JPH01268913A - Loading tester in slot using elastic rubber - Google Patents

Loading tester in slot using elastic rubber

Info

Publication number
JPH01268913A
JPH01268913A JP9690188A JP9690188A JPH01268913A JP H01268913 A JPH01268913 A JP H01268913A JP 9690188 A JP9690188 A JP 9690188A JP 9690188 A JP9690188 A JP 9690188A JP H01268913 A JPH01268913 A JP H01268913A
Authority
JP
Japan
Prior art keywords
hole
slot
elastic
loading
directional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9690188A
Other languages
Japanese (ja)
Other versions
JP2571419B2 (en
Inventor
Hideki Ota
秀樹 太田
Ryoichi Fukagawa
良一 深川
Yukio Morita
森田 悠紀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiso Jiban Consultants Co Ltd
Original Assignee
Kiso Jiban Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiso Jiban Consultants Co Ltd filed Critical Kiso Jiban Consultants Co Ltd
Priority to JP63096901A priority Critical patent/JP2571419B2/en
Publication of JPH01268913A publication Critical patent/JPH01268913A/en
Application granted granted Critical
Publication of JP2571419B2 publication Critical patent/JP2571419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To measure the deformation and strength constant of ground easily at a present position, by a method wherein an elastic cylindrical body is inserted into a boring slot, and wherein the body is compressed in the slot-axial direction to widen the slot, and wherein the compressive force of the cylindrical body and axis-directional displacement in this case are measured. CONSTITUTION:Through a bedrock 1, a boring slot 2 is bored, and in the slot, the elastic body 3 of elastic material is inserted. A bottom plate 4 set in the inner section of the slot 2, and a loading rod 7 are displaced by a center hole jack 5, and on the elastic body 3, an axis-directional compressive force is worked. Besides, axis-directional loading pressure is measured by a load cell 6, and by a linear transducer 8, an axis-directional displacement quantity is measured. The input of the measured value to a micro-computer 11 via an amplifier 9 and a data recorder 10 is provided, and relationship between the radial stress and circumference-directional distortion of the elastic cylinder is computed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地盤の変形・強度特性を推定する孔内載荷試
験装置、特に弾性変形をする弾性材料を用いることを特
徴とする孔内載荷試験装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an in-hole loading test device for estimating the deformation and strength characteristics of the ground, and in particular, an in-hole loading test device characterized by using an elastic material that undergoes elastic deformation. Regarding test equipment.

(従来の技術) 地盤の変形・強度定数を求める方法は、室内試験と原位
置試験に°大別される。前者は、地盤中の土要素が実際
に経験する応力経路、環境条件を室内である程度設定で
きるという長所を有するが、試料の採取、運搬、保管に
際して少なからぬ撹乱が試料に与えられ、そのため要素
の原位置での初期条件を必ずしも再現できないという欠
点も有する。これに対して、原位置試験は、載荷時に応
力、境界条件などの実験条件を選択できない代わりに、
原位置での実験であるため、実験結果が直接地盤の力学
特性を指標するという長所を有する。
(Prior art) Methods for determining the deformation and strength constants of the ground are broadly classified into indoor tests and in-situ tests. The former method has the advantage that the stress paths and environmental conditions that soil elements in the ground actually experience can be set indoors to a certain extent, but the samples are subject to considerable disturbance during collection, transportation, and storage, and as a result, the elements It also has the disadvantage that the initial conditions at the original location cannot necessarily be reproduced. On the other hand, in-situ testing does not allow selection of experimental conditions such as stress and boundary conditions during loading;
Since the experiment was conducted in situ, it has the advantage that the experimental results directly indicate the mechanical properties of the ground.

(発明が解決しようとする課題〕 本発明は、この原位置試験のうちボーリング孔を利用し
た孔内水平載荷試験方法に属するものである。孔内載荷
型の原位置試験の伯にも、標準真人試験、コーン貫入試
験などの試験があるが、これらは長年の経験に裏打ちさ
れて実際有効に利用されているが、力学的に明確な裏付
けがないため、応用性にかけるという恨みがある。
(Problems to be Solved by the Invention) The present invention pertains to an in-situ horizontal loading test method using a borehole among these in-situ tests. There are tests such as the Masato test and the cone penetration test, which are backed by many years of experience and are actually used effectively, but there is a grudge against their applicability because they do not have clear mechanical support.

比較的明確な土質力学的意義を有するものに、ベーン貫
入試験がおる。これは粘性土地盤に対して主として適用
されるもので、通常4枚羽根よりなるベーンを地盤中に
貫入させ、回転、せん断を実施するものでおる。せん断
面の過程あるいはせん断面上で非排水せん断強度が発揮
されるという仮定にさほどの無理がないためによく用い
られる。ただし、ベーンを貫入しうるような軟弱な粘性
土地盤に適用地盤が限られる。
The vane penetration test has relatively clear soil mechanical significance. This is mainly applied to sticky ground, and usually involves a vane consisting of four blades penetrating into the ground to perform rotation and shearing. It is often used because it is not unreasonable to assume that undrained shear strength is developed in the process of or on a shear plane. However, the applicable ground is limited to soft and viscous ground that can penetrate the vane.

ボーリング孔を利用した孔内載荷試験は、等方載荷を行
ういわゆるプレッシャーメータ試験と、局部的な載荷を
行う試験機とに大別される(第1図(a)、 (b)参
照)。前者の試験装置は、ボーリング孔内にセットした
ゴムチューブに水圧で加圧し、その圧力とチューブ体積
の関係を測定して、地盤の変形・強度特性を測定するも
のである。近年セルフボーリングタイプのプレッシャー
メータ試験機が、イギリス、フランスにおいて開発され
、また土質力学の進展にともない、試験結果の力学的解
釈法も整備され、ますます多用されるよ°うになってぎ
た。主に粘性土、砂質土地盤に対して用いられるが、ゴ
ムチューブを保護するための鞘管を取り付けることによ
り、比較的柔らかい岩盤に対しても適用可能でおる。こ
れに対して後者の局部載荷の孔内試験機は、高圧での孔
壁に対する載荷が可能であるために、多くの実験データ
を元にした経験的関係から、主に岩盤に対して適用され
ている。
In-hole loading tests using boreholes are broadly divided into so-called pressure meter tests that perform isotropic loading and testing machines that perform local loading (see Figures 1 (a) and (b)). The former test device measures the deformation and strength characteristics of the ground by applying water pressure to a rubber tube set in a borehole and measuring the relationship between the pressure and tube volume. In recent years, self-boring type pressure meter testing machines have been developed in the UK and France, and with the advancement of soil mechanics, mechanical interpretation methods for test results have also been developed, and these machines have come to be used more and more frequently. It is mainly used for clayey soil and sandy soil, but by attaching a sheath to protect the rubber tube, it can also be applied to relatively soft rock. On the other hand, the latter type of local loading borehole testing machine is capable of loading the borehole wall at high pressure, so it is mainly applied to rock based on empirical relationships based on a large amount of experimental data. ing.

しかし、その載荷機構の力学的解釈が明確でないため、
信頼性が高いとはいえない。
However, since the mechanical interpretation of the loading mechanism is not clear,
It cannot be said that it is highly reliable.

従って、本発明の目的は、上記諸原位置試験機の持つ長
所、短所を考慮して、取扱が簡便で、結果の力学的解釈
に妥当性があり、また応用性に富む原位置試験方法を提
供するにある。
Therefore, an object of the present invention is to provide an in-situ testing method that is easy to handle, has validity in mechanical interpretation of the results, and is highly applicable, taking into consideration the advantages and disadvantages of the above-mentioned in-situ testing machines. It is on offer.

(課題を解決するための手段) 上記目的を達成するため、本発明による孔内載荷試験装
置の主たる原理は、ボーリングにより穿孔した孔に、弾
性材料よりなる筒状体を挿入し、この弾性筒状体をモの
孔口及び孔奥から上記孔の長さ方向に圧縮し、孔の半径
方向に膨張させて孔を押し拡げ、そのときの孔の長さ方
向の圧縮力及び変位を知ることにより、結果の解釈の基
礎となる孔の周壁に対する半径方向応力−円周方向歪関
係を知ることにある。
(Means for Solving the Problems) In order to achieve the above object, the main principle of the in-hole loading test device according to the present invention is that a cylindrical body made of an elastic material is inserted into a hole drilled by boring, and the Compress the shaped body from the hole mouth and the back of the hole in the length direction of the hole, expand it in the radial direction of the hole to force the hole to expand, and know the compressive force and displacement in the length direction of the hole at that time. The objective is to know the radial stress-circumferential strain relationship on the peripheral wall of the hole, which is the basis for interpreting the results.

(作 用) 以下、添付図面を参照して本発明の詳細な説明する。本
発明の原理を示す第2図において、地盤おるいは岩盤1
にボーリング孔2を穿孔し、その中に弾性材料よりなる
弾性体3を挿入する。
(Function) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. In FIG. 2 showing the principle of the present invention, the ground or rock 1
A bore hole 2 is bored in the hole 2, and an elastic body 3 made of an elastic material is inserted into the bore hole 2.

例えば、弾性体3を第3図に示すように円筒状に作成し
、その中心軸線に沿ってセンターホール3^を設ける。
For example, the elastic body 3 is formed into a cylindrical shape as shown in FIG. 3, and a center hole 3^ is provided along its central axis.

孔2の孔奥にはボトムプレート4を配置し、プレート4
と剛結されたセンターロッド4Aを弾性体3のセンター
ホール品を通して孔2の外まで延ばす。
A bottom plate 4 is placed at the back of the hole 2, and the plate 4
The center rod 4A, which is rigidly connected to the elastic body 3, is extended to the outside of the hole 2 through the center hole product of the elastic body 3.

適当なセンターホールジヤツキ5により、ロードセル6
、載荷用ロッド7を介し、センターロッド4Aに剛結さ
れたトッププレート4Bを反力台として軸方向圧縮力を
作用させると、弾性体3は孔2の軸方向に圧縮され、結
局孔2の半径方向に膨張すること”になる。このときの
孔内の弾性体3の軸方向の載荷圧力をロードセル6にて
測定し、またトッププレート4Bに剛結されたりニアト
ランジューサ8により軸方向変位量を測定し、アンプ9
を介してデータレコーダ10に収録させる。これらのデ
ータは弾性理論をもとにマイクロコンピュータ11を利
用することによって、容易に弾性筒の半径方向応力−円
周方向歪関係に変換することが出来る。得られた半径方
向応力−円周方向歪関係に対して、種々提案されている
解釈法を適用することにより、本発明の目的でおる地盤
あるいは岩盤の変形・強度特性を推定することができる
Load cell 6 with a suitable center hole jack 5
When an axial compressive force is applied via the loading rod 7 using the top plate 4B rigidly connected to the center rod 4A as a reaction force, the elastic body 3 is compressed in the axial direction of the hole 2, and the elastic body 3 is compressed in the axial direction of the hole 2. At this time, the axial loading pressure of the elastic body 3 in the hole is measured by the load cell 6, and the axial displacement is measured by the top plate 4B or by the near transducer 8. Measure the amount, amp 9
The data is recorded in the data recorder 10 via the . These data can be easily converted into a radial stress-circumferential strain relationship of the elastic cylinder by using the microcomputer 11 based on elasticity theory. By applying various proposed interpretation methods to the obtained radial stress-circumferential strain relationship, the deformation/strength characteristics of the ground or rock mass, which is the object of the present invention, can be estimated.

(実施例) 弾性ゴムは、第4図に示すような応力−歪関係を示す。(Example) Elastic rubber exhibits a stress-strain relationship as shown in FIG.

挙動は可逆的であって、典型的な非線形弾性材γj1で
ある。本発明は図中比較的線形性のよい初期及び中期弾
性部分を使用することが望ましい。
The behavior is reversible and is a typical nonlinear elastic material γj1. In the present invention, it is desirable to use initial and intermediate elastic portions with relatively good linearity in the figure.

実際の実験の実施に際してはボーリング孔壁と弾性ゴム
体の間にかなりのgt=が発生することが予想される。
When conducting actual experiments, it is expected that a considerable amount of gt= will occur between the borehole wall and the elastic rubber body.

その軽減のために以下方策を考慮することが出来る。(
1)弾性ゴム体側面にテフロンシート(もちろん膨張を
妨げないよう軸方向に切れ目をいれるなど工夫を施して
)を巻く。(2)導電ゴムを利用する。導電ゴムは最近
開発された新材料であって、圧縮量がゴム自身の抵抗の
変化から予測しうるというものである。第5図(b)に
示すように、三分割されたゴムの中央部分で導電ゴムを
利用することによって側面摩擦の影響をかなり軽減でき
る。第5図(a)のテフロンシートを併用することによ
り一層効果が上がる。
To reduce this, the following measures can be considered. (
1) Wrap a Teflon sheet around the side of the elastic rubber body (of course, make a cut in the axial direction so as not to hinder expansion). (2) Use conductive rubber. Conductive rubber is a recently developed new material, and the amount of compression can be predicted from changes in the resistance of the rubber itself. As shown in FIG. 5(b), by using conductive rubber in the center of the three-part rubber, the influence of side friction can be considerably reduced. The effect is further improved by using the Teflon sheet shown in FIG. 5(a) in combination.

以上のような工夫を凝らして、第2図のような実験装置
で載荷を行えば、まず第6図(a)のような軸方向応力
σα−軸方向歪εa関係が得られる。このσα−εa関
係に弾性理論を適用すれば、第6図(b)に示す半径方
向応力σr−εθ曲線の初期接線勾配がぜん断弾性係数
を与えるし、例えば結果を第6図(C)のようにσr−
1nεθ関係で整゛理すれば最終直線部分の勾配から非
排水せん断強度が得られるのである。
If the above-mentioned measures are taken and loading is carried out using the experimental apparatus as shown in FIG. 2, the relationship between axial stress σα and axial strain εa as shown in FIG. 6(a) can be obtained. If elasticity theory is applied to this σα-εa relationship, the initial tangential slope of the radial stress σr-εθ curve shown in Figure 6(b) gives the shear elastic modulus, and for example, the result is shown in Figure 6(C). Like σr-
If the relationship is 1nεθ, the undrained shear strength can be obtained from the slope of the final straight line.

〔発明の効果〕〔Effect of the invention〕

本発明によって得られる効果を列挙すれば次の通りであ
る。
The effects obtained by the present invention are listed below.

(1)孔内載荷機構が従来のプレッシャーメータ試験に
比べると単純であり、そのため操作が簡単で作業性がよ
い。
(1) The in-hole loading mechanism is simpler than the conventional pressure meter test, so it is easy to operate and has good workability.

(2)ゴムよりなる弾性体は損傷を受けにくく、また損
傷を受けた場合でも取り替えが容易である。ちなみに、
従来のプレッシャーメータが3〜4回の使用でメンブレ
ンを変える必要があったのに対し、本発明よりなる試験
機はその10倍程度の耐久性を有すると推定できる。
(2) The elastic body made of rubber is not easily damaged and can be easily replaced even if it is damaged. By the way,
While it was necessary to change the membrane of a conventional pressure meter after 3 to 4 uses, the tester of the present invention is estimated to have about 10 times the durability.

(3)従来のプレッシャーメータ試験では圧力載荷用の
水の圧縮性が大きいため、動的載荷試験は実質的に不可
能であったが、本発明装置では動的載荷が容易である。
(3) In conventional pressure meter tests, dynamic loading tests were virtually impossible due to the high compressibility of water for pressure loading, but dynamic loading is easy with the apparatus of the present invention.

第2図に即していえば、加圧装置を動的載荷の可能なセ
ンターホールジヤツキに変えるだけでよい。
In accordance with FIG. 2, it is sufficient to simply change the pressurizing device to a center hole jack capable of dynamic loading.

(4)計測データに対する面倒な補正がほとんど必要で
なく、データの信頼性が高い。
(4) There is almost no need for troublesome correction of measurement data, and the data is highly reliable.

(5)高能率で経済的に実施できる。(5) Can be implemented economically with high efficiency.

(6)弾性ゴムの材質を変えることにより、軟らかい地
盤から高い岩盤にまで適用することが可能である。
(6) By changing the material of the elastic rubber, it is possible to apply it to everything from soft ground to high rock.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の孔内載荷試験装置の載荷機構を概略的
に示したもので、第1図(a)は等方載荷型、第1図(
b)は局部載荷型に対応する。 第2図は弾性ゴムを利用した本発明の孔内載荷試験装置
の概略図である。第3図は以上の弾性体の斜視図である
。第4図は弾性ゴムの応力−歪関係を示す図表であり、
第5図は本試験装置の載荷時の側面摩擦除去法について
概略を示したものである。第5図(a)はテフロンシー
トを用いたもの、第5図(b)は三分割された導電ゴム
を用いたものである。第6図は本発明装置によるデータ
処理の流゛れを概略的に示したものである。第6図(a
)は生データとして1qられる軸方向歪−軸方向応力関
係であり、第6図(b)は第6図(a)の関係に弾性輪
を適用して得られる半径方向窓カー円周方面歪関係であ
る。また第6図(C)は非排水せん断強度を求める手法
を示したものである。 1・・・・・・・・地(岩)盤 2・・・・・・・・ボーリング孔 3・・・・・・・・弾性体 3A・・・・・・・・センターホール 4・・・・・・・・ボトムプレート 4A・・・・・・・・センターロツド 4B・・・・・・・・トッププレート 5・・・・・・・・センターホールジヤツキ6・・・・
・・・・ロードセル 7・・・・・・・・載荷用ロッド 8・・・・・・・・リニアトランスデユーサ9・・・・
・・・・アンプ 10・・・・・・・・データレコーダ 11・・・・・・・・マイクロコンピュータ第1図 ((1)            (b)第3図 第4図 第5図 (0)           (b)
FIG. 1 schematically shows the loading mechanism of the in-hole loading test device of the present invention, and FIG. 1(a) is an isotropic loading type;
b) corresponds to the local loading type. FIG. 2 is a schematic diagram of the in-hole loading test device of the present invention using elastic rubber. FIG. 3 is a perspective view of the above elastic body. Figure 4 is a diagram showing the stress-strain relationship of elastic rubber.
FIG. 5 schematically shows a method for removing side friction during loading of this testing device. 5(a) uses a Teflon sheet, and FIG. 5(b) uses conductive rubber divided into three parts. FIG. 6 schematically shows the flow of data processing by the apparatus of the present invention. Figure 6 (a
) is the axial strain-axial stress relationship obtained as raw data 1q, and Figure 6 (b) is the radial window Kerr circumferential strain obtained by applying an elastic ring to the relationship in Figure 6 (a). It is a relationship. Further, FIG. 6(C) shows a method for determining the undrained shear strength. 1...Ground (rock) 2...Borehole 3...Elastic body 3A...Center hole 4... ...Bottom plate 4A ... Center rod 4B ... Top plate 5 ... Center hole jack 6 ...
Load cell 7 Loading rod 8 Linear transducer 9
...... Amplifier 10 ...... Data recorder 11 ...... Microcomputer Fig. 1 ((1) (b) Fig. 3 Fig. 4 Fig. 5 (0) b)

Claims (2)

【特許請求の範囲】[Claims] (1)ボーリングにより穿孔した孔に、弾性材料よりな
る筒状体を挿入し、この弾性筒状体をその孔口及び孔奥
から上記孔の軸方向に圧縮し、孔の半径方向に膨張させ
て孔を押し拡げ、そのときの孔の軸方向の圧縮力及び変
位を知ることにより、結果の解釈の基礎となる孔の周壁
に対する半径方向応力−円周方向歪関係を知り、提案さ
れた種々の解釈法に基づき地盤の変形・強度定数を決定
できることを特徴とする孔内載荷試験装置。
(1) A cylindrical body made of an elastic material is inserted into a hole drilled by boring, and this elastic cylindrical body is compressed in the axial direction of the hole from the hole opening and the back of the hole, and expanded in the radial direction of the hole. By expanding the hole by pushing it open and knowing the compressive force and displacement in the axial direction of the hole at that time, we can understand the radial stress-circumferential strain relationship on the peripheral wall of the hole, which is the basis for interpreting the results. An in-hole loading test device characterized by being able to determine soil deformation and strength constants based on the interpretation method.
(2)弾性筒状体の弾性材料の1部又は全部に電導ゴム
を利用することにより、圧縮量をゴム自身の抵抗の変化
で測定する請求項1記載の装置。
(2) The device according to claim 1, wherein conductive rubber is used as part or all of the elastic material of the elastic cylindrical body, and the amount of compression is measured by a change in the resistance of the rubber itself.
JP63096901A 1988-04-21 1988-04-21 In-hole loading test device using elastic body Expired - Lifetime JP2571419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096901A JP2571419B2 (en) 1988-04-21 1988-04-21 In-hole loading test device using elastic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096901A JP2571419B2 (en) 1988-04-21 1988-04-21 In-hole loading test device using elastic body

Publications (2)

Publication Number Publication Date
JPH01268913A true JPH01268913A (en) 1989-10-26
JP2571419B2 JP2571419B2 (en) 1997-01-16

Family

ID=14177274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096901A Expired - Lifetime JP2571419B2 (en) 1988-04-21 1988-04-21 In-hole loading test device using elastic body

Country Status (1)

Country Link
JP (1) JP2571419B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357294A (en) * 1991-04-10 1992-12-10 Pub Works Res Inst Ministry Of Constr Device and method for measuring characteristic of ground in front of working face
JP2002309565A (en) * 2001-04-17 2002-10-23 Nishimatsu Constr Co Ltd Self-sustainable tester and testing method of ground
JPWO2005066421A1 (en) * 2003-12-26 2007-07-26 株式会社マスダ技建 In-situ liquefaction and dynamic property testing equipment using in-situ drilling holes.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357294A (en) * 1991-04-10 1992-12-10 Pub Works Res Inst Ministry Of Constr Device and method for measuring characteristic of ground in front of working face
JP2002309565A (en) * 2001-04-17 2002-10-23 Nishimatsu Constr Co Ltd Self-sustainable tester and testing method of ground
JPWO2005066421A1 (en) * 2003-12-26 2007-07-26 株式会社マスダ技建 In-situ liquefaction and dynamic property testing equipment using in-situ drilling holes.
JP4558650B2 (en) * 2003-12-26 2010-10-06 株式会社マスダ技建 In-situ liquefaction and dynamic property testing method and apparatus using boreholes

Also Published As

Publication number Publication date
JP2571419B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
Mair et al. Pressuremeter testing: methods and interpretation
US4594899A (en) Method and apparatus for testing soil
US6431006B1 (en) Soil testing assemblies
Ladanyi et al. Evaluation of in situ creep properties of frozen soils with the pressuremeter
Atkinson et al. The effect of local drainage in shear zones on the undrained strength of overconsolidated clay
Withers et al. Performance and analysis of cone pressuremeter tests in sands
Sadrekarimi Evaluation of CPT-based characterization methods for loose to medium-dense sands
Brenner et al. Shear strength behaviour and the measurement of shear strength in residual soils
Alejano et al. A method to correct indirect strain measurements in laboratory uniaxial and triaxial compressive strength tests
JP2008275319A (en) Portable young's modulus measuring device and method, and breaking strength measuring device
JPH01268913A (en) Loading tester in slot using elastic rubber
Drnevich et al. Sample disturbance and stress-strain behavior
Clarke et al. Pressuremeter Testing in Ground Investigation. Part 1-Site Operations.
GB1430239A (en) In-situ testing of materials
JP2003129458A (en) Method and device for testing liquefaction and dynamic property of ground in situ by utilizing borehole
Berthoz et al. Stress measurement in partially saturated soils and its application to physical modeling of tunnel excavation
Cavallaro et al. A comparative study on shear modulus and damping ratio of cohesive soil from laboratory tests
Lord Jr et al. Acoustic emission response of dry soils
Broms et al. End bearing and skin friction resistance of piles
Fleischer et al. A small volume calibration chamber for cone penetration testing (CPT) on submarine soils
Gitau et al. Mechanical behavior of a hard-setting luvisol soil as influenced by soil water and effective confining stress
Haberfield Pressuremeter Testing in Weak Rock and Cemented Sand.
Shen et al. Instrumented DMT: Review and analysis
Koerner et al. Acoustic emissions in medium plasticity clayey silt
Safaqah et al. Minimizing sampling disturbance using a new in situ device