ディスクを製作した。
(Example 1) A Co-Ni alloy was coated as a metal thin film magnetic layer 2 on a substrate 1 which was coated with a Ni-P plating film as an underlayer on an aluminum alloy and finished to a surface roughness of 0.005 μm.
.. It was formed by sputtering with a thickness of 0.06 μm. Next, CK gas 8
A protective film 3 of an amorphous carbon fluoride film was formed by a self-bias CVD method using a gas mixture of 00F and 20% gas at a gas pressure of 50 mTorr and an RF discharge power of 500 W to a thickness of 0.05 μm. covered with
Manufactured magnetic disks.

(実施例2) 実施例1と同様にして、但し金属薄膜磁性層としてめっ
き法によってCo−Ni−P合金を0.5μmの厚さに
被覆し、磁気ディスクを裏作した。
(Example 2) A magnetic disk was fabricated in the same manner as in Example 1, except that a Co--Ni--P alloy was coated with a thickness of 0.5 μm as a metal thin film magnetic layer by plating.

(実施例3) 実施例1と同様にして、但しアモルファスふっ化炭素膜
3をガス圧20 mTorr 、 50 kHz低周波
電力600Wの条件の下で形成し、磁気ディスクを製作
した。
(Example 3) A magnetic disk was manufactured in the same manner as in Example 1, except that an amorphous fluorocarbon film 3 was formed under the conditions of a gas pressure of 20 mTorr and a 50 kHz low frequency power of 600 W.

(比較例1) 実施例1と同様にして、但しcH4ガスを用いて磁気デ
ィスクを製作した。
(Comparative Example 1) A magnetic disk was manufactured in the same manner as in Example 1, except that cH4 gas was used.

(比較例2) 実施例1と同様にして、但し保護膜3をグラフファイト
ターゲットをArガス圧5 mTorr 、 D C放
電層力3KWの条件下でスパッタリングによって被覆し
、磁気ディスクを製作した。
(Comparative Example 2) A magnetic disk was manufactured in the same manner as in Example 1, except that the protective film 3 was coated with a graphite target by sputtering under the conditions of an Ar gas pressure of 5 mTorr and a DC discharge layer force of 3 KW.

次に実施例1〜3および比較例1,2で示した磁気ディ
スクを用いてヘッドとディスクの起動停 ・止繰り返し
試験(CSS試験)および温度ω℃。
Next, using the magnetic disks shown in Examples 1 to 3 and Comparative Examples 1 and 2, a head and disk start/stop/stop repetition test (CSS test) and temperature ω°C were conducted.

相対温度90%における耐食性試験を100時間行った
ところ表1の結果を得た。
A corrosion resistance test was conducted at a relative temperature of 90% for 100 hours, and the results shown in Table 1 were obtained.

表1 上述の如く、本発明の実施例では磁気ディスクについて
述べたが、フロッピーディスク、磁気テープ、磁気カー
ドにも本発明は有効である。
Table 1 As mentioned above, in the embodiments of the present invention, magnetic disks have been described, but the present invention is also effective for floppy disks, magnetic tapes, and magnetic cards.

〔発明の効果〕〔Effect of the invention〕

以上の結果から明らかなように本発明の磁気ディスクは
優れた耐摩耗性と防蝕性を有していることがわかった。
As is clear from the above results, the magnetic disk of the present invention was found to have excellent wear resistance and corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁気ディスクの部分断面図である
。 1・・・基板       2・・・金属薄膜磁性層3
・・・保護層      4・・・潤滑層ゝ、ノ 潤滑層
FIG. 1 is a partial sectional view of a magnetic disk according to the present invention. 1... Substrate 2... Metal thin film magnetic layer 3
...Protective layer 4...Lubricating layer, lubricating layer

Claims (1)

【特許請求の範囲】 1、基体と、該基体上に形成された磁性層と、該磁性上
に形成されたアモルファスフッ化炭素膜とからなること
を特徴とする磁気ディスク。 2、該基体がアルミ合金若しくはステンレス又はチタン
合金であることを特徴とする請求項1記載の磁気ディス
ク。 3、該基体がポリエステル、若しくはポリイミドからな
ることを特徴とする請求項1記載の磁気ディスク。 4、該基体が炭化ケイ素、若しくは窒化ケイ素からなる
ことを特徴とする請求項1記載の磁気ディスク。 5、該基体がセラミックス又はガラス板であることを特
徴とする請求項1記載の磁気ディスク。 6、該磁性層がCo−Ni、Co−Ni−P、Co−N
i−Cr、Co−Pt、Co−Ni−Pt、Co−Ni
−Mo、若しくはCo−Vであることを特徴とする請求
項1記載の磁気ディスク。 7、該アモルファスふっ化炭素膜は、バイアスCVDに
よって形成されることを特徴とする請求項1記載の磁気
ディスク。 8、該アモルファスふっ化炭素膜上に、パーフルオロア
ルキル系の液体潤滑剤を被覆してあることを特徴とする
請求項1記載の磁気ディスク。 9、該基体と該磁性層との間に、下地層を形成してある
ことを特徴とする請求項1記載の磁気ディスク。 10 該下地層がNi−Pめっき層であることを特徴と
する請求項9記載の磁気ディスク。 11 基体表面を研摩により平坦化し、該基体上に磁性
層を形成し、該磁性上にバイアスCVD法によりアモル
ファスふっ化炭素膜を形成することを特徴とする磁気デ
ィスクの製造方法。 12 該磁性層をスパッタリング法により形成したこと
を特徴とする請求項11記載の磁気ディスクの製造方法
。 13 該バイアスCVD法は、フッ化炭素ガス又はフッ
化炭素ガスと炭化水素ガスの混合ガスを含む雰囲気中で
行なわれることを特徴とする請求項11記載の磁気ディ
スクの製造方法。
Claims: 1. A magnetic disk comprising a base, a magnetic layer formed on the base, and an amorphous fluorocarbon film formed on the magnetic layer. 2. The magnetic disk according to claim 1, wherein the base is made of aluminum alloy, stainless steel, or titanium alloy. 3. The magnetic disk according to claim 1, wherein the base is made of polyester or polyimide. 4. The magnetic disk according to claim 1, wherein the substrate is made of silicon carbide or silicon nitride. 5. The magnetic disk according to claim 1, wherein the substrate is a ceramic or glass plate. 6. The magnetic layer is Co-Ni, Co-Ni-P, Co-N
i-Cr, Co-Pt, Co-Ni-Pt, Co-Ni
2. The magnetic disk according to claim 1, wherein the magnetic disk is made of -Mo or Co-V. 7. The magnetic disk according to claim 1, wherein the amorphous carbon fluoride film is formed by bias CVD. 8. The magnetic disk according to claim 1, wherein the amorphous fluorocarbon film is coated with a perfluoroalkyl liquid lubricant. 9. The magnetic disk according to claim 1, further comprising an underlayer formed between the base and the magnetic layer. 10. The magnetic disk according to claim 9, wherein the underlayer is a Ni-P plating layer. 11. A method for manufacturing a magnetic disk, which comprises flattening the surface of a substrate by polishing, forming a magnetic layer on the substrate, and forming an amorphous carbon fluoride film on the magnetic layer by bias CVD. 12. The method of manufacturing a magnetic disk according to claim 11, wherein the magnetic layer is formed by a sputtering method. 13. The magnetic disk manufacturing method according to claim 11, wherein the bias CVD method is performed in an atmosphere containing fluorocarbon gas or a mixed gas of fluorocarbon gas and hydrocarbon gas.
JP9550988A 1988-04-20 1988-04-20 Magnetic disk and production thereof Pending JPH01269222A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9550988A JPH01269222A (en) 1988-04-20 1988-04-20 Magnetic disk and production thereof
US07/755,589 US5275850A (en) 1988-04-20 1991-09-04 Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9550988A JPH01269222A (en) 1988-04-20 1988-04-20 Magnetic disk and production thereof

Publications (1)

Publication Number Publication Date
JPH01269222A true JPH01269222A (en) 1989-10-26

Family

ID=14139559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9550988A Pending JPH01269222A (en) 1988-04-20 1988-04-20 Magnetic disk and production thereof

Country Status (1)

Country Link
JP (1) JPH01269222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388900B2 (en) 2010-05-25 2016-07-12 Federal-Mogul Burscheid Gmbh Method for producing a piston ring having embedded particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277617A (en) * 1986-05-26 1987-12-02 Ulvac Corp Wear resistant magnetic recording body
JPS62279521A (en) * 1986-05-28 1987-12-04 Hitachi Maxell Ltd Production of magnetic recording medium
JPS6344318A (en) * 1986-08-09 1988-02-25 Hitachi Maxell Ltd Production of magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277617A (en) * 1986-05-26 1987-12-02 Ulvac Corp Wear resistant magnetic recording body
JPS62279521A (en) * 1986-05-28 1987-12-04 Hitachi Maxell Ltd Production of magnetic recording medium
JPS6344318A (en) * 1986-08-09 1988-02-25 Hitachi Maxell Ltd Production of magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388900B2 (en) 2010-05-25 2016-07-12 Federal-Mogul Burscheid Gmbh Method for producing a piston ring having embedded particles

Similar Documents

Publication Publication Date Title
US4820584A (en) Magnetic recording medium and method of manufacturing the same
JPS63268127A (en) Magnetic memory body and its production
JPH0660368A (en) Magnetic recording medium and its production
JP2594534B2 (en) Magnetic storage
JPH05143972A (en) Metal thin film magnetic recording medium and its production
JPH01269222A (en) Magnetic disk and production thereof
JP2001084554A (en) Magnetic recording medium
JPS60209929A (en) Magnetic storage body and its production
JPH0628107B2 (en) Magnetic disk
JP2581225B2 (en) Magnetic recording medium and method of manufacturing the same
JP3024769B2 (en) Magnetic hard disk
JP2626737B2 (en) Solid lubrication film structure of magnetic recording media
JP2621358B2 (en) Magnetic recording media
JPS62229526A (en) Magnetic recording medium
JPS62219227A (en) Magnetic memory body
JP2513688B2 (en) Magnetic recording media
JPH0262888B2 (en)
JP2861081B2 (en) Magnetic recording media
JPH0513333B2 (en)
JPS61206918A (en) Magnetic storage body and its production
JPS62159331A (en) Magnetic recording medium and its production
JPS62287415A (en) Magnetic recording medium
JPH01125720A (en) Magnetic memory body and its production
JPH03288321A (en) Magnetic recording medium and production thereof
JPS6199925A (en) Magnetic storage medium and its production