JPH01266232A - Yarn for forming high-tensile strength body and high-tensile strength body - Google Patents

Yarn for forming high-tensile strength body and high-tensile strength body

Info

Publication number
JPH01266232A
JPH01266232A JP63089571A JP8957188A JPH01266232A JP H01266232 A JPH01266232 A JP H01266232A JP 63089571 A JP63089571 A JP 63089571A JP 8957188 A JP8957188 A JP 8957188A JP H01266232 A JPH01266232 A JP H01266232A
Authority
JP
Japan
Prior art keywords
tensile strength
fiber
yarn
heat
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63089571A
Other languages
Japanese (ja)
Inventor
Shigenori Fukuoka
福岡 重紀
Hiroshi Kawada
川田 寛
Takayoshi Fujita
隆嘉 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP63089571A priority Critical patent/JPH01266232A/en
Publication of JPH01266232A publication Critical patent/JPH01266232A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/442Cut or abrasion resistant yarns or threads

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain a yarn for forming a high-tensile strength body, having a high tenacity and modulus with a low thermal expansion coefficient and excellent in lightweight properties and processability, by combining a thermoplastic organic fiber meltable under forming conditions with a heat-resistant organic fiber unmeltable under the above-mentioned conditions. CONSTITUTION:The objective yarn obtained by combining (A) 20-95wt.% thermoplastic organic fiber, such as polyethylene terephthalate fiber, meltable under forming conditions with (B) 80-5wt.% heat-resistant organic fiber, especially heat-resistant fiber such as glass fiber, unmeltable under the above- mentioned conditions by an interlacing method, etc.

Description

【発明の詳細な説明】 (産業上の利用骨gP) 本発明は、光フアイバーケーブルに使われる高強力、高
弾性率で且つ空どう率が少なく、生産性、加工性の高い
抗張力体及び該抗張力体成形用糸条に関する。
Detailed Description of the Invention (Industrial Use of Bone GP) The present invention provides a tensile strength body used in optical fiber cables that has high strength, high elastic modulus, low void ratio, high productivity, and high processability. This invention relates to a yarn for forming a tensile strength body.

(従来の技術) 光ファイバーを用いて実用的な伝送をする為には光ファ
イバーを加工して光ケーブルにする必要がある。光ケー
ブルには種々の構造のものがあるが、いずれも光フアイ
バー心線を抗張力体で補強している。この抗張力体には
現在、(1)鋼線、tli高強力・高モジュラス繊維及
び冊繊維強化複合体が使われている。
(Prior Art) In order to carry out practical transmission using optical fibers, it is necessary to process the optical fibers into optical cables. Optical cables have various structures, but all of them have optical fiber cores reinforced with tensile strength members. This tensile strength body currently uses (1) steel wire, tli high strength and high modulus fibers, and fiber reinforced composites.

一方抗張力体に要求される特性としては、高強力、初期
引張りモジュラスの高いこと、熱膨張率の低いこと、軽
量、加工性(抗張力体表面にスパイラルの溝が必要)、
低価格、更に場合によっては電気絶縁性、低誘電率等が
ある。上記した(1)鋼線はモジュラスが高いことが特
徴であるが、熱膨張率が大きく、温度変化の大きいとこ
ろでは使用できないこと、又コンピューター周辺等での
機器間の電位差に基づくノイズをひろう欠点があり、使
用を制約されていた。(11)の高強力・高モジュラス
繊維は、収縮歪を防ぐ能力がないこと、又繊維1本のモ
ジュラスは高いが、単繊維の引揃え性が悪い(つり、た
るみがある)と肝心の初期モジュラスが低くなる欠点が
あった。
On the other hand, the properties required for a tensile strength body include high strength, high initial tensile modulus, low coefficient of thermal expansion, light weight, workability (spiral grooves are required on the surface of the strength body),
They are low cost, and in some cases have electrical insulation properties and low dielectric constants. (1) Steel wire is characterized by its high modulus, but it has a large coefficient of thermal expansion, so it cannot be used in areas with large temperature changes, and it also has the disadvantage of generating noise due to potential differences between devices such as those around computers. , and its use was restricted. (11) High-strength, high-modulus fibers do not have the ability to prevent shrinkage strain, and although the modulus of a single fiber is high, the alignment of the single fibers is poor (there is sagging and sagging), which is important in the initial stage. The disadvantage was that the modulus was low.

冊の繊維強化複合体としては、ガラスセンイ、炭素セン
イ、アラミドセンイを強化センイとし、熱硬化又は紫外
線(UV) 、電子線(EB)硬化等の樹脂を含浸した
いわゆる熱硬化複合体が用いられ、熱膨張率が鋼線より
数段小さい点、軽量、又ガラスセンイ使用の場合は電気
特性の良さも加わり多用されているが、モジュラスは鋼
線には及ばないこと、又表面溝の加工性がむつかしいこ
との欠点を有していた。
As the fiber-reinforced composite, a so-called thermosetting composite is used, which is a reinforced fiber made of glass fiber, carbon fiber, or aramid fiber, and impregnated with thermosetting resin, ultraviolet (UV), electron beam (EB) curing, etc. , the coefficient of thermal expansion is several orders of magnitude lower than that of steel wire, it is lightweight, and when glass fibers are used, they are often used because of their good electrical properties, but the modulus is not as high as that of steel wire, and the workability of surface grooves is poor. It had the disadvantage of being difficult.

(発明が解決しようとする課題) 本発明は上記従来材料の抗張力材とは異なり、高強ツバ
高モジュラス、熱膨張率が少くて且つ軽量、加工性にす
ぐれた光フアイバーケーブル用抗張力線成形用糸条及び
その成形体に関するものである。
(Problems to be Solved by the Invention) The present invention provides a yarn for forming tensile strength wires for optical fiber cables, which has high strength, high modulus, low coefficient of thermal expansion, is lightweight, and has excellent workability, unlike the above-mentioned conventional tensile strength materials. This invention relates to strips and molded products thereof.

(課題を解決するための手段) 本発明は、かかる課題を解決するために次のような手段
をとるものである。すなわち、本発明は成形条件下で溶
融可能の熱可塑性有機繊維20〜95重量%と耐熱性フ
ィラメント80〜5重置%とが混繊されていることを特
徴とする複合抗張力体成形用糸条及びこの糸条を引抜き
成形機に於て耐熱性フィラメントの軟化点以下、熱可塑
性有機繊維の融点以上の温度に加熱して熱可塑性有機繊
維を溶融し引抜き成形してつくられた抗張力体である。
(Means for Solving the Problems) The present invention takes the following measures to solve the problems. That is, the present invention provides a yarn for forming a composite tensile strength body, characterized in that 20 to 95% by weight of thermoplastic organic fibers that can be melted under forming conditions are mixed with 80 to 5% of heat-resistant filaments. This yarn is heated in a pultrusion machine to a temperature below the softening point of the heat-resistant filament and above the melting point of the thermoplastic organic fiber, and the thermoplastic organic fiber is melted and pultruded to form a tensile strength body. .

特に、当該成形体用糸条が前記混繊糸の外周に成形条件
下で溶融可能な熱可塑性有機繊維を引抜き成形後の抗張
力体の直径の3%から20%の厚さ分だけ存在させた複
合抗張力体成形用糸条であり、更に熱可塑性打機繊維が
ポリエチレンテレフタレートであり、耐熱性フィラメン
トがガラス繊維である。
In particular, the yarn for the molded body has thermoplastic organic fibers that can be melted under molding conditions present on the outer periphery of the mixed fiber yarn to a thickness of 3% to 20% of the diameter of the tensile strength body after pultrusion molding. It is a yarn for forming a composite tensile strength body, the thermoplastic punching fiber is polyethylene terephthalate, and the heat-resistant filament is glass fiber.

以下に本発明の詳細な説明する。本発明において、熱可
塑性有機繊維が複合抗張力成形体のマトリックスとして
用いられるのは、引抜き成形後のロッドの表面に形成さ
れるスパイラルの溝の加りが容易であること、又引抜き
成形時マトリックスが溶融状態にあり、強化材繊維であ
る耐熱性有機繊維好ましくは耐熱性フィラメントが一方
向に整列しやすく結果として出来たロッドのモジュラス
が高くなるためである。又引抜き成形の生産性は従来の
熱硬化タイプの複合抗張力成形体に比べていちじるしく
高い利点もある。
The present invention will be explained in detail below. In the present invention, thermoplastic organic fibers are used as the matrix of the composite tensile strength molded article because the spiral grooves formed on the surface of the rod after pultrusion are easily formed, and the matrix during pultrusion is This is because the heat-resistant organic fibers, preferably the heat-resistant filaments, which are in a molten state and are reinforcing fibers are easily aligned in one direction, resulting in a high modulus of the resulting rod. Furthermore, the productivity of pultrusion molding is significantly higher than that of conventional thermosetting composite tensile strength molded products.

本発明において混繊糸が用いられるのは耐熱性フィラメ
ントと成形条件下で溶融可能の熱可塑性有機繊維とが均
一に混繊されている為に成形段階で前記熱可塑性有機繊
維が溶融して耐熱性フィラメントのみになったときに空
どう率が少なくなり、ひいては耐熱性フィラメントから
なる複合抗張力成形体の引張り強力、初期モジュラスが
大となるためである。
The mixed fiber yarn is used in the present invention because heat-resistant filaments and thermoplastic organic fibers that can be melted under molding conditions are uniformly mixed, so that the thermoplastic organic fibers melt during the molding step and are heat-resistant. This is because when only the heat-resistant filaments are used, the void ratio decreases, and as a result, the tensile strength and initial modulus of the composite tensile strength molded article made of the heat-resistant filaments increases.

前記耐熱性有機繊維とくに耐熱性フィラメントとは、融
点又は分解点が450℃以上であるフィラメントをいい
、例えばポリパラフェニレンテレフタルアミド繊維、ポ
リメタフェニレンイソフタルアミド繊維などの全芳香族
ポリアミド繊維のフィラメント、ガラス繊維、及び炭素
繊維などが挙げられる。中でも電気特性、強力、モジュ
ラス、価格の点からガラス繊維が望ましい。該耐熱性フ
ィラメントが前記混繊糸の中で占める割合は5〜80玉
電%の範囲である。5重量%滴定の場合には成形後のロ
ッドの引張強度が低く、他方80重量%をこえると逆に
混繊状態が悪くなって空どう率が多くなり、ひいては引
張強度が低くなるので好ましくない。
The heat-resistant organic fiber, particularly the heat-resistant filament, refers to a filament whose melting point or decomposition point is 450° C. or higher, such as fully aromatic polyamide fiber filaments such as polyparaphenylene terephthalamide fiber and polymetaphenylene isophthalamide fiber, Examples include glass fiber and carbon fiber. Among them, glass fiber is preferable from the viewpoint of electrical properties, strength, modulus, and price. The proportion of the heat-resistant filaments in the mixed yarn is in the range of 5 to 80%. In the case of titration of 5% by weight, the tensile strength of the rod after molding is low; on the other hand, if it exceeds 80% by weight, the mixed fiber condition deteriorates, the void ratio increases, and the tensile strength decreases, which is not preferable. .

また、前記耐熱性フィラメントと混繊されている熱可塑
性有機フィラメントは、前記耐熱性フィラメントに影響
を及ぼさない成形条件下において溶融可能でなければな
らない。けだし、熱可塑性有機フィラメントを溶融して
接着剤としての役目を果たさせるためである。この意味
から、該熱可塑性有機フィラメントは20〜95重量%
を古めなければならない。20重量%未滴定なると接着
効果が少なく、また95重量%をこえるとロッドの引張
強度が低下してしまう。この熱可塑性有機フィラメント
としては、次のものがあげられる。
Further, the thermoplastic organic filament mixed with the heat-resistant filament must be meltable under molding conditions that do not affect the heat-resistant filament. This is because the thermoplastic organic filament is melted to serve as an adhesive. In this sense, the thermoplastic organic filament contains 20 to 95% by weight.
must age. If the titration is less than 20% by weight, the adhesive effect will be low, and if it exceeds 95% by weight, the tensile strength of the rod will decrease. Examples of the thermoplastic organic filament include the following.

すなわち、ポリエチレン、ポリプロピレン等のポジオレ
フィン類、ナイロン6、ナイロン66等のポリアミド類
、ポリエチレンテレフタレート、ポリブチレンテレフタ
レート等のポリエステル類すらにはポリフェニレンスル
フィド、ポリエーテルエーテルケトン等の高耐熱性ポリ
マーなどほとんどの繊維の適用かり能である。
In other words, most polyolefins such as polyethylene and polypropylene, polyamides such as nylon 6 and nylon 66, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and highly heat-resistant polymers such as polyphenylene sulfide and polyether ether ketone, It depends on the application of the fiber.

中でもポリエチレンテレフタレート繊維が特性、価格バ
ランスがよいので好ましい。
Among these, polyethylene terephthalate fiber is preferred because it has a good balance of properties and price.

なお、前記耐熱性フィラメントは、太さが1〜10デニ
ールが好ましく、さらには1〜3デニールが好ましい。
The heat-resistant filament preferably has a thickness of 1 to 10 deniers, more preferably 1 to 3 deniers.

これは、空どう率を少なくするとともに、引張強度を高
くするためである。
This is to reduce the void ratio and increase the tensile strength.

また、前記熱可塑性有機フィラメントは、太さが1〜1
0デニールが好ましく、さらには1〜3デニールが好ま
しい。これも空どう率を少なくして優れた複合成形ロッ
ドとするためである。前記混繊糸の太さは、100〜1
ooooデニールが好ましく、またフィラメントは10
〜i ooo本が好ましい。これは、加工性、生産性の
点から特に引揃え及びプルトルージョン溶融成形におい
ても加工しやすいとの理由にも乏づくものである。
Further, the thermoplastic organic filament has a thickness of 1 to 1
A denier of 0 is preferred, and a denier of 1 to 3 is more preferred. This is also to reduce the void ratio and provide an excellent composite molded rod. The thickness of the mixed fiber yarn is 100 to 1
oooo denier is preferred, and the filament is 10
~i ooo books are preferred. This is because it is easy to process in terms of processability and productivity, especially in alignment and pultrusion melt molding.

次に前記混繊糸を用いて引抜き成形を行うが、この際、
抗張力材に要望される太さに応じて混繊糸を引揃えて引
抜き成形機へ導き、熱可塑性有機繊維の融点以上、耐熱
性フィラメントの軟化点以下の温度で加熱し、熱iJ塑
性有機繊維を溶融しつつ特定径のダイスより引抜いてロ
ッドを形成する。
Next, pultrusion molding is performed using the mixed fiber yarn, but at this time,
The mixed fiber yarns are pulled together according to the thickness required for the tensile strength material, guided to a pultrusion molding machine, and heated at a temperature above the melting point of the thermoplastic organic fiber and below the softening point of the heat-resistant filament to form a thermal iJ plastic organic fiber. A rod is formed by melting and drawing it through a die of a specific diameter.

ここで複合抗張力成形体用糸条の製造法について説明す
る。
Here, a method for manufacturing a yarn for a composite tensile strength molded article will be explained.

まず、成形条件下で溶融可能の熱可塑性有機マルチフィ
ラメント糸と耐熱性マルチフィラメント糸を高電圧例え
ば1000ボルト以上5000ボルト以下の電圧をかけ
て開繊して混繊するか、又はインターレース法(特公昭
3B−12230号、特公昭37−1175号公報参照
)により両方のマルチフィラメント糸を混繊して混繊糸
を製造する。
First, a thermoplastic organic multifilament yarn that can be melted under molding conditions and a heat-resistant multifilament yarn are opened and mixed by applying a high voltage, for example, 1000 volts to 5000 volts, or interlace method (special According to Japanese Patent Publication No. 3B-12230 and Japanese Patent Publication No. 37-1175), both multifilament yarns are mixed to produce a mixed yarn.

インターレース法は、糸軸とほぼ平行に2個またはそれ
以ト、の渦流乱流帯域をつくり、この帯域にフィラメン
ト糸を導いてループやクリンプを生しない程度に張力を
かけ、非かさ品性の緊密なストランドを製造する技術で
ある。インターレース法の原理は流体がフィラメント軸
に対して垂直になるよう衝突させると同時にフィラメン
トに対し平行な乱渦流を生じるように構成しこの乱渦流
が糸の張力および流体の速度または圧力に応じた程度に
フィラメント束を分繊し、同時にまったく無作為に個々
のフィラメントに仮撚をかけたたみ込みインタレースさ
せるものである。得られるインタレースの度合いは張力
、流体圧、オーバーフィード率、フィラメントのデニー
ル、フィラメント数、糸のモジュラスなどに影響される
The interlacing method creates two or more vortex turbulent zones approximately parallel to the yarn axis, guides the filament yarn into these zones, and applies tension to the extent that no loops or crimps occur, resulting in a non-bulky quality. It is a technique that produces tight strands. The principle of the interlacing method is that the fluid impinges perpendicularly to the filament axis, and at the same time generates a turbulent vortex flow parallel to the filament. The filament bundle is divided into fibers, and at the same time, the individual filaments are randomly twisted and interlaced. The degree of interlacing achieved is influenced by tension, fluid pressure, overfeed rate, filament denier, filament count, yarn modulus, etc.

混繊の手段として、インタレース法は、マルチフィラメ
ント糸を生産性高く、均一に混繊して複合成形ロッドに
したときに空どう率を低く下げることができるので好ま
しい。インターレースにおけるとくに重要なポイントは
オーバーフィード率、張力、流体圧力およびデニール、
フィラメント数である。耐熱性繊維は一般に熱可塑性有
機繊維に比ベモジュラスが高いため、オーバーフィード
率をや\高く、好ましくは5〜10%に設定することが
重要である。熱可塑性有機繊維は含有率に応じ耐熱性繊
維のオーバーフィード率を基準に設定すればよい。同様
に張力および流体圧力においても耐熱性繊維を基準とし
て従来の衣料用糸の製造条件に比べてや\高い条件で加
工することがポイントとなる。と(に、流体圧力は均一
な混合を得るためには10〜50psig好ましくは3
0〜50psigが好適である。また、均一な混繊には
上述の条件の他に混繊する繊維のデニールおよびフィラ
メント数も重要である。乱渦流域内における混繊は線密
度と密接に関係し、均一な混繊を得るには同一線密度で
あることが好ましい。
As a means for blending fibers, the interlacing method is preferable because it has high productivity and can lower the void ratio when uniformly blending multifilament yarns to form a composite molded rod. Particularly important points in interlacing are overfeed rate, tension, fluid pressure and denier,
is the number of filaments. Since heat-resistant fibers generally have a higher relative modulus than thermoplastic organic fibers, it is important to set the overfeed rate slightly higher, preferably 5 to 10%. The thermoplastic organic fiber may be set based on the overfeed rate of the heat-resistant fiber depending on the content. Similarly, in terms of tension and fluid pressure, it is important to process heat-resistant fibers under conditions that are slightly higher than those for manufacturing conventional clothing yarns. and (, the fluid pressure is preferably 10 to 50 psig to obtain uniform mixing.
0-50 psig is preferred. In addition to the above-mentioned conditions, the denier and number of filaments of the fibers to be mixed are also important for uniform fiber blending. The fiber mixing within the turbulent vortex region is closely related to the linear density, and in order to obtain uniform fiber mixing, it is preferable that the fibers have the same linear density.

ここで用いる熱可塑性有機繊維はフィラメントは限定さ
れない。次にステープルファイバーヲ混繊する例を説明
する。
The thermoplastic organic fiber used here is not limited to filaments. Next, an example of mixing staple fibers will be explained.

成形条件下で溶融可能な熱可塑性有機ステープルファイ
バーの繊維束例えばスライバー、粗糸などを用いて精紡
機で紡出する際に、耐熱性マルチフィラメント糸を開繊
し、前記精紡機のフロントローラの上流から供給して前
記ドラフトされつつある熱可塑性有機ステープルファイ
バーの繊維束と市ねて集束例えば可撚して複合糸とする
When spinning a fiber bundle of thermoplastic organic staple fibers that can be melted under forming conditions, such as slivers or rovings, using a spinning machine, the heat-resistant multifilament yarn is opened, and It is supplied from upstream and combined with the fiber bundle of the thermoplastic organic staple fibers that is being drafted and bundled, for example, twisted, to form a composite yarn.

開繊の手段としては、500ボルト以上好ましくは10
00ボルト以上の電圧をかけて開繊する電気開繊法、前
記耐熱性マルチフィラメント糸に張力をかけ、ついで弛
緩して開繊する緊張弛緩法があげられるが、前者の電気
開繊法が安定して開繊できる点で好ましい。
The opening means is 500 volts or more, preferably 10 volts or more.
The electrospreading method involves applying a voltage of 00 volts or more to open the fibers, and the tension-relaxation method involves applying tension to the heat-resistant multifilament yarn, then relaxing it and opening it, but the former electrospreading method is stable. This is preferable in that it can be opened by

また、前記の集束の手段としては、前述の加熱のほかに
流体仮撚、インターレースによる集束などがあるが、せ
撚で加熱する手段が熱可塑性有機ステープルファイバー
を前記複合糸の中で均一に配列させる意味で好ましい。
In addition to the above-mentioned heating, the above-mentioned focusing means include fluid false twisting, interlacing, etc., but heating by twisting arranges the thermoplastic organic staple fibers uniformly in the composite yarn. It is preferable in the sense that it allows

(作用) 上記複合糸を所望のロッド太さに応じて引揃えて連続引
抜き方式の成形機中に導き、熱可塑性有機繊維の溶融温
度又はそれ以上に加熱しつつ、所望の太さと形状のダイ
より引抜くことにより、所望の形状の引抜き成形品すな
わちロッドが得られる。ただし耐熱性繊維の含有率が全
体の5重量%滴定の場合は、少なすぎて上記最終製品に
おける補強効果が低くなり、反対に80重量%以上では
ボイド率が増大して不適当である。なお、耐熱性繊維の
含有率が上記の範囲内において、上記複合糸の外周に当
該糸条に用いたと同じ熱可塑性有機繊維を配して引抜き
成形することも可能であり、こうして得られた引抜き成
形品(ロッド)は、表面が熱可塑性有機繊維のみの溶融
層となるために後の溝づけ等の加工が容易となる。
(Function) The above-mentioned composite yarn is drawn in accordance with the desired rod thickness, guided into a continuous drawing type molding machine, heated to the melting temperature of thermoplastic organic fibers or higher, and molded into a die having the desired thickness and shape. By further drawing, a pultruded product or rod of the desired shape is obtained. However, if the content of heat-resistant fibers is 5% by weight of the total content, it is too small and the reinforcing effect in the final product will be low, while if it is 80% by weight or more, the void ratio will increase, making it unsuitable. In addition, within the above range of the content of heat-resistant fibers, it is also possible to arrange the same thermoplastic organic fibers used for the yarn around the outer periphery of the composite yarn and perform pultrusion molding. Since the surface of the molded product (rod) is a molten layer of only thermoplastic organic fibers, subsequent processing such as grooving is facilitated.

(実施例) 実施例1 耐熱性フィラメントとしてガラス繊維のマルチフィラメ
ント糸600デニール、420フイラメントを、熱可塑
性有機マルチフィラメント糸としてポリエチレンテレフ
タレートマルチフイラメン) (750デニール、96
フイラメント、フェノール/テトラクロルエタン=80
/40の混合溶媒中30℃で測定した極限粘度0.60
)を用い、これらを同時にタスラン加工用エアノズルに
供給して加工した。ただしガラス繊維の供給速度をポリ
エチレンテレフタレートマルチフィラメント(以下PE
T糸と略)の0.789倍に、またノズルの供給空気圧
を5kg/−に、空気流量を7Nm?/hrsにそれぞ
れ設定し、200m/分の速度で巻取った。得られたタ
スラン加工糸50本を引揃えて、引抜き成形機に導き、
溶融部の温度280℃で溶融しつつ、2.0■l径のダ
イより引抜き急冷した。尚引抜き速度は10m/分で行
った。この強化引抜きロッドにおけるガラス繊維の含有
率は60重量%であリポイド率は2%以下であった。ま
た上記ロッドをASTM・D・3039に準拠して引張
り試験を行なったところ120kg/−の引張強力、4
200kg/−の引張り弾性率と、JISK7055に
準拠したまげ試験でのまげ弾性率5800kg/wjを
有しかつ外観、径の均一性も極めてすぐれていた。また
ロッド表面にスパイラル溝が加工された後も引張強力の
変化はなかった。
(Example) Example 1 Glass fiber multifilament yarn 600 denier, 420 filament was used as the heat-resistant filament, and polyethylene terephthalate multifilament (750 denier, 96 denier) was used as the thermoplastic organic multifilament yarn.
Filament, phenol/tetrachloroethane = 80
Intrinsic viscosity measured at 30°C in a mixed solvent of /40: 0.60
), and these were simultaneously supplied to the Taslan processing air nozzle for processing. However, the supply speed of glass fiber is changed to polyethylene terephthalate multifilament (PE).
0.789 times the T thread), the nozzle supply air pressure to 5 kg/-, and the air flow rate to 7 Nm? /hrs, respectively, and the winding was performed at a speed of 200 m/min. The obtained 50 Taslan processed yarns were aligned and guided to a pultrusion machine.
While melting at a temperature of 280° C. at the melting point, it was drawn out from a die with a diameter of 2.0 μl and rapidly cooled. The drawing speed was 10 m/min. The glass fiber content in this reinforced drawn rod was 60% by weight, and the lipoid content was 2% or less. In addition, when the above rod was subjected to a tensile test in accordance with ASTM D 3039, the tensile strength was 120 kg/-, 4
It had a tensile elastic modulus of 200 kg/- and a curl elastic modulus of 5,800 kg/wj in a curl test based on JIS K7055, and had extremely excellent uniformity in appearance and diameter. Furthermore, there was no change in tensile strength even after spiral grooves were formed on the rod surface.

実施例2 実施例1と同じガラス繊維とポリエチレンテレフタレー
トマルチフィラメントを用い、同条件でタスラン加工糸
をえた。得られたタスラン加工糸50本を引揃えた上、
その外周部にポリエチレンテレフタレートマルチフィラ
メント(750デニール、96フイラメント)を配した
上で引抜き成形機に導き、溶融部の温度280℃で溶融
しつつ2.1.、径のガイより引抜き急冷した。
Example 2 Using the same glass fiber and polyethylene terephthalate multifilament as in Example 1, a Taslan processed yarn was obtained under the same conditions. After arranging the obtained 50 taslan processed yarns,
A polyethylene terephthalate multifilament (750 denier, 96 filaments) is placed around the outer periphery of the polyethylene terephthalate multifilament, which is then introduced into a pultrusion molding machine and melted at a temperature of 280°C at the melting point.2.1. , pulled out from a diameter guy and quenched.

このロッドの引張強力は178kg/−であった。The tensile strength of this rod was 178 kg/-.

比較例 ガラス繊維のマルチフィラメント糸(600デニール、
420フイラメント)50本を引揃えた後、熱硬化型の
不飽和ポリエステル樹脂を含浸して2.0謬■径のダイ
スに導き、ダイス中で160℃に加熱し90秒間滞沿さ
せる様にして引抜いた。
Comparative Example Glass fiber multifilament yarn (600 denier,
After arranging 50 filaments (420 filament), they were impregnated with thermosetting unsaturated polyester resin, introduced into a die with a diameter of 2.0 mm, heated to 160°C in the die, and held for 90 seconds. I pulled it out.

この引抜いた後のロッドの引張強力は170kg/−で
あったが引張り弾性率は3000kg/−であった。又
ロッド表面にスパイラル溝が加工された後の引張強力は
120kg/−と低(なっていた。
The tensile strength of the rod after being pulled out was 170 kg/-, but the tensile modulus was 3000 kg/-. Furthermore, the tensile strength after the spiral grooves were formed on the rod surface was as low as 120 kg/-.

(発明の効果) この発明の引抜き成形抗張力体は、熱可塑性有機繊維お
よび耐熱性繊維の混合された複合糸であるから従来の熱
可塑性合成樹脂粉末を付着した補強用繊維糸条に比べて
複合化が容易であり、かつ熱可塑性有機繊維の融点より
も高い温度で溶融引抜き成形することにより、ボイドの
少ない良好な引抜き成形ロッドの抗張力体を製造するこ
とができる。また引抜き成形のスピードが熱硬化樹脂と
補強用繊維よりなる引抜き成形の如く化学反応を伴わな
いので格段に早いメリットを有する。また上記2種の繊
維がタスラン加工等で微細に混合されることにより、熱
可塑性有機繊維の溶融含浸が容易に行なわれ、溶融され
た熱可塑性樹脂中に補強繊維を通過させて製造される引
抜き成形ロッドに比べて均質な成形抗張力体を製造する
ことができる。
(Effects of the Invention) Since the pultrusion-molded tensile strength member of the present invention is a composite yarn made of a mixture of thermoplastic organic fibers and heat-resistant fibers, it is more complex than conventional reinforcing fiber yarns to which thermoplastic synthetic resin powder is attached. By melt pultrusion molding at a temperature higher than the melting point of the thermoplastic organic fiber, it is possible to manufacture a good tensile strength pultrusion rod having few voids. In addition, the speed of pultrusion molding is much faster because it does not involve a chemical reaction, unlike pultrusion molding made of thermosetting resin and reinforcing fibers. In addition, by finely mixing the above two types of fibers through Taslan processing, etc., melt impregnation with thermoplastic organic fibers is easily performed, and pultrusion is produced by passing reinforcing fibers through the molten thermoplastic resin. A molded tensile strength body can be produced that is more homogeneous than a molded rod.

Claims (3)

【特許請求の範囲】[Claims] (1)成形条件下で溶融可能な熱可塑性有機繊維20〜
95重量%と該成形条件下で溶融しない耐熱性有機繊維
80〜5重量%とが混繊されていることを、特徴とする
複合抗張力体成形用糸条。
(1) Thermoplastic organic fiber that can be melted under molding conditions 20~
A yarn for forming a composite tensile strength body, characterized in that it is a blend of 95% by weight of heat-resistant organic fibers and 80 to 5% by weight of heat-resistant organic fibers that do not melt under the forming conditions.
(2)請求項1に記載された混繊糸の外周に、成形条件
下で溶融可能な熱可塑性有機繊維を存在させたことを特
徴とする抗張力体成形用糸条。
(2) A yarn for forming a tensile strength body, characterized in that thermoplastic organic fibers that can be melted under forming conditions are present on the outer periphery of the mixed fiber yarn according to claim 1.
(3)請求項1または2に記載された糸条を、引抜き成
形機を用いて、熱可塑性有機繊維を溶融し引抜き成形し
た抗張力体。
(3) A tensile strength body obtained by melting thermoplastic organic fibers and pultrusion molding the yarn according to claim 1 or 2 using a pultrusion molding machine.
JP63089571A 1988-04-12 1988-04-12 Yarn for forming high-tensile strength body and high-tensile strength body Pending JPH01266232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089571A JPH01266232A (en) 1988-04-12 1988-04-12 Yarn for forming high-tensile strength body and high-tensile strength body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089571A JPH01266232A (en) 1988-04-12 1988-04-12 Yarn for forming high-tensile strength body and high-tensile strength body

Publications (1)

Publication Number Publication Date
JPH01266232A true JPH01266232A (en) 1989-10-24

Family

ID=13974491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089571A Pending JPH01266232A (en) 1988-04-12 1988-04-12 Yarn for forming high-tensile strength body and high-tensile strength body

Country Status (1)

Country Link
JP (1) JPH01266232A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266231A (en) * 1988-04-13 1989-10-24 Nippon Oil Co Ltd Fiber-reinforced thermoplastic resin wiry material and production thereof
JPH03220336A (en) * 1990-01-22 1991-09-27 Central Glass Co Ltd Interlaced string and nozzle for preparing the same
JP2002054041A (en) * 2000-08-04 2002-02-19 Yotsuami:Kk Fused yarn of high-tenacity fiber
BE1030711B1 (en) * 2022-07-12 2024-02-12 Sioen Ind COMPOSITE PROFILE AND MIXED YARN FOR MANUFACTURING COMPOSITE PROFILES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209033A (en) * 1984-03-15 1985-10-21 バスフ・ストラクチュラル・マテリアルズ・インコーポレーテド Blend of composite carbon fiber and thermoplastic fiber
JPS60209034A (en) * 1984-03-15 1985-10-21 ヘキスト・セラニーズ・コーポレーション Composite fiber blend

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209033A (en) * 1984-03-15 1985-10-21 バスフ・ストラクチュラル・マテリアルズ・インコーポレーテド Blend of composite carbon fiber and thermoplastic fiber
JPS60209034A (en) * 1984-03-15 1985-10-21 ヘキスト・セラニーズ・コーポレーション Composite fiber blend

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266231A (en) * 1988-04-13 1989-10-24 Nippon Oil Co Ltd Fiber-reinforced thermoplastic resin wiry material and production thereof
JPH03220336A (en) * 1990-01-22 1991-09-27 Central Glass Co Ltd Interlaced string and nozzle for preparing the same
JP2002054041A (en) * 2000-08-04 2002-02-19 Yotsuami:Kk Fused yarn of high-tenacity fiber
BE1030711B1 (en) * 2022-07-12 2024-02-12 Sioen Ind COMPOSITE PROFILE AND MIXED YARN FOR MANUFACTURING COMPOSITE PROFILES

Similar Documents

Publication Publication Date Title
US5910361A (en) Hybrid yarn for composite materials with thermoplastic matrix and method for obtaining same
US6454975B1 (en) Process for making bulk yarns having improved elasticity and recovery
US5989710A (en) Molding material for thermoplastic composites
CA1061994A (en) Multifilament yarn having novel configuration and a method for producing the same
KR101439150B1 (en) Continuous carbon fiber/thermoplastic resin fiber composite yarn and method for manufacturing the same
JPH01266231A (en) Fiber-reinforced thermoplastic resin wiry material and production thereof
JPH08284035A (en) Composite yarn and parmanently deformable textile material prepared of it,its preparation and its use
US5439741A (en) Heterofilament composite yarn
JPH09324331A (en) Blended yarn for composite material and its production
JP2015059274A (en) Composite fiber and method for producing the same
JPH01266232A (en) Yarn for forming high-tensile strength body and high-tensile strength body
WO2006020404A1 (en) High-strength spun yarn produced from continuous high-modulus filaments, and process for making same
CN1329330C (en) Fiber glass product incorporating string binders
JP3178562B2 (en) Yarn for thermoplastic composites
GB2214937A (en) Glass fibre yarn
JP3345661B2 (en) Yarn for thermoplastic composites
JPH04183729A (en) Molding material for thermoplastic composite
KR102159211B1 (en) Composite Melting-yarn having excellent tactility and melange effect, And Method preparing same
Kurban et al. Hybrid yarn composites for construction
JPH02308824A (en) Material for thermoplastic composite
JPH01111040A (en) Blended fabric and molded article thereof
Mankodi et al. Study the effect of commingling parameters on glass/polypropylene hybrid yarns properties
CA1336056C (en) Means of producing a totally impregnated coated yarn structure
JPH0473235A (en) Production of blended yarn for use in composite material
Hasselbrack et al. Evaluation of carbon‐fiber‐reinforced thermoplastic matrices in a flat braid process