JPH01269001A - Pyroelectric type infrared position detector - Google Patents

Pyroelectric type infrared position detector

Info

Publication number
JPH01269001A
JPH01269001A JP9703988A JP9703988A JPH01269001A JP H01269001 A JPH01269001 A JP H01269001A JP 9703988 A JP9703988 A JP 9703988A JP 9703988 A JP9703988 A JP 9703988A JP H01269001 A JPH01269001 A JP H01269001A
Authority
JP
Japan
Prior art keywords
pyroelectric
infrared
array
elements
pyroelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9703988A
Other languages
Japanese (ja)
Other versions
JPH0660806B2 (en
Inventor
Yoshihiro Tomita
佳宏 冨田
Ryoichi Takayama
良一 高山
Atsushi Abe
阿部 惇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63097039A priority Critical patent/JPH0660806B2/en
Publication of JPH01269001A publication Critical patent/JPH01269001A/en
Publication of JPH0660806B2 publication Critical patent/JPH0660806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To enhance S/N and position resolving power and to enable easy processing of position information by providing an IR intermitting means and pyroelectric array. CONSTITUTION:An optical chopper which intermits IR rays is used as the IR intermitting means 1 and the pyroelectric element array is disposed on the circumference centering at the axis of rotation. Electrodes 3 of the respective pyroelectric elements are so wired that the pyroelectric elements are connected electrically in series. The sum signal of the outputs of the respective elements is obtd. from both ends of the array 2. The signal of the array 2 is inputted to a signal processing circuit 4 such as BPF or AC amplifier for impedance conversion and S/N improvement. The respective pyroelectric elements of the array 2 are wired in series and the signals at both ends thereof are processed and, therefore, just one system of the processing circuit is necessitated and the laboriousness of the wiring is eliminated. The high resolving power is thus obtd. and the size of the detector is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外線センサを用いて物体の位置を検知
するB置に間する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a pyroelectric infrared sensor to detect the position of an object.

従来の技術 近年、侵入者の検知や火災の発見などの防犯・防災の目
的のために、赤外線センサを用いて赤外線源の位置を検
知する装置が使われるようになった、赤外線のセンサと
しては化合物半導体を用いた量子型のものと焦電素子や
サーミスタなどを用いた熱望のものがあり、量子型の赤
外線センサは液体窒素などで冷却する必要があるため、
防犯・防災などの目的には熱望の赤外線センサが用いら
れる。特に焦電型のセンサは他の熱望のセンサに比べて
感度が高く、赤外線源の位置検知装置に最適である。
Conventional technology In recent years, devices that use infrared sensors to detect the location of infrared sources have come into use for crime prevention and disaster prevention purposes such as detecting intruders and detecting fires. There are quantum-type infrared sensors that use compound semiconductors and aspirational ones that use pyroelectric elements and thermistors. Quantum-type infrared sensors require cooling with liquid nitrogen, etc.
Infrared sensors are widely used for purposes such as crime prevention and disaster prevention. In particular, pyroelectric sensors have higher sensitivity than other aspirational sensors, making them ideal for position detection devices for infrared sources.

焦電センサは赤外線受光量の変化によるセンサの温度変
化を電圧の変化として検出するものである。このため、
回転型光学チョッパーなどを用いて断続した赤外線を、
−列に配列した焦電センサアレイに照射し、各焦電セン
サの出力をインピーダンス変換、交流増幅した後に各セ
ンサの出力を比較し、赤外線源の位置を検出する方法が
用いられている。
A pyroelectric sensor detects a change in temperature of the sensor due to a change in the amount of infrared light received as a change in voltage. For this reason,
Intermittent infrared rays are transmitted using a rotating optical chopper, etc.
- A method is used in which a pyroelectric sensor array arranged in a row is irradiated, the output of each pyroelectric sensor is impedance-converted, AC amplified, and then the output of each sensor is compared to detect the position of the infrared source.

発明が解決しようとする課題 前記従来例において位置検知の分解能を高める場合、配
列する焦電素子数が多くなる。それにしたがって焦電素
子のインピーダンス変換や交流増幅器などの処理回路の
数が増加するだけでなく、焦電素子と処理回路閏の配線
数も増加するという実用上の問題が発生する。また、位
置情報をマイクロプロセッサなどで処理しようとすると
、各焦電素子からの信号を時系列信号に変換してから読
み込む必要がある。
Problems to be Solved by the Invention In the conventional example described above, when increasing the resolution of position detection, the number of pyroelectric elements to be arranged increases. Accordingly, a practical problem arises in that not only the number of processing circuits such as impedance conversion of the pyroelectric element and AC amplifier increases, but also the number of wiring between the pyroelectric element and the processing circuit. Furthermore, if position information is to be processed by a microprocessor or the like, it is necessary to convert the signals from each pyroelectric element into time-series signals before reading them.

このように、従来例においては装置が大型化し、同時に
生産コストも増大する。
As described above, in the conventional example, the size of the device increases, and at the same time, the production cost also increases.

課題を解決するための手段 赤外線遮断体アレイを配列方向に移動することにより赤
外線を断続する赤外線断続手段と、その赤外線を検出す
る焦電素子アレイとを有し、前記赤外線遮断体の配列方
向と前記焦電素子の配列方向が同一方向であり、各焦電
素子が電気的に直列配線されており、両端に生ずる交流
信号の位相情報により赤外線源の位置を検知する。
Means for Solving the Problems includes an infrared intermittent means for intermittent infrared rays by moving an array of infrared shielding bodies in the arrangement direction, and a pyroelectric element array for detecting the infrared rays, and a pyroelectric element array for detecting the infrared rays. The pyroelectric elements are arranged in the same direction, each pyroelectric element is electrically wired in series, and the position of the infrared source is detected based on phase information of alternating current signals generated at both ends.

作用 焦電素子アレイの各焦電素子を直列に配線し両端の信号
を処理するため、処理回路がl系統のみで済み、配線の
煩雑さがなく高分解能でしかも小型化することができる
Since each pyroelectric element of the working pyroelectric element array is wired in series and the signals at both ends are processed, only one processing circuit is required, and there is no complicated wiring, high resolution and miniaturization can be achieved.

また、焦電素子プレイの配列パターンと赤外線遮断体ア
レイの配列パターンとを適切な形状にすることによって
、各焦電素子の出力を時系列信号として取り出すことが
できる。すでに時系列信号に変換されているため、マイ
クロプロセッサへの読み込みが容易におこなえる。
Furthermore, by appropriately arranging the array pattern of the pyroelectric element play and the array pattern of the infrared shield array, the output of each pyroelectric element can be extracted as a time-series signal. Since it has already been converted into a time series signal, it can be easily loaded into a microprocessor.

実施例 第1図に本発明の焦電型赤外線位置検知装置の一実施例
を示す、赤外線断続手段lとして、円盤に扇型の切れ込
を入れたものを回転させて赤外線を断続する光学チョッ
パーを用い、この回転軸を中心とする円周上に焦電素子
アレイ2を配置している。各焦電素子の電極3は、各焦
電素子が電気的に直列になるように配線されていて、焦
電素子アレイ2の両端から各素子の出力の和信号が得ら
れるようになっている。焦電素子アレイ2の信号はイン
ピーダンス変換やS/N向上のためのバンドパスフィル
ターや交流増幅器などの信号処理回路4に入力されてい
る0本装置のノイズを低減するためにはインピーダンス
変換だけでも焦電素子の近傍に配置する必要があるが、
従来例のように多数の処理回路を必要とする場合に生ず
る配線の煩雑さや装置の大型化は避けることができる。
Embodiment FIG. 1 shows an embodiment of the pyroelectric infrared position detection device of the present invention.The infrared ray intermittent means 1 is an optical chopper that interrupts infrared rays by rotating a disc with fan-shaped notches. The pyroelectric element array 2 is arranged on a circumference centered on this rotation axis. The electrodes 3 of each pyroelectric element are wired so that the pyroelectric elements are electrically connected in series, so that a sum signal of the outputs of each element can be obtained from both ends of the pyroelectric element array 2. . The signal from the pyroelectric element array 2 is input to a signal processing circuit 4 such as a bandpass filter or AC amplifier for impedance conversion and S/N improvement.In order to reduce the noise of this device, impedance conversion alone is necessary. It is necessary to place it near the pyroelectric element,
It is possible to avoid the complexity of wiring and the increase in the size of the device, which occur when a large number of processing circuits are required as in the conventional example.

各焦電素子は赤外線断続手段lによって断続されている
赤外線と同じ周波数の出力電圧を発生するが、それぞれ
赤外線断続のタイミングが異なるため、出力の位相が異
なる。あるひとつの焦電素子に赤外線源の像が結像して
いて他の焦電素子の出力よりも出力が大きい場合、出力
の位相はこの焦電素子の出力の位相と同一になる。この
ようにして赤外線源の位置を出力信号の位相情報として
検知することができる0位相情報の検出には、いろいろ
な方法があるが、本装置の出力は位置情報が位相情報に
変換されているため、A/D変換用ICを1個用いるだ
けでマイクロプロセッサ−での処理が可能となり、単な
る位置検出だけでなく分布情報などの総合的な処理や判
断が可能となる。
Each pyroelectric element generates an output voltage of the same frequency as the infrared rays that are interrupted by the infrared rays intermittent means 1, but because the timing of infrared rays intermittent is different, the phases of the outputs are different. When an image of an infrared source is formed on a certain pyroelectric element and the output is larger than the output of other pyroelectric elements, the phase of the output becomes the same as the phase of the output of this pyroelectric element. In this way, the position of the infrared source can be detected as the phase information of the output signal.There are various methods for detecting 0 phase information, but the output of this device is based on the position information being converted into phase information. Therefore, processing can be performed by a microprocessor by using only one A/D conversion IC, and it is possible to perform not only simple position detection but also comprehensive processing and judgment such as distribution information.

従来例の装置でこの処理を実現するには、A/D変換の
前にマルチプレクサ−などを用いて焦電業子の切り換え
をする必要がある。
In order to realize this processing with a conventional device, it is necessary to switch the pyroelectric element using a multiplexer or the like before A/D conversion.

本装置を設計する場合、第1図に示すように焦電索子ア
レイ2の配列範囲を光学チョッパーの一周期に合わせる
ことによって、全焦電素子が同じ量の赤外線を受光して
いる場合の信号を打ち消してくれるため外乱を排除する
ことができ、信号の位相範囲が−π〈φ≦πと最大にな
り、位相検知がおこないやすくなる。
When designing this device, as shown in Figure 1, by matching the array range of the pyroelectric element array 2 to one period of the optical chopper, it is possible to Since the signal is canceled, disturbances can be eliminated, and the phase range of the signal is maximized to -π<φ≦π, making it easier to detect the phase.

また、n個の焦電素子を距離a毎に等間隔に配置し、赤
外線遮断体を距離す毎に等間隔に配置し、a、  b、
  nが a×n=bX (n±1) を満足する場合
、例えば第2図のようにn個の焦電素子を円周全体に等
間隔に配置し、羽根がn±1枚で等間隔な光学チョッパ
ーを用いた場合、各焦電素子の出力は順番に2π/nづ
つ位相がずれて、焦電素子アレイ2の直列信号の位相か
ら位置情報を得ることができる。なお、位相は−πくφ
≦πの範囲で変化し、共通信号を排除する効果もある。
In addition, n pyroelectric elements are arranged at equal intervals at each distance a, and infrared shielding bodies are arranged at equal intervals at each distance, a, b,
If n satisfies a x n = b When an optical chopper is used, the output of each pyroelectric element is sequentially shifted in phase by 2π/n, and position information can be obtained from the phase of the serial signal of the pyroelectric element array 2. Note that the phase is −π and φ
It varies within a range of ≦π and has the effect of eliminating common signals.

このように円周全体に焦電素子を配置した位置検知装置
は赤外線源の存在する方向を検知し、その方向にカメラ
を向けたり、赤外線源を追尾したりする装置に有用であ
る。
A position detection device in which pyroelectric elements are arranged all over the circumference in this way is useful for devices that detect the direction in which an infrared source is present, point a camera in that direction, or track the infrared source.

さらに、第3図に示すように前記n個の焦電素子の各1
個を2個の焦電素子で置き換えて、隣同士を逆出力にな
るように配線することによっても同様の効果が得られる
。前記方法に比べ、出力電圧は大きくなり、同じ光学チ
ョッパーを用いて位置検出分解能を高くすることができ
る。また、隣接して反転出力の索子があるため光学チョ
ッパー以外からの外乱の排除率が高くなる。焦電素子プ
レイを、−枚の焦電体板の両面の電極の配列パターンに
よって形成する場合、隣同士の電極が同一面内になるた
め電極形成が容易になり、さらに隣同士で圧電ノイズを
打ち消してくれるという利点がある。なお、この例では
焦電素子アレイ2の各素子を分離せず、−枚の焦電体板
上に分離した電極パターンを形成しても分離した場合と
同様の効果が得られる。特に焦電薄膜の中には高い検出
能を有するものがあり、さらに高感度化を図ることがで
きる。
Furthermore, as shown in FIG. 3, each of the n pyroelectric elements
A similar effect can be obtained by replacing one with two pyroelectric elements and wiring adjacent ones so that they have opposite outputs. Compared to the above method, the output voltage is increased and the position detection resolution can be increased using the same optical chopper. Furthermore, since there is an adjacent cable with an inverted output, the rejection rate of disturbances from sources other than the optical chopper is increased. When forming a pyroelectric element play by an array pattern of electrodes on both sides of two pyroelectric plates, adjacent electrodes are in the same plane, which makes electrode formation easier, and further reduces piezoelectric noise between adjacent electrodes. It has the advantage of being cancelled. Note that in this example, even if the elements of the pyroelectric element array 2 are not separated and separate electrode patterns are formed on the -th pyroelectric plate, the same effect as in the case of separation can be obtained. In particular, some pyroelectric thin films have high detection ability, and even higher sensitivity can be achieved.

ここで第3図の場合を例にとってその動作を説明する。Here, the operation will be explained using the case of FIG. 3 as an example.

第4図に各焦電素その出力の時閉変化を模式的に示す、
光学チョッパーの回転周期をTとし、vl をi番目の
焦電素子の起電力、−V、をその起電力の反転とする。
Figure 4 schematically shows the changes in the output of each pyroelectric element over time.
Let the rotation period of the optical chopper be T, let vl be the electromotive force of the i-th pyroelectric element, and -V be the inversion of that electromotive force.

光学チョッパーの羽根の枚数は11枚であるのでV、の
周期はT/11となる。また、焦電素子は一周に24個
配列しているので隣の素子の出力はT/24はと遅れる
Since the number of blades of the optical chopper is 11, the period of V is T/11. Furthermore, since 24 pyroelectric elements are arranged in one circuit, the output of an adjacent element is delayed by T/24.

信号が遅れる様子を図中の矢印で示した。vlの信号周
波数でみると、隣の素子の出力の位相遅れは、 Δφ=2π (T/24)/ (T/11)=π・ 1
1/12 で、信号を反転させることは位相をπ進めることと等し
いので、見かけの位相遅れは、 Δφ=π拳11/12−π =−π/12 となる。つまり、見かけの上では位相がπ/12づつ進
んで行くことになり、すべての焦電素子の位相が異なる
。実際に得られる出力信号はこれらの和となり、あるl
素子に赤外線が入射しているときには、信号の位相を調
べることによってその素子を特定することができる。ま
た、対照な位置にある素子の出力(V+ に対してVI
3)はちょうど反転しているため、同じ赤外線量が入射
している場合は打ち消し合う、このため、背景の赤外線
による信号を取り除き、赤外線源の信号のみが得られる
The arrows in the figure show how the signal is delayed. Looking at the signal frequency of vl, the phase delay of the output of the adjacent element is Δφ=2π (T/24)/(T/11)=π・1
Since inverting the signal by 1/12 is equivalent to advancing the phase by π, the apparent phase delay is Δφ=π11/12−π=−π/12. In other words, the phase apparently advances by π/12, and the phases of all the pyroelectric elements are different. The output signal actually obtained is the sum of these, and a certain l
When infrared rays are incident on an element, the element can be identified by examining the phase of the signal. Also, the output of the element at the symmetrical position (VI
3) is exactly inverted, so if the same amount of infrared rays is incident, they cancel each other out. Therefore, the background infrared signal is removed and only the signal of the infrared source is obtained.

本実施例では焦電素子アレイ2を円周上に配置している
が、これを直線上に配置して、赤外線遮断手段が焦電素
子アレイの配列方向に移動する方式にしても同じ効果が
得られる。
In this embodiment, the pyroelectric element array 2 is arranged on the circumference, but the same effect can be obtained by arranging it in a straight line and moving the infrared ray blocking means in the arrangement direction of the pyroelectric element array. can get.

本発明により、S/Nや位置分解能の性能が高く小型で
、容易にマイクロプロセッサ−で位置情報の処理がおこ
なえる焦電型赤外線位置検知装置を低コストで作製でき
る。
According to the present invention, a pyroelectric infrared position detection device that has high performance in S/N and position resolution, is compact, and can easily process position information using a microprocessor can be manufactured at low cost.

発明の効果 本発明により、S/Nや位置分解能の性能が高く小型で
、容易にマイクロプロセッサ−で位置情報の処理がおこ
なえる焦電型赤外線位置検知装置を低コストで作製でき
る。
Effects of the Invention According to the present invention, a pyroelectric infrared position detection device that has high performance in S/N and position resolution, is compact, and can easily process position information using a microprocessor can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は各々、本発明の実施例における焦電型
赤外線位置検知装置を示す上面図、第4図は各焦電索子
の出力の時閉変化を模式的に示す波形図である。 l・・・赤外線断続手段、2・・・焦電素子アレイ、3
・・・電極、4・・・信号処理回路 代理人の氏名 弁理士 中尾敏男 はか1名第1図 第2図 第3図
FIGS. 1 to 3 are top views showing a pyroelectric infrared position detection device according to an embodiment of the present invention, and FIG. 4 is a waveform diagram schematically showing changes in the output of each pyroelectric cable when closed and closed. It is. l... Infrared intermittent means, 2... Pyroelectric element array, 3
...Electrode, 4...Signal processing circuit Name of agent Patent attorney Toshio Nakao 1 person Figure 1 Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)赤外線遮断体アレイを配列方向に移動することに
より赤外線を断続する赤外線断続手段と、その赤外線を
検出する焦電素子アレイとを有し、前記赤外線遮断体の
配列方向と前記焦電素子の配列方向が同一方向であり、
各焦電素子が電気的に直列配線されており、両端に生ず
る交流信号の位相情報により赤外線源の位置を検知する
焦電型赤外線位置検知装置。
(1) It has an infrared intermittent means for intermittent infrared rays by moving an infrared ray blocker array in the arrangement direction, and a pyroelectric element array that detects the infrared rays, and the arrangement direction of the infrared ray blockers and the pyroelectric element are arranged in the same direction,
A pyroelectric infrared position detection device in which each pyroelectric element is electrically wired in series and detects the position of an infrared source based on phase information of an AC signal generated at both ends.
(2)赤外線遮断体アレイおよび焦電素子アレイが円周
上に配置されている特許請求の範囲第1項記載の焦電型
赤外線位置検知装置。
(2) A pyroelectric infrared position detection device according to claim 1, wherein the infrared shield array and the pyroelectric element array are arranged on a circumference.
(3)n個の焦電素子が距離a毎に等間隔に配置され、
赤外線遮断体が距離b毎に等間隔に配置されていて、前
記a、b、nが以下の条件を満足する特許請求の範囲第
1項記載の焦電型赤外線位置検知装置。 a×n=b×(n+1) または a×n=b×(n−1)
(3) n pyroelectric elements are arranged at equal intervals at each distance a,
The pyroelectric infrared position detection device according to claim 1, wherein the infrared shielding bodies are arranged at equal intervals at distances b, and the a, b, and n satisfy the following conditions. a×n=b×(n+1) or a×n=b×(n-1)
(4)2n個の焦電素子が距離a毎に等間隔に配置され
、赤外線遮断体が距離b毎に等間隔に配置されていて、
前記a、b、nが以下の条件を満足し、かつ隣合う焦電
素子同士が逆出力になるように直列配線している特許請
求の範囲第1項記載の焦電型赤外線位置検知装置。 a×2n=b×(n+1) または a×2n=b×(n−1)
(4) 2n pyroelectric elements are arranged at equal intervals at each distance a, and infrared shielding bodies are arranged at equal intervals at each distance b,
The pyroelectric infrared position detection device according to claim 1, wherein a, b, and n satisfy the following conditions, and adjacent pyroelectric elements are wired in series so that they have opposite outputs. a×2n=b×(n+1) or a×2n=b×(n-1)
JP63097039A 1988-04-20 1988-04-20 Pyroelectric infrared position detector Expired - Lifetime JPH0660806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63097039A JPH0660806B2 (en) 1988-04-20 1988-04-20 Pyroelectric infrared position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63097039A JPH0660806B2 (en) 1988-04-20 1988-04-20 Pyroelectric infrared position detector

Publications (2)

Publication Number Publication Date
JPH01269001A true JPH01269001A (en) 1989-10-26
JPH0660806B2 JPH0660806B2 (en) 1994-08-10

Family

ID=14181413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63097039A Expired - Lifetime JPH0660806B2 (en) 1988-04-20 1988-04-20 Pyroelectric infrared position detector

Country Status (1)

Country Link
JP (1) JPH0660806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248824A (en) * 1994-03-11 1995-09-26 Matsushita Electric Ind Co Ltd Carrying device
CN106291916A (en) * 2016-04-15 2017-01-04 上海瑞柯恩激光技术有限公司 Optical chopper, light modulation system and the method carrying out light modulation thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154017A (en) * 1981-03-19 1982-09-22 Yokogawa Hokushin Electric Corp Detecting device for displaced position

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154017A (en) * 1981-03-19 1982-09-22 Yokogawa Hokushin Electric Corp Detecting device for displaced position

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248824A (en) * 1994-03-11 1995-09-26 Matsushita Electric Ind Co Ltd Carrying device
CN106291916A (en) * 2016-04-15 2017-01-04 上海瑞柯恩激光技术有限公司 Optical chopper, light modulation system and the method carrying out light modulation thereof
CN106291916B (en) * 2016-04-15 2018-09-11 上海瑞柯恩激光技术有限公司 Optical chopper, light modulation system and its method for carrying out light modulation

Also Published As

Publication number Publication date
JPH0660806B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US5126718A (en) Intrusion detection system
US4614938A (en) Dual channel pyroelectric intrusion detector
US4864136A (en) Passive infrared detection system with three-element, single-channel, pyroelectric detector
JPH01269001A (en) Pyroelectric type infrared position detector
US4994742A (en) Hall effect device and magnetic coil circuits for magnetic field detection
EP0368588A2 (en) Pyroelectric infrared detector and manufacturing method of same
JPH05281035A (en) Pyro-electricity type infrared detector
JP3216523B2 (en) Infrared detector
CN110384504A (en) The method and apparatus in human motion direction are judged using PIR
JPH0341305A (en) Pyroelectric device for detecting infrared ray
JPH0145119B2 (en)
JPH05203762A (en) Signal processor
JP3008115B2 (en) Passive infrared detector
JP2013231709A (en) Direction detection device
JPH08184493A (en) Pyroelectric multielement detector
JP2000193526A (en) Differential spectrum sensor
JPH0221291A (en) Photodetector
JPH03108883A (en) Pyroelectric infrared ray detector
JPH0460489A (en) Monitoring system of parking lot
JP2549297B2 (en) Infrared sensor
JPH01124787A (en) Moving body detecting device
SU1117559A1 (en) Eddy-current metal detector
JPS60158354A (en) Spatial filter applied speed sensor
JPH0192627A (en) Infrared detector
JPH028780A (en) Human body detector