JPH01263521A - Hall element driving circuit - Google Patents

Hall element driving circuit

Info

Publication number
JPH01263521A
JPH01263521A JP63092907A JP9290788A JPH01263521A JP H01263521 A JPH01263521 A JP H01263521A JP 63092907 A JP63092907 A JP 63092907A JP 9290788 A JP9290788 A JP 9290788A JP H01263521 A JPH01263521 A JP H01263521A
Authority
JP
Japan
Prior art keywords
hall element
circuit
temperature
voltage
voltage signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092907A
Other languages
Japanese (ja)
Inventor
Toshikazu Matsushita
松下 利和
Haruhiko Suzuki
治彦 鈴木
Tadashi Shibata
正 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP63092907A priority Critical patent/JPH01263521A/en
Publication of JPH01263521A publication Critical patent/JPH01263521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To enable the compensation of a temperature characteristic of a Hall element over a wide temperature range, by supplying the Hall element with a working current increasing linearly in proportion to an absolute temperature. CONSTITUTION:Permanent magnets 12 and 13 the different pole faces of which are made opposite with a space between them are provided on a rotating plane 15 provided on the end part of a rotating shaft 14, and a Hall element 1 is disposed in a magnetic field B formed between the magnets 12 and 13. With the rotation of the rotating shaft 14, the direction of the magnetic field B passing through the Hall element 1 is varied and an output voltage V0 of a sine wave is obtained in accordance with an angle theta of the rotation. The output voltage V0 of the Hall element 1 shows the maximum when the rotation angle thetais at the position of 90 degrees, and this maximum output voltage lowers gradually with a rise in an ambient temperature. In order to maintain this output voltage V0 irrespective of a change in the temperature, such a working current as increasing in proportion to an absolute temperature is given to the Hall element 1 and thereby the fall of the output voltage V0 is offset.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はホール素子の駆動回路に関し、特に広い温度範
囲に亙って安定した素子出力を得ることが可能な駆動回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drive circuit for a Hall element, and particularly to a drive circuit that can obtain stable element output over a wide temperature range.

[従来の技術] 車両各部の操作機器や駆動機器の変位量検出には、従来
、ポテンショメータ等の接触式センサが使用されている
が、高頻度の使用に対して比較的寿命が短いという問題
があった。そこで、無接触式のポジションセンサが注目
されており、この内でもホール素子を使用したアナログ
型センサが、小形、製造簡易、磁界比例性良好、高怒度
等の特徴故に多用されつつある。
[Prior Art] Conventionally, contact sensors such as potentiometers have been used to detect the displacement of operating devices and drive devices in various parts of a vehicle, but they have a problem of relatively short lifespan due to high frequency use. there were. Therefore, non-contact type position sensors are attracting attention, and among these, analog type sensors using Hall elements are being used frequently because of their characteristics such as small size, easy manufacture, good magnetic field proportionality, and high intensity.

[発明が解決しようとする課題] しかしながら、上記ホール素子は特に感度の良いもの程
、温度特性が劣るという問題があり、これを補償するた
めにサーミスタや感温抵抗と組合わせて使用しているが
、この方法では車両部品に要求される広い使用温度範囲
(例えば−40℃〜125℃)で素子を補償することは
不可能である。
[Problem to be solved by the invention] However, the above-mentioned Hall elements have a problem in that the more sensitive they are, the worse their temperature characteristics are. To compensate for this, they are used in combination with a thermistor or temperature-sensitive resistor. However, with this method, it is impossible to compensate the device over a wide operating temperature range (for example, -40°C to 125°C) required for vehicle parts.

本発明はかかる問題点を解決するもので、広い温度範囲
でホール素子の温度特性を補償できる駆動回路を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention solves these problems, and aims to provide a drive circuit that can compensate for the temperature characteristics of a Hall element over a wide temperature range.

[課題を解決するための手段] 本発明のホール素子駆動回路は、磁界強度に応じた出力
信号を発するホール素子1(第1図)と、絶対温度に比
例して直線的に増加する電圧信号7丁を発する電圧信号
発生回路2と、上記電圧信号VTを入力してこれに比例
した電流を作動電流として上記ホール素子1に供給する
定電流回路3とを具備している。
[Means for Solving the Problems] The Hall element drive circuit of the present invention includes a Hall element 1 (Fig. 1) that emits an output signal according to magnetic field strength, and a voltage signal that increases linearly in proportion to absolute temperature. 7, and a constant current circuit 3 which inputs the voltage signal VT and supplies a current proportional to the voltage signal VT to the Hall element 1 as an operating current.

上記定電流回路3A、3B(第7図)を複数設けて、入
力する上記電圧信号VTに対してそれぞれ異なる比例定
数に設定し、一方、雰囲気温度を検出して所定温度で作
動指令信号を発する温度検出回路5と、上記作動指令信
号を受けて作動するスイッチング回路6とを設けて、該
スイッチング回路6により、上記複数の定電流回路3A
、3Bを上記電圧信号発生回路2に選択接続する構成も
採用できる。
A plurality of the constant current circuits 3A and 3B (Fig. 7) are provided, and each is set to a different proportional constant with respect to the input voltage signal VT, while the ambient temperature is detected and an operation command signal is issued at a predetermined temperature. A temperature detection circuit 5 and a switching circuit 6 that operates in response to the operation command signal are provided, and the switching circuit 6 operates the plurality of constant current circuits 3A.
, 3B may be selectively connected to the voltage signal generating circuit 2.

上記電圧信号発生回路2はポールブローコのバンドギャ
ップ定電圧回路で構成でき、該バンドギャップ定電圧回
路で得られる温度補償電圧を上記電圧信号VTとして使
用する。
The voltage signal generation circuit 2 can be constructed from a Paul Broco bandgap constant voltage circuit, and a temperature compensated voltage obtained by the bandgap constant voltage circuit is used as the voltage signal VT.

[作用] ホール素子は絶対温度にほぼ比例してその内部抵抗が増
大し、出力電圧が低下する。
[Function] The internal resistance of the Hall element increases almost in proportion to the absolute temperature, and the output voltage decreases.

ここにおいて、上記構成の駆動回路においては、絶対温
度に比例して直線的に増加する作動電流を上記ホール素
子に供給するから、温度上昇に伴う出力電圧の低下は防
止され、正確に磁界強度に応じた出力が得られる。
Here, in the drive circuit with the above configuration, since an operating current that linearly increases in proportion to the absolute temperature is supplied to the Hall element, a decrease in the output voltage due to a rise in temperature is prevented, and the magnetic field strength can be adjusted accurately. You can get output according to your needs.

上記ホール素子の出力電圧は絶対温度に全く直線的に比
例して低下する訳ではないから、比例定数の異なる定電
流回路を複数設けてこれらを所定温度で上記電圧信号発
生回路に選択接続する構成とすれば、上記出力電圧を折
れ線近似により、より精度良く補償することができる。
Since the output voltage of the Hall element does not decrease in direct proportion to the absolute temperature, a plurality of constant current circuits with different proportionality constants are provided and these are selectively connected to the voltage signal generation circuit at a predetermined temperature. If so, the output voltage can be compensated for more accurately by polygonal line approximation.

[第1実施例] ホール素子を回転位置センサとして使用した一例を第5
図に示す0図において、回転軸14の端部に設けた回転
面15上には間隔をおいて異なる磁極面を対向せしめた
永久磁石12.13が設けてあり、これら磁石12.1
3間には図中矢印の方向へ磁界Bが形成されている。そ
して、この磁界B中にホール素子1が配置しである。
[First Example] An example of using a Hall element as a rotational position sensor is shown in the fifth example.
In Figure 0 shown in the figure, permanent magnets 12.13 with different magnetic pole faces facing each other at intervals are provided on a rotating surface 15 provided at the end of the rotating shaft 14, and these magnets 12.1
3, a magnetic field B is formed in the direction of the arrow in the figure. The Hall element 1 is placed in this magnetic field B.

回転軸14の回転に伴って、ホール素子1を通過する磁
界Bの方向は変化し、回転角度θに応じて第6図に示す
如きサイン波の出力電圧■0が得られる。ちなみに、こ
の場合の磁石はSmCo系の希土類磁石、磁石の大きさ
はコストを考慮して数鵡角とし、磁石間距離は数層、常
温とした。
As the rotating shaft 14 rotates, the direction of the magnetic field B passing through the Hall element 1 changes, and a sine wave output voltage 0 as shown in FIG. 6 is obtained depending on the rotation angle θ. Incidentally, the magnet in this case was a SmCo-based rare earth magnet, the size of the magnet was several square centimeters in consideration of cost, the distance between the magnets was several layers, and the temperature was set at room temperature.

上記ホール素子1の出力電圧Voは回転角度θが図示の
90度の位置にある時に最大を示し、この最大出力電圧
は雰囲気温度の上昇に伴って、第4図に示す如く、次第
に低下する。図はホール素子に5KGの磁界を印加し、
1mAの定電流で作動せしめたもので、この時の低下曲
線は絶対温度にほぼ比例している。
The output voltage Vo of the Hall element 1 reaches its maximum value when the rotation angle θ is at 90 degrees as shown in the figure, and this maximum output voltage gradually decreases as the ambient temperature increases, as shown in FIG. 4. The figure shows a 5KG magnetic field applied to the Hall element.
It was operated with a constant current of 1 mA, and the drop curve at this time was almost proportional to the absolute temperature.

そこで、上記出力電圧■0を温度変化に無関係に一定に
保つには、絶対温度に比例して増大するような作動電流
を上記ホール素子1に与えて、上記出力電圧■0の低下
分を相殺すれば良い、実際、発明者等が使用を予定して
いるホール素子1について実験したところ、作動電流を
、第3図の実線とその上下の破線で示す如く、常温の2
5℃で1mAを示し絶対温度に対して1300±110
0ppの範囲の傾きで増加せしめれば、′ホール素子1
のロットによるバラツキ等を考慮しても出力電圧Voを
精度良く一定に保つこと゛ができる。
Therefore, in order to keep the output voltage (■0) constant regardless of temperature changes, an operating current that increases in proportion to the absolute temperature is applied to the Hall element 1 to offset the decrease in the output voltage (■0). In fact, when the inventors conducted an experiment on the Hall element 1 that they plan to use, they found that the operating current was 2 at room temperature, as shown by the solid line and the broken lines above and below it in Figure 3.
1mA at 5℃ and 1300±110 relative to absolute temperature
If it is increased with a slope in the range of 0 pp, 'Hall element 1
It is possible to keep the output voltage Vo constant with high precision even if variations due to lots are taken into account.

かかる作動電流を作成するホール素子駆動回路の一例を
第1図に示す。
An example of a Hall element drive circuit that creates such an operating current is shown in FIG.

図において、1はホール素子、2は電圧信号発生回路、
3.4は定電流回路である。電圧信号発生回路2はポー
ルブローコのバンドギャップ定電圧回路として知られて
おり(例えば 工EEEJOURNAL  OF  5
OLID−8TATECIRCUITS、VOL、SC
9,No、6゜DECEMBER1974P、388〜
393)、高ゲインのオペアンプ21、ベース共通のト
ランジスタ22.23、および抵抗24.25.26.
27.28とから構成され、上記オペアンプ21の出力
端に温度依存性のない定電圧■^を得るものである。
In the figure, 1 is a Hall element, 2 is a voltage signal generation circuit,
3.4 is a constant current circuit. The voltage signal generation circuit 2 is known as Paul Broko's bandgap constant voltage circuit (for example, EEEJOURNAL OF 5
OLID-8TATECIRCUITS, VOL, SC
9, No, 6゜DECEMBER1974P, 388~
393), a high gain operational amplifier 21, a common base transistor 22.23, and a resistor 24.25.26.
27 and 28, to obtain a constant voltage {circle around (2)} without temperature dependence at the output terminal of the operational amplifier 21.

上記回路2において、抵抗26.27の接続点には下式
で表される絶対温度Tに比例する温度補償電圧VTが現
れる。
In the above circuit 2, a temperature compensation voltage VT proportional to the absolute temperature T expressed by the following formula appears at the connection point of the resistors 26 and 27.

T VT =2−− ・4 ・j! n4 ここで、Kはボルツマン定数、qは電荷(クーロン)で
あり、自然対数1n前の数字4は抵抗26.27の抵抗
値の比、自然対数In内の数字4はトランジスタのエミ
ッタ電流密度の比で、適当に設計可能である。ちなみに
、上式で表される電圧は、300°にで26mVである
T VT =2−− ・4 ・j! n4 Here, K is the Boltzmann constant, q is the electric charge (coulombs), the number 4 in front of the natural logarithm 1n is the ratio of the resistance value of the resistor 26.27, and the number 4 in the natural logarithm In is the emitter current density of the transistor. It can be designed appropriately based on the ratio. Incidentally, the voltage expressed by the above equation is 26 mV at 300°.

上記温度補償電圧VTは電圧信号として定電流回路3に
出力される。定電流回路3は、オペアンプ31とダーリ
ントントランジスタ32により構成されるボルテージフ
ォロアと、これとアース間に接続され電圧−電流変換比
を設定する可変抵抗33より構成されている。そして、
上記定電流回路3はホール素子1の一方の電流入力端子
1aに接続されて、上記ホール素子1に上記電圧信号に
応じた電流を供給する。ホール素子1の他方の電流入力
端子1bは抵抗11を介して電源線に接続されている。
The temperature compensation voltage VT is outputted to the constant current circuit 3 as a voltage signal. The constant current circuit 3 includes a voltage follower made up of an operational amplifier 31 and a Darlington transistor 32, and a variable resistor 33 connected between this and the ground to set a voltage-to-current conversion ratio. and,
The constant current circuit 3 is connected to one current input terminal 1a of the Hall element 1, and supplies the Hall element 1 with a current according to the voltage signal. The other current input terminal 1b of the Hall element 1 is connected to a power supply line via a resistor 11.

定電流回路4は、上記定電流回路3と同一構造で、オペ
アンプ41、ダーリントントランジスタ42、可変抵抗
43よりなり、ホール素子1の上記電流入力端子1aに
接続されている。上記定電流回路4には、電源電圧を抵
抗分圧した定電圧VBが入力しており、この定電圧V8
に比例した定電流が上記ホール素子1に供給される。
The constant current circuit 4 has the same structure as the constant current circuit 3, and includes an operational amplifier 41, a Darlington transistor 42, and a variable resistor 43, and is connected to the current input terminal 1a of the Hall element 1. A constant voltage VB obtained by dividing the power supply voltage by resistance is input to the constant current circuit 4, and this constant voltage V8
A constant current proportional to is supplied to the Hall element 1.

かくして、ホール素子1の作動電流の内、絶対温度Tに
比例して増加する電流分が定電流回路3より供給され、
絶対温度Tに比例しない部分が定電流回路4より供給さ
れて、雰囲気温度の変化に伴い低下するホール素子1の
出力分を相殺し、温度依存性のない安定した出力信号を
発生させる。
In this way, of the operating current of the Hall element 1, a current that increases in proportion to the absolute temperature T is supplied from the constant current circuit 3,
A portion that is not proportional to the absolute temperature T is supplied from the constant current circuit 4 to offset the output portion of the Hall element 1 that decreases with changes in ambient temperature, and generates a stable output signal that is not temperature dependent.

ホール素子1の出力信号電圧■0は増幅回路7(第2図
)へ入力し、増幅されて後段の処理回路等へ出力される
。上記増幅回路7は、バッファアンプ71.72.74
と差動アンプ73より構成され、可変抵抗75で増幅ゲ
インを調整するとともに可変抵抗76でオフセットを調
整する。
The output signal voltage 0 of the Hall element 1 is input to the amplifier circuit 7 (FIG. 2), amplified, and output to a subsequent processing circuit, etc. The above amplifier circuit 7 includes buffer amplifiers 71, 72, 74
and a differential amplifier 73, a variable resistor 75 adjusts the amplification gain, and a variable resistor 76 adjusts the offset.

上記実施例においては、定電流回路4の入力電圧■8は
電源電圧の変動に追従して変化し、これにより、ホール
素子1の出力電圧vOも変化する。
In the above embodiment, the input voltage (18) of the constant current circuit 4 changes in accordance with fluctuations in the power supply voltage, and as a result, the output voltage vO of the Hall element 1 also changes.

かかる変化を欲しない場合には、入力電圧VBとして定
電圧■^を入力せしめるようになせば良い。
If such a change is not desired, a constant voltage ■^ may be inputted as the input voltage VB.

[第2実施例] ホール素子出力電圧の温度依存性が一本の直線では近似
できない場合があり、かかる場合には折れ線近似によっ
てより高精度に補償する必要がある。
[Second Embodiment] There are cases where the temperature dependence of the Hall element output voltage cannot be approximated by a straight line, and in such a case, it is necessary to compensate with higher accuracy by using a polygonal line approximation.

駆動回路の一例を第7図に示す。図において、電圧信号
発生回路2は上記第1実施例と同一の構成を有し、その
電圧信号VTを受ける定電流回路3A、3Bを一対設け
るとともにこれらにそれぞれ対応して定電流回路4A、
4Bを一対設けている。
An example of the drive circuit is shown in FIG. In the figure, the voltage signal generation circuit 2 has the same configuration as the first embodiment, and is provided with a pair of constant current circuits 3A and 3B that receive the voltage signal VT, and a constant current circuit 4A and a constant current circuit 3B corresponding to the voltage signal VT.
A pair of 4Bs are provided.

各定電圧回路3A、3B、4A、4Bは上記第1実施例
と全く同一構成であるが、定電圧回路3A、3Bおよび
定電圧回路4A、4Bはそれぞれ互いに可変抵抗33.
43の設定を異ならしめである。
Each of the constant voltage circuits 3A, 3B, 4A, and 4B has exactly the same configuration as the first embodiment, but the constant voltage circuits 3A, 3B and the constant voltage circuits 4A, 4B each have a variable resistor 33.
43 settings are different.

温度検出回路としてのコンパレータ5が設けられて、そ
の「+」端子に上記電圧信号VTが入力せしめである。
A comparator 5 as a temperature detection circuit is provided, and the voltage signal VT is inputted to its "+" terminal.

電圧信号VTは前述の如く絶対温度に比例しているから
、上記コンパレータ5の「−」端子に適当な定電圧VC
を入力せしめておけば、雰囲気温度が所定値に達した時
に上記電圧信号VTが定電圧を越えてコンパレータ5よ
り「1」レベルの作動指令信号5aが発せられる。
Since the voltage signal VT is proportional to the absolute temperature as described above, an appropriate constant voltage VC is applied to the "-" terminal of the comparator 5.
If this is input, when the ambient temperature reaches a predetermined value, the voltage signal VT will exceed the constant voltage and the comparator 5 will issue an operation command signal 5a of "1" level.

上記コンパレータ5の出力はスイッチング回路6に入力
する。スイッチング回路6はスイッチングトランジスタ
61.62.63.64と信号反転用の補助トランジス
タ65.66を有し、各トランジスタ61〜64の出力
端は、定電流回路4A、4Bのオペアンプ41の出力端
および定電流回路3A、3Bのオペアンプ31の出力端
に接続されている。
The output of the comparator 5 is input to a switching circuit 6. The switching circuit 6 has switching transistors 61, 62, 63, 64 and auxiliary transistors 65, 66 for signal inversion. It is connected to the output end of the operational amplifier 31 of the constant current circuits 3A and 3B.

しかして、雰囲気温度が所定温度(Ta>以下では、定
電流回路3B、4Bが作動せしめられて所定の直線的増
加率を示す作動電流がホール素子1に供給され、上記所
定温度以上では代わって定電流回路3A、4Aが作動せ
しめられて異なる直線的増加率を示す作動電流が上記ホ
ール素子1に供給される。これを第8図の線Xで示す。
Therefore, when the ambient temperature is below a predetermined temperature (Ta>), the constant current circuits 3B and 4B are activated and an operating current showing a predetermined linear increase rate is supplied to the Hall element 1; The constant current circuits 3A and 4A are activated and operating currents showing different linear increase rates are supplied to the Hall element 1. This is indicated by the line X in FIG.

定電流回路をさらに増設すれば、同図の線yで示す如き
、温度Tb、Tcで屈曲する折れ線近似も可能である。
If a constant current circuit is further added, a polygonal line approximation that bends at temperatures Tb and Tc, as shown by line y in the figure, is also possible.

[発明の効果] 以上の如く、本発明のホール素子駆動回路は、ホール素
子出力電圧の温度依存性を、素子に供給する作動電流を
上記出力電圧と逆の温度特性を有して変化せしめること
により相殺するもので、広い温度範囲に互って安定した
素子出力を得ることができ、車両のボシシゴンセンサ等
として使用されるホール素子の駆動に好適に使用できる
ものである。
[Effects of the Invention] As described above, the Hall element drive circuit of the present invention changes the temperature dependence of the Hall element output voltage so that the operating current supplied to the element has a temperature characteristic opposite to that of the output voltage. This cancels each other out, and it is possible to obtain a stable element output over a wide temperature range, and it can be suitably used for driving Hall elements used as vehicular front sensors and the like.

【図面の簡単な説明】 第1図ないし第6図は本発明の第1実施例を示し、第1
図は駆動回路の回路図、第2図は増幅回路の回路図、第
3図は駆動回路により実現される素子作動電流の温度特
性を示す図、第4図は素子出力電圧の温度依存性を示す
図、第5図はホール素子を使用した回転位置センサの一
例を示す概略斜視図、第6図はその出力特性図、第7図
および第8図は本発明の第2実施例を示し、第7図は駆
動回路の回路図、第8図は駆動回路により実現される素
子作動電流の温度特性を示す図である。 1・・・ホール素子 2・・・電圧信号発生回路 3.3A、3B・・・定電流回路 5・・・コンパレータ(温度検出回i>6・・・スイッ
チング回路 7・・・増幅回路 1g1図 第3図 雰囲気5!I!j(C) 第4図 雰囲気湯度 じC) 第5図 第6図 回転角度θ
[Brief Description of the Drawings] Figures 1 to 6 show a first embodiment of the present invention.
Figure 2 is a circuit diagram of the drive circuit, Figure 2 is a circuit diagram of the amplifier circuit, Figure 3 is a diagram showing the temperature characteristics of the element operating current realized by the drive circuit, and Figure 4 shows the temperature dependence of the element output voltage. 5 is a schematic perspective view showing an example of a rotational position sensor using a Hall element, FIG. 6 is an output characteristic diagram thereof, and FIGS. 7 and 8 show a second embodiment of the present invention, FIG. 7 is a circuit diagram of the drive circuit, and FIG. 8 is a diagram showing the temperature characteristics of the element operating current realized by the drive circuit. 1... Hall element 2... Voltage signal generation circuit 3.3A, 3B... Constant current circuit 5... Comparator (temperature detection circuit i>6... Switching circuit 7... Amplifier circuit 1g1 diagram Fig. 3 Atmosphere 5!I!j (C) Fig. 4 Atmosphere hot water temperature JC) Fig. 5 Fig. 6 Rotation angle θ

Claims (2)

【特許請求の範囲】[Claims] (1)磁界強度に応じた出力信号を発するホール素子と
、絶対温度に比例して直線的に増加する電圧信号を発す
る電圧信号発生回路と、上記電圧信号を入力してこれに
比例した電流を作動電流として上記ホール素子に供給す
る定電流回路とを具備するホール素子駆動回路。
(1) A Hall element that emits an output signal according to the magnetic field strength, a voltage signal generation circuit that emits a voltage signal that linearly increases in proportion to absolute temperature, and a voltage signal generation circuit that inputs the voltage signal and generates a current proportional to this. A Hall element drive circuit comprising a constant current circuit that supplies the Hall element as an operating current.
(2)上記定電流回路を複数設けて、入力する上記電圧
信号に対してそれぞれ異なる比例定数に設定し、一方、
雰囲気温度を検出して所定温度で作動指令信号を発する
温度検出回路と、上記作動指令信号を受けて作動するス
イッチング回路とを設けて、該スイッチング回路により
、上記複数の定電流回路を上記電圧信号発生回路に選択
接続するようになした請求項1記載のホール素子駆動回
路。(3)上記電圧信号発生回路はポールブローコのバ
ンドギャップ定電圧回路であり、該バンドギャップ定電
圧回路で得られる温度補償電圧を上記電圧信号として使
用した請求項1ないし請求項2記載のホール素子駆動回
路。
(2) A plurality of the constant current circuits are provided, and each is set to a different proportional constant for the input voltage signal;
A temperature detection circuit that detects the ambient temperature and issues an operation command signal at a predetermined temperature, and a switching circuit that operates in response to the operation command signal are provided, and the plurality of constant current circuits are controlled by the voltage signal by the switching circuit. 2. The Hall element driving circuit according to claim 1, wherein the Hall element driving circuit is selectively connected to the generating circuit. (3) The hall according to claim 1 or 2, wherein the voltage signal generation circuit is a Paul Broco bandgap constant voltage circuit, and a temperature compensated voltage obtained by the bandgap constant voltage circuit is used as the voltage signal. Element drive circuit.
JP63092907A 1988-04-15 1988-04-15 Hall element driving circuit Pending JPH01263521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092907A JPH01263521A (en) 1988-04-15 1988-04-15 Hall element driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092907A JPH01263521A (en) 1988-04-15 1988-04-15 Hall element driving circuit

Publications (1)

Publication Number Publication Date
JPH01263521A true JPH01263521A (en) 1989-10-20

Family

ID=14067554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092907A Pending JPH01263521A (en) 1988-04-15 1988-04-15 Hall element driving circuit

Country Status (1)

Country Link
JP (1) JPH01263521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289111A (en) * 1993-04-02 1994-10-18 Stanley Electric Co Ltd Driving circuit for hall element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289111A (en) * 1993-04-02 1994-10-18 Stanley Electric Co Ltd Driving circuit for hall element

Similar Documents

Publication Publication Date Title
US5550469A (en) Hall-effect device driver with temperature-dependent sensitivity compensation
US6472865B1 (en) Magnetic rotational position sensor having dual magnetic flux sensor capabilities
US6509734B1 (en) Magnetic rotational position sensor
US5055768A (en) Temperature compensator for hall effect circuit
US4359685A (en) Magneto-resistance type contactless rotational angle detecting apparatus
TW201024772A (en) Sensor circuit
US6486659B1 (en) Magnetoresistor sensor die with an array of MRs
US6498482B2 (en) Magnetoresistor die composed of two reference mangetoresistors and a linear displacement sensing magnetoresistor
US6144197A (en) Rotational speed device with magneto-electric elements
US3613021A (en) Hall-effect amplifying device with temperature compensated characteristic
US6469497B2 (en) Magnetic position sensor system composed of two reference magnetoresistors and a linear displacement sensing magnetoresistor
CN111487569A (en) Bridge sensor with dummy resistor structure
US4683429A (en) Electrical circuit which is linearly responsive to changes in magnetic field intensity
DE3680435D1 (en) CONTACTLESS ANGLE SENSOR.
JPH01263521A (en) Hall element driving circuit
JP5126536B2 (en) Magnetic proportional current sensor gain adjustment method
US4715043A (en) Cross-coil type indicating instrument
JP2000329513A (en) Driving circuit for physical quantity detecting element and rotation angle sensor
JP2005337861A (en) Magnetism detection apparatus
JP2003035730A (en) Current detector
Venegas et al. Simple, inexpensive liquid helium temperature controller, using integrated semiconductor circuits
JPS6333390B2 (en)
JP3684691B2 (en) Temperature characteristic compensation circuit and magnetoelectric conversion element driving device using the temperature characteristic compensation circuit
JPH03137583A (en) Magnetic field detection circuit
JPH0477857B2 (en)