JPH01265610A - Input buffer circuit - Google Patents

Input buffer circuit

Info

Publication number
JPH01265610A
JPH01265610A JP63094137A JP9413788A JPH01265610A JP H01265610 A JPH01265610 A JP H01265610A JP 63094137 A JP63094137 A JP 63094137A JP 9413788 A JP9413788 A JP 9413788A JP H01265610 A JPH01265610 A JP H01265610A
Authority
JP
Japan
Prior art keywords
circuit
power supply
current path
supply potential
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63094137A
Other languages
Japanese (ja)
Inventor
Akira Uematsu
彰 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63094137A priority Critical patent/JPH01265610A/en
Publication of JPH01265610A publication Critical patent/JPH01265610A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/02Shaping pulses by amplifying

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manipulation Of Pulses (AREA)
  • Logic Circuits (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To make the circuit current zero at non-selection of a chip enable signal and to stop the current to the post-stage circuit simultaneously by interrupting each current path in response to a control signal when the input reaches a power voltage and bringing the output point to a power or ground potential. CONSTITUTION:In application of the circuit for a chip enable input buffer circuit, when a power voltage VDD enters an input terminal F, an output K of an inverter circuit comprising TRs P13 and N15 goes to a ground potential, TRs N17 and N19 are turned off and a current is zero in each current path. In the case of applying the circuit for an input buffer circuit of an address signal, when a ground potential VSS is given to a control terminal J, TRs N16 and N18 are turned off and a current is zero in each current path similarly. The current path between the output G of a differential circuit and the potential VSS is interrupted by the TR N14 and the level of the output G is boosted to the voltage VDD by a pullup means comprising a TR P12 simultaneously to interrupt the current of the next stage TR circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体メモリ等の半導体装置に使用され、TT
L論理の信号レベルをMOS論理の信号レベルに変換す
る機能を有す入力バッファ回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used for semiconductor devices such as semiconductor memories, and
The present invention relates to an input buffer circuit having a function of converting an L logic signal level to a MOS logic signal level.

〔従来の技術〕[Conventional technology]

従来の入力バッファ回路を第3図に示す、Plo、pH
はPチャンネル型MOSトランジスタ、N10、Nll
、N12、N13はNチャンネル型MO3+−ランジス
タ、レベル回路はトランジスタN12、N13から成り
、差動回路はトランジスタPIO1pH、N10、Ni
lから成る、F、G、H1■は各端子節点を表わしFは
入力端子、Gは出力端子に対応している、Vooは電源
電位、vssは接地電位である。     ゛この入力
バッファ回路は、製遺粂件(トランジスタの利得係数、
しきい値電圧)がバラついてもより安定したロジックベ
ルが得られる回路で以下その点について詳細に説明する
A conventional input buffer circuit is shown in FIG.
are P-channel type MOS transistors, N10, Nll
, N12, N13 are N-channel type MO3+- transistors, the level circuit consists of transistors N12, N13, and the differential circuit consists of transistors PIO1pH, N10, Ni
1, F, G, and H1 represent each terminal node, F corresponds to an input terminal, G corresponds to an output terminal, Voo is a power supply potential, and vss is a ground potential.゛This input buffer circuit is based on manufacturing parameters (transistor gain coefficient,
This is a circuit that can obtain more stable logic bells even if the threshold voltage (threshold voltage) varies, and this point will be explained in detail below.

トランジスタPIO1NIOを流れる電流を11、トラ
ンジスタpH、Nilを流れる電流を12、トランジス
タP10.P11のトランジスタ利得係数をそれぞれβ
P、。、βpH、t’ランジスタN10、Nil、N1
2、N13のトランジスタ利得係数をそれぞれβN1゜
、βNll、βN12 、βN口、トランジスタPIO
1Pitのしきい値電圧をV、、、、)ランジスタNl
01N11のしきい値電圧をvtI、N、この回路のロ
ジックレベルをV。L、I、)I各節点での電位をVI
、VHとする。
The current flowing through the transistors PIO1NIO is 11, the current flowing through the transistors pH and Nil is 12, the transistor P10 . The transistor gain coefficient of P11 is β
P. , βpH, t' transistor N10, Nil, N1
2. The transistor gain coefficient of N13 is βN1゜, βNll, βN12, βN port, transistor PIO, respectively.
The threshold voltage of 1Pit is V, , ) transistor Nl
The threshold voltage of 01N11 is vtI, N, and the logic level of this circuit is V. L, I, )I The potential at each node is VI
, VH.

トランジスタNil、N13飽和領域動作とする。入力
端子Fの入力電位がこの回路が持つロジックレベル近傍
時は、出力端子の電位は電源電位Vooと接地電位VB
=の中間程度にあり、トランジスタPIO5NIO共飽
和領域動作と言える。
The transistors Nil and N13 operate in the saturation region. When the input potential of the input terminal F is near the logic level of this circuit, the potential of the output terminal is equal to the power supply potential Voo and the ground potential VB.
It can be said that the transistor PIO5NIO operates in the co-saturation region.

これらをふまえこの回路のロジックレベルV。Lを求め
る。
Based on these, the logic level V of this circuit. Find L.

V I =’V no  V ths        
   ・・・(1)I x = 1 / 2βp++ 
 (Voo  VHV?hp )2=1/2βp*(V
 I−VtbN) 2  ・・・(2)I、=1/2β
p1゜(■。。−VH−Vt、、)’=1/2βNs 
(VOL  Vth+v ) 2・・・(3)ただしβ
N2〉〉βI、簡単化のためトランジスタN12のしき
いfr1電圧のバックゲート効果による増加分は無視す
る。
V I ='V no V ths
...(1) I x = 1 / 2βp++
(Voo VHV?hp)2=1/2βp*(V
I-VtbN) 2...(2) I, = 1/2β
p1゜(■..-VH-Vt,,)'=1/2βNs
(VOL Vth+v) 2...(3) However, β
N2>>βI, for simplicity, the increase in the threshold fr1 voltage of the transistor N12 due to the back gate effect is ignored.

式(2)より V)(=VDD   Vthp    Jβru+  
/j9p、l  (VI   VtbN’)     
 ”’(4)式(3)より VaL=713p+o/1Jsra  (VDo  V
HVthp ) +Vtbn   =(5)式(1)、
(4)、(5)より VGL=JβNll  °βPIO/βNIO/βpu
  (VDD  2VtbN)十VtbN式(6)から
、この人力バッファ回路のロジックレベルV。Lは、ト
ランジスタ利得係数β旧0、存しないことがわかる。唯
一依存するしきい値電βP11が0.2〜0.3である
ゆえ0.4■thN〜0 、6 V thnとよりエイ
キョウが少ない方向にある。
From formula (2), V) (=VDD Vthp Jβru+
/j9p,l (VI VtbN')
''(4) From equation (3), VaL=713p+o/1Jsra (VDo V
HVthp ) +Vtbn = (5) Formula (1),
From (4) and (5), VGL=JβNll °βPIO/βNIO/βpu
(VDD 2VtbN) 10VtbN From equation (6), the logic level V of this human buffer circuit. It can be seen that L does not exist when the transistor gain coefficient β is 0. Since the only dependent threshold voltage βP11 is 0.2 to 0.3, it is 0.4 thN~0, 6 V thn, which is a direction in which there is less radiation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体メモリの入力信号としては、半導体メモリチップ
の選択、非選択状態を制御するチップイネーブル信号な
どのチップコントロール系信号とアドレス信号があり、
それぞ五人カバッファ回路゛を必要とする。
Input signals for semiconductor memory include chip control signals such as chip enable signals that control the selection and non-selection states of semiconductor memory chips, and address signals.
Each requires five buffer circuits.

チップイネーブル信号が非選択(電源電圧VOO)時チ
ップの消費電流は入力バッファ回路ばかりでなくその他
の回路においても基本的ムゼロでなければならない。
When the chip enable signal is not selected (power supply voltage VOO), the current consumption of the chip must be basically zero not only in the input buffer circuit but also in other circuits.

チップイネーブル用人力バッファ回路として第3図の回
路を使用した場合、入力端子Fの電位が電源電圧■DD
となってもVoo  Vss間の3つの電流パス(トラ
ンジスタPLOとNIOが関与する電流パス、トランジ
スタpHとNilが関与する電流パス、トランジスタN
12とN13が関与する電流パス)すべてに電流が流れ
る。アドレス用人力バッファ回路として第3図の回路を
使用した場合、チップイネーブル信号の選択、非選択に
関係なく前記3つの電流パスに電流が流れる、ただし入
力端子Fのアドレス電位レベルがトランジスタNIOの
しきい電圧以下の場合はトランジスタPIOとNIOか
ら成るパスに電流は流れない、さらに入力端子Fのアド
レス電位次第では入力バッファ回路に続くトランジスタ
段で電流が流れる可能性が生じるという間顧点を持つ。
When the circuit shown in Figure 3 is used as a chip enable manual buffer circuit, the potential of input terminal F is equal to the power supply voltage ■DD
Even so, there are three current paths between Voo and Vss (current path involving transistors PLO and NIO, current path involving transistors pH and Nil, current path involving transistor N
Current flows through all current paths (including current paths involving N12 and N13). When the circuit shown in Fig. 3 is used as an address manual buffer circuit, current flows through the three current paths regardless of whether the chip enable signal is selected or not. If the voltage is below the threshold voltage, no current will flow through the path made up of transistors PIO and NIO, and depending on the address potential of input terminal F, there is a possibility that current will flow in the transistor stage following the input buffer circuit.

本発明は、かかる問題点を解決するためになされたもの
でチップイネーブル信号非選択(電源電圧Voo)時に
回路電流がゼロ同時に後段回路に電流を流さない入力バ
ッファ回路を提供することにある。
The present invention has been made to solve such problems, and an object of the present invention is to provide an input buffer circuit in which the circuit current is zero when the chip enable signal is not selected (power supply voltage Voo), and at the same time, no current flows to the subsequent stage circuit.

〔課題を解決するための手段〕[Means to solve the problem]

第1の電源電位と出力点との間にゲートとドレインを接
続した第1のNチャンネル型MOSトランジスタを少な
くとも1つ以上備え、前記出力点と第2の電源電位との
間に前記第1のNチャンネル型MOSトランジスタの持
つトランジスタ利得係数より十分低いトランジスタ利得
係数を持つ第2のNチャンネル型MOSトランジスタを
備えたレベル回路と、 前記第1の電源電位と前記第2の電源電位との間に配置
され入力信号と前記レベル回路の出力信号を入力とした
差動型回路と、 を備え製造条件(トランジスタ利得係数、しきい値電圧
)バラツキに対し安定なロジックレベルを持つ入力バッ
ファ回路において、 a)前記差動型回路の構成要素で前記入力信号を受ける
手段が属する前記第1の電流経路に設けられ制御信号の
状態に対応し前記第1の電流経路を切ったり切らなかっ
たりする第1のスイッチング手段と。
At least one first N-channel MOS transistor having a gate and a drain connected between a first power supply potential and an output point is provided, and the first N-channel MOS transistor is provided between the output point and a second power supply potential. a level circuit including a second N-channel MOS transistor having a transistor gain coefficient sufficiently lower than the transistor gain coefficient of the N-channel MOS transistor; and between the first power supply potential and the second power supply potential. an input buffer circuit having a logic level that is stable against variations in manufacturing conditions (transistor gain coefficient, threshold voltage), comprising: ) A first current path, which is a component of the differential circuit and is provided in the first current path to which the means for receiving the input signal belongs, and is configured to cut or not cut the first current path depending on the state of the control signal. and switching means.

b)前記差動型回路の出力と前記第1の電源電位または
前記第2の電源電位間に設けられ前記制御信号の状態に
対応し前記差動型回路の出力を前記第1の電源電位また
は第2の電源電位にするプルアラ1またはプルダウン手
段と、 C)前記差動型回路の構成要素で前記レベル回路の前記
出力を受ける手段が属する前記第1の電源電位と前記第
2の電源電位間の第2の電流経路に設けられ前記制御信
号の状態に対応し前記第2の電流経路を切ったり切らな
かったりする第2のスイッチング手段と、 d)前記第1、第2のNチャンネル型MO3)ランジス
タからなるレベル回路の第3の電流経路に設けられ前記
制御信号の状態に対応し前記第3の電流経路を切ったり
切らなかったりする第3のスイッチング手段と、 e)前記第2の電流経路に設けられ前記入力信号の状態
に対応し、前記第2の電流経路を切ったり切らなかった
りする第4のスイッチング手段と、f)前記第3の′r
4流経路に設けられ前記入力信号の状態に対応し、前記
第3の電流経路を切ったり切らなかったりする第5のス
イッチング手段と、から構成された入力バッフ7回路。
b) Corresponding to the state of the control signal provided between the output of the differential type circuit and the first power supply potential or the second power supply potential, the output of the differential type circuit is set to the first power supply potential or the second power supply potential. a puller 1 or pull-down means for setting the power supply potential to a second power supply potential; and C) between the first power supply potential and the second power supply potential to which the means for receiving the output of the level circuit which is a component of the differential circuit belongs. d) a second switching means provided in a second current path of the controller and configured to turn off or not turn off the second current path depending on the state of the control signal; d) the first and second N-channel type MO3; ) a third switching means provided in a third current path of a level circuit made of a transistor and configured to turn off or not turn off the third current path in accordance with the state of the control signal; e) the second current path; a fourth switching means provided in the path and configured to turn off or not turn off the second current path depending on the state of the input signal; f) the third switching means;
and a fifth switching means provided in the four current paths and configured to turn off or not turn off the third current path in response to the state of the input signal.

〔作 用〕[For production]

入力端子の電位レベルが電源電位VDDになると、レベ
ル回路の電流経路とレベル回路の出力を受けた差動回路
の構成要素が含まれた電流経路にそれぞれ設けられたス
イッチング手段がOFFとなり、各電流経路を切り回路
全電流がゼロとなる。入力信号を受けた差動回路の構成
要素が含まれた電流経路の電流はレベル回路の出力を受
けた差動回路の構成要素が含まれた電流経路の電流が前
記したようにゼロとなるため自動的にゼロとなる。
When the potential level of the input terminal reaches the power supply potential VDD, the switching means provided in the current path of the level circuit and the current path including the components of the differential circuit receiving the output of the level circuit are turned OFF, and each current The path is cut and the total current in the circuit becomes zero. The current in the current path that includes the components of the differential circuit that receives the input signal is zero because the current in the current path that includes the components of the differential circuit that receives the output of the level circuit becomes zero as described above. automatically becomes zero.

制御端子に半導体メモリチップ非選択に対応した信号が
入ると、レベル回路の出力を受けた差動回路の構成要素
が含まれた電流経路とレベル回路の電流経路にそれぞれ
設けられたスイッチング手段がその状態に反応し各電流
経路を切り回路全電流がゼロとなる。入力信号を受けな
差動回路の構成要素が含まれた′t&流経路の電流は前
述したと同様な理由によりゼロとなる。
When a signal corresponding to the non-selection of the semiconductor memory chip is input to the control terminal, the switching means provided respectively in the current path including the components of the differential circuit receiving the output of the level circuit and the current path of the level circuit are activated. In response to the situation, each current path is cut off and the total current in the circuit becomes zero. The current in the 't& current path, which includes the components of the differential circuit that does not receive the input signal, becomes zero for the same reason as described above.

同時に差動回路の出力と電源電圧VDDまたは接地電位
Vss間に設けられた1ルアツ1またはプルダウン手段
が制御信号に反応し差動回路の出力を電源電圧V0゜ま
たは接地電位VSSに固定し、入力バッファ回路以降の
トランジスタ回路に電流を流さない。
At the same time, a pull-down means provided between the output of the differential circuit and the power supply voltage VDD or the ground potential Vss responds to the control signal and fixes the output of the differential circuit to the power supply voltage V0° or the ground potential VSS. Do not allow current to flow through the transistor circuits after the buffer circuit.

〔実 施 例〕〔Example〕

第1図に本発明による入力バッファ回路の実施例を示す
、Plo、pHはPチャンネル型トランジスタで第2図
のPIOlPllとそれぞれ同一物である、N10、N
il、N12、N13はNチャンネル型トランジスタで
第2図のNl01Nil、N12、N13とそれぞれ同
一物である、Fは入力端子で第2図中のFと対応する、
Gは出力端子で第2図中のGと対応する、H,Iは回路
中の節点で第2図中のH5■とそれぞれ対応する、Jは
チップイネーブル系制御信号端子、Kは回路中の節点で
ある。
FIG. 1 shows an embodiment of the input buffer circuit according to the present invention. Plo and pH are P-channel transistors, respectively, and are the same as PIOlPll in FIG. 2. N10 and N
il, N12, and N13 are N-channel transistors, which are the same as Nl01Nil, N12, and N13 in FIG. 2, respectively. F is an input terminal and corresponds to F in FIG. 2.
G is an output terminal and corresponds to G in Figure 2.H and I are nodes in the circuit and correspond to H5■ in Figure 2, respectively.J is a chip enable control signal terminal, and K is a node in the circuit. It is a node.

PI3、PI3はPチャンネル型トランジスタ、N16
、N17、N18、N19はNチャンネル型l−ランジ
スタである。
PI3, PI3 is a P-channel transistor, N16
, N17, N18, and N19 are N-channel type l-transistors.

トランジスタN14、N16、N17、N18、N19
の能力は、前記式(6)を決めるトランジスタP10、
N10、pH、N11N12、N13からなる系にエイ
キョウを与えない程度の大きさに設定される。
Transistors N14, N16, N17, N18, N19
The ability of the transistor P10, which determines the above equation (6), is
The size is set to such an extent that it does not give any effect on the system consisting of N10, pH, N11, N12, and N13.

チップイネーブル用入力バッファ回路として本発明の回
路を使用した場合、チップイネーブル系IIJ#信号端
子の電位は電源電圧v0゜に固定とする、入力端子Fに
電源電圧VDOが入いると、1−ランジスタP13とN
15から成るインバータ回路の出力Kが接地電位v、、
となりトランジスタN17とN19はOFF状態となる
。トランジスタpH、N11、N16、N17とトラン
ジスタN12、N13、N18、N19と流れる電流は
なくなる。
When the circuit of the present invention is used as a chip enable input buffer circuit, the potential of the chip enable system IIJ# signal terminal is fixed to the power supply voltage v0°.When the power supply voltage VDO is applied to the input terminal F, the 1-transistor P13 and N
The output K of the inverter circuit consisting of 15 is at the ground potential v,
Therefore, transistors N17 and N19 are turned off. No current flows through transistors pH, N11, N16, N17 and transistors N12, N13, N18, N19.

トランジスタPIO1N14、NIOを流れる電流はト
ランジスタPi 1、Nl 1、N16、N17を流れ
る電流がゼロであるため自動的に流れない。
The current flowing through the transistors PIO1N14 and NIO does not flow automatically because the current flowing through the transistors Pi 1, Nl 1, N16, and N17 is zero.

トランジスタP13とN15からなるインバータ回路の
ロジックレベルはP13能力)N15能力としできるだ
け電源電圧VDD近傍に設定する。
The logic level of the inverter circuit consisting of transistors P13 and N15 is set as close to the power supply voltage VDD as possible, with P13 capability and N15 capability.

インバータ回路のロジックレベルは前記式(6)のロジ
ックレベルより低いと回路全体のロジックレベルがイン
バータ検出回路のロジックレベルになってしまうため前
記式(6)のロジックレベルより基本的に上であればよ
い。
If the logic level of the inverter circuit is lower than the logic level of the above formula (6), the logic level of the entire circuit will become the logic level of the inverter detection circuit, so if it is basically higher than the logic level of the above formula (6). good.

入力信号Fの高い方の電位レベルが前記式(6)のロジ
ックレベルとインバータ検出回路のロジックレベルの間
にある時の入力信号Fに対する出力Gの動きはトランジ
スタNIOだけの動作によって決まるため短時間である
。これに対し、入力信号Fの高い方の電位レベルがイン
バータ回路のロジックレベル以上にある時の入力信号F
に対する出力Gの動きはインバータ回路系が動作に絡む
ため時間を要する、特に入力信号Fが電源電圧V o。
When the higher potential level of the input signal F is between the logic level of equation (6) and the logic level of the inverter detection circuit, the movement of the output G with respect to the input signal F is determined by the operation of the transistor NIO only, so it takes a short time. It is. On the other hand, when the higher potential level of the input signal F is higher than the logic level of the inverter circuit, the input signal F
The movement of the output G relative to the input signal F takes time because the inverter circuit system is involved in the operation, especially when the input signal F is the power supply voltage Vo.

から接地電位vI側に変化した時がもつとも遅くれる形
となる。
The time when the voltage changes from the voltage to the ground potential vI side is delayed.

入力信号が電源電圧VD、から接地電位VSS側に変化
した時できるだけ早くインバータ回路を動作させ、出力
Gが電源電圧VDDに立ち上がる時間を早める所にイン
バータ回路のロジックレベルを電源電圧vDD近傍にす
る意図がある。
The intention is to operate the inverter circuit as quickly as possible when the input signal changes from the power supply voltage VD to the ground potential VSS side, and to set the logic level of the inverter circuit near the power supply voltage VDD so that the time for the output G to rise to the power supply voltage VDD is accelerated. There is.

アドレス信号の入力バッファ回路として第1図に示す本
発明の回路を使用したとする、制all端子Jにはチッ
プイネーブル信号に連動した信号が入りチップイネーブ
ル信号非選択時のその信号のレベルを接地電位VSSと
する。
Assuming that the circuit of the present invention shown in FIG. 1 is used as an input buffer circuit for the address signal, a signal linked to the chip enable signal is input to the control all terminal J, and the level of that signal when the chip enable signal is not selected is grounded. The potential is set to VSS.

制御端子Jに接地電位■□が入いると、トランジスタN
16、N18がOFF状態となり、トランジスタpH、
Nil、N16、N 17からなる経路とトランジスタ
N12、N13、N18、N19からなる経路に電流は
流れなくなる、トランジスタPIO1NIOからなる経
路の電流はトランジスタPi 1、Nl 1、N16、
N17からなる経路の電流がゼロとなるため自動的にゼ
ロとなる。
When the ground potential ■□ is applied to the control terminal J, the transistor N
16, N18 becomes OFF state, transistor pH,
Current no longer flows in the path consisting of Nil, N16, N17 and the path consisting of transistors N12, N13, N18, N19. The current in the path consisting of transistors PIO1NIO flows through transistors Pi 1, Nl 1, N16,
Since the current in the path consisting of N17 becomes zero, it automatically becomes zero.

同時に、差動回路の出力Gと接地電位V。間の電流経路
がトランジスタN14によって切られ、差動回路の出力
GがトランジスタP12のプルアップ手段によって電源
電圧VDoにあげられ、次段トランジスタ回路の電流を
たつ。
At the same time, the output G and ground potential V of the differential circuit. The current path between them is cut off by the transistor N14, and the output G of the differential circuit is raised to the power supply voltage VDo by the pull-up means of the transistor P12, and the current flows through the next stage transistor circuit.

この場合、トランジスタP13とPI3がら成るインバ
ータ回路の入力はFに接続したままでもよいし、切り離
し接地電位■s、Iに固定しておいてもよい。
In this case, the input of the inverter circuit consisting of the transistors P13 and PI3 may remain connected to F, or may be separated and fixed to the ground potential ■s, I.

第1図においてはスイッチング手段であるトランジスタ
N16、N17がトランジスタNilのソースと接地電
位71間に、トランジスタN18、N19がトランジス
タN13のソースと接地電位間に入っている。トランジ
スタN16、N17がトランジスタpHのゲート、ドレ
インとトランジスタNilのドレイン間に、トランジス
タN18、N19がトランジスタN12のソースとトラ
ンジスタN13のドレイン間にそれぞれ設けてもよい。
In FIG. 1, transistors N16 and N17 serving as switching means are placed between the source of transistor Nil and ground potential 71, and transistors N18 and N19 are placed between the source of transistor N13 and ground potential. Transistors N16 and N17 may be provided between the gate and drain of transistor pH and the drain of transistor Nil, and transistors N18 and N19 may be provided between the source of transistor N12 and the drain of transistor N13, respectively.

またトランジスタN18、N19をNチャンネル型トラ
ンジスタがらPチャンネル型トランジスタに変えて、ト
ランジスタN12のゲート、ドレイン(トランジスタN
13のゲート点でもある)と電源電圧Vpp間に置いて
もよい、ただしトランジスタN18に対応する物は制御
信号Jをインバータ回路で反転した信号をゲートに受け
、トランジスタN19に対応する物は入力信号Fを直接
ゲートに受ける形となる。
Also, transistors N18 and N19 are changed from N-channel transistors to P-channel transistors, and the gate and drain of transistor N12 (transistor N
13) and the power supply voltage Vpp, however, the transistor corresponding to transistor N18 receives at its gate a signal obtained by inverting the control signal J by an inverter circuit, and the transistor corresponding to transistor N19 receives the input signal. F is directly received by the gate.

第2図に本発明による入力バッファ回路のもう1つの実
施例を示す、基本的には第1図に示す実施例と同じであ
る、唯−異なるのは第1図のPチャンネル型トランジス
タP12とNチャンネル型トランジスタN14がなくな
り、新たにPチャンネル型トランジスタがトランジスタ
PIOのドレインと出力Gの間に、Nチャンネル型トラ
ンジスタN20が出力Gと接地電位の間にそれぞれ設け
られ、ゲート信号は制御信号JをPチャンネル型トラン
ジスタP15とNチャンネル型トランジスタN21から
なるインバータ回路で反転した信号を受けている点であ
る。動作上からは第1図の実施例ではチップイネーブル
信号が非選択という信号が制御端子Jに入った時差動型
回路の出力Gが電源電位VOOに上がるのに対し、第3
図の実施例はトランジスタN20が動作し出力Gが接地
電位になる。
FIG. 2 shows another embodiment of the input buffer circuit according to the present invention, which is basically the same as the embodiment shown in FIG. 1, the only difference being the P-channel transistor P12 of FIG. The N-channel transistor N14 is removed, a new P-channel transistor is provided between the drain of the transistor PIO and the output G, and an N-channel transistor N20 is provided between the output G and the ground potential, and the gate signal is the control signal J. It receives a signal inverted by an inverter circuit consisting of a P-channel transistor P15 and an N-channel transistor N21. From an operational point of view, in the embodiment of FIG.
In the illustrated embodiment, the transistor N20 operates and the output G becomes the ground potential.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、入力信号が電源電圧VDDになると、
各電流経路を切る手段と、制御信号を受けその信号状態
に応じて各電流経路を切る手段と、前記制御信号を受け
その信号状態に応じて出力点を電源電位VOOまたは接
地電位■□にする手段を設けることにより、チップイネ
ーブル信号非選択時に回路電流がゼロ、同時に後段回路
に電流を流さない入力バッファ回路が可能となる。
According to the present invention, when the input signal becomes the power supply voltage VDD,
means for cutting off each current path; means for receiving a control signal and cutting off each current path according to the signal state; and means for receiving the control signal and setting the output point to power supply potential VOO or ground potential ■□ according to the signal state. By providing the means, it is possible to provide an input buffer circuit in which the circuit current is zero when the chip enable signal is not selected, and at the same time, no current flows to the subsequent stage circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明による実施例を示す図である。 第3図は従来の入力バッファ回路図である0図において
、 N10、Nil、N12、N13、N14、N15、N
16、N17、N18、N19、N20、N21 ・・・・Nチャンネル型トランジスタ P10、Pll、PI3、PI3、PI3、PI3・・
・・Pチャンネル型トランジスタF・・・・・・入力信
号端子 G・・・・・・出力信号端子 J・・・・・・制御信号端子 H,I、K・・回路中の各節点 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)第′2−B
FIG. 1 and FIG. 2 are diagrams showing an embodiment according to the present invention. FIG. 3 is a conventional input buffer circuit diagram, in which N10, Nil, N12, N13, N14, N15, N
16, N17, N18, N19, N20, N21... N-channel transistor P10, Pll, PI3, PI3, PI3, PI3...
...P-channel transistor F...Input signal terminal G...Output signal terminal J...Control signal terminal H, I, K...Apply for each node or more in the circuit Person Seiko Epson Co., Ltd. Representative Patent Attorney Masaharu Kamiyanagi (and 1 other person) No. 2-B

Claims (1)

【特許請求の範囲】  第1の電源電位と出力点との間にゲートとドレインを
接続した第1のNチャンネル型MOSトランジスタを少
なくとも1つ以上備え、前記出力点と第2の電源電位と
の間に前記第1のNチャンネル型MOSトランジスタの
持つトランジスタ利得係数より十分低いトランジスタ利
得係数を持つ第2のNチャンネル型MOSトランジスタ
を備えたレベル回路と、 前記第1の電源電位と前記第2の電源電位との間に配置
され入力信号と前記レベル回路の出力信号を入力とした
差動型回路と、 を備え製造条件(トランジスタ利得係数、しきい値電圧
)バラツキに対し安定なロジックレベルを持つ入力バッ
ファ回路において、 a)前記差動型回路の構成要素で前記入力信号を受ける
手段が属する前記第1の電源電位と前記第2の電源電位
間の第1の電流経路に設けられ制御信号の状態に対応し
前記第1の電流経路を切ったり切らなかつたりする第1
のスイッチング手段と、 b)前記差動型回路の出力と前記第1の電源電位または
前記第2の電源電位間に設けられ前記制御信号の状態に
対応し前記差動型回路の出力を前記第1の電源電位また
は第2の電源電位にするプルアップまたはプルダウン手
段と、 c)前記差動型回路の構成要素で前記レベル回路の前記
出力を受ける手段が属する前記第1の電源電位と前記第
2の電源電位間の第2の電流経路に設けられ前記制御信
号の状態に対応し前記第2の電流経路を切ったり切らな
かったりする第2のスイッチング手段と、 d)前記第1、第2のNチャンネル型MOSトランジス
タからなるレベル回路の第3の電流経路に設けられ前記
制御信号の状態に対応し前記第3の電流経路を切ったり
切らなかったりする第3のスイッチング手段と、 e)前記第2の電流経路に設けられ前記入力信号の状態
に対応し前記第2の電流経路を切ったり切らなかつたり
する第4のスイッチング手段と、f)前記第3の電流経
路に設けられ前記入力信号の状態に対応し前記第3の電
流経路を切ったり切らなかつたりする第5のスイッチン
グ手段とを具備したことを特徴とする入力バッファ回路
[Scope of Claims] At least one first N-channel MOS transistor having a gate and a drain connected between a first power supply potential and an output point, and a first N-channel MOS transistor having a gate and a drain connected between the output point and a second power supply potential; a level circuit comprising a second N-channel MOS transistor having a transistor gain coefficient sufficiently lower than the transistor gain coefficient of the first N-channel MOS transistor between the first power supply potential and the second power supply potential; A differential circuit that is placed between the power supply potential and inputs the input signal and the output signal of the level circuit, and has a logic level that is stable against variations in manufacturing conditions (transistor gain coefficient, threshold voltage). In the input buffer circuit, a) a component of the differential circuit that is provided in a first current path between the first power supply potential and the second power supply potential to which the means for receiving the input signal belongs, and that receives the control signal; a first current path that cuts or does not cut the first current path depending on the state;
b) a switching means provided between the output of the differential circuit and the first power supply potential or the second power supply potential to switch the output of the differential circuit to the second power supply in response to a state of the control signal; c) pull-up or pull-down means for setting the power supply potential to one power supply potential or a second power supply potential; d) a second switching means provided on a second current path between the two power supply potentials and for turning off or not cutting off the second current path depending on the state of the control signal; d) the first and second switching means; e) a third switching means provided in a third current path of a level circuit consisting of an N-channel MOS transistor and configured to turn off or not turn off the third current path in response to the state of the control signal; f) fourth switching means provided in the second current path and configured to turn off or not the second current path depending on the state of the input signal; and f) fourth switching means provided in the third current path to switch the input signal and a fifth switching means for cutting off or not cutting off the third current path depending on the state.
JP63094137A 1988-04-15 1988-04-15 Input buffer circuit Pending JPH01265610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094137A JPH01265610A (en) 1988-04-15 1988-04-15 Input buffer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094137A JPH01265610A (en) 1988-04-15 1988-04-15 Input buffer circuit

Publications (1)

Publication Number Publication Date
JPH01265610A true JPH01265610A (en) 1989-10-23

Family

ID=14102004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094137A Pending JPH01265610A (en) 1988-04-15 1988-04-15 Input buffer circuit

Country Status (1)

Country Link
JP (1) JPH01265610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761779A (en) * 1989-12-07 1998-06-09 Nippon Steel Corporation Method of producing fine metal spheres of uniform size

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761779A (en) * 1989-12-07 1998-06-09 Nippon Steel Corporation Method of producing fine metal spheres of uniform size

Similar Documents

Publication Publication Date Title
US4973864A (en) Sense circuit for use in semiconductor memory
KR100394573B1 (en) Sense amplifier in semiconductor memory device
US5537066A (en) Flip-flop type amplifier circuit
US6242949B1 (en) Digital voltage translator and its method of operation
US6201418B1 (en) Differential sense amplifier with reduced hold time
US7102439B2 (en) Low voltage differential amplifier circuit and a sampled low power bias control technique enabling accommodation of an increased range of input levels
JPH07321634A (en) Semiconductor integrated circuit
US5657290A (en) Sense amplifier for reading logic devices
JP3357634B2 (en) High-speed single-ended sensing with configurable half-latch
US4633442A (en) Protective circuitry for a read only memory
JP2001185999A (en) Differential sense amplifier circuit and dynamic logic circuit using the same
JPH01265610A (en) Input buffer circuit
JPH01159897A (en) Sense amplifier
JPH06343025A (en) Schmitt trigger circuit
KR100443643B1 (en) Receiver circuit of semiconductor integrated circuit
JP2000090683A (en) Sense amplifier circuit
JPH03105787A (en) Semiconductor integrated circuit
JPH05242682A (en) Differential amplifier circuit
KR100745989B1 (en) Differential amplifier
JPH0661834A (en) Input buffer circuit
JPS60136418A (en) Semiconductor integrated circuit device
TWM517481U (en) Voltage level converter
JPH0231398A (en) Sense circuit
JPH0353712A (en) Input buffer circuit
JPH02105391A (en) Precharging circuit