JPH01262672A - Pin diode - Google Patents

Pin diode

Info

Publication number
JPH01262672A
JPH01262672A JP9197388A JP9197388A JPH01262672A JP H01262672 A JPH01262672 A JP H01262672A JP 9197388 A JP9197388 A JP 9197388A JP 9197388 A JP9197388 A JP 9197388A JP H01262672 A JPH01262672 A JP H01262672A
Authority
JP
Japan
Prior art keywords
layer
region
type semiconductor
type
pin diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9197388A
Other languages
Japanese (ja)
Inventor
Takeshi Omukae
大迎 毅
Hiroki Eto
弘樹 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9197388A priority Critical patent/JPH01262672A/en
Publication of JPH01262672A publication Critical patent/JPH01262672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To reduce both series resistance in forward direction and electrostatic capacitance by a method wherein a P<+> guard-ring region is provided on the surface of a high specific resistant N-type semiconductor substrate with which a P<+> type semiconductor layer is surrounded. CONSTITUTION:A P<+> type guard-ring region is provided on the N-type semiconductor substrate 11, which becomes an I-layer, so as to surround the circumference of a P<+> semiconductor layer 14. The substrate 11 has a very high specific resistance: as a P-type inversion layer is generated on the surface, the layer 14 and a region 15 are connected with the inversion layer, and a current is injected also from the region 15. Also, the carrier injected in lateral direction from the region 14 is captured on the region 15, and the carrier is injected in downward direction again. Consequently, the layer 14 is almost made equal to the layer which is expanded to the position of the region 15, and the efficiency of current injection is increased. Moreover, as a depletion layer expanded to the substrate 11 with the diffusion potential only of the region 15, the depletion layer 21 can be increased in thickness in the vicinity of the surface of the substrate 11 by laminating the above-mentioned depletion layer and by the depletion layer formed by the layer 14. As a result, the junction capacitance of the PIN diode can be reduced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は順方向直列抵抗r、が小さく且つ静電容量Cが
小さいPINダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a PIN diode with a small forward series resistance r and a small capacitance C.

(ロ)従来の技術 PINダイオードは電子スイッチの基本回路動作を行う
半導体素子で、TVやFM等のチューナに利用される電
子同調システムや、VTRの高周波信号切替えスイッチ
として用いられ、スイッチ以外にもバンド切替えやAG
C回路等に幅広く応用されている(特開昭58−223
375号公報、HOIL29/91)。
(b) Conventional technology A PIN diode is a semiconductor element that performs the basic circuit operation of an electronic switch, and is used in electronic tuning systems used in tuners such as TVs and FM, and as a high-frequency signal changeover switch in VTRs. Band switching and AG
It is widely applied to C circuits, etc. (Japanese Patent Laid-Open No. 58-223
375, HOIL29/91).

第6図は従来のPINダイオードを示す断面図である。FIG. 6 is a sectional view showing a conventional PIN diode.

同図において、(1)は例えば2,000Ω口以上のN
形半導体基体、(2)はこのN形半導体基体(1)の−
主面の中心部分に形成したP″領域、(3)はこのN形
半導体基体(1)のP′″領域(3)を形成したー主面
の反対面に形成したN+領領域(4)は前記N形半導体
基体(1)の表面に形成した酸化膜、(5〉は前記P1
領域(2)の中心部分に接すると共に、この酸化膜(4
)の周辺部分に接するように形成した電極、(6〉はN
”型のチャンネルストッパ、(7〉はフィールドプレー
トである。
In the same figure, (1) is, for example, an N of 2,000Ω or more.
type semiconductor substrate, (2) is - of this N type semiconductor substrate (1)
The P'' region (3) formed at the center of the main surface is the P'' region (3) of this N-type semiconductor substrate (1) - the N+ region (4) formed on the opposite surface of the main surface. is an oxide film formed on the surface of the N-type semiconductor substrate (1), and (5> is the oxide film formed on the surface of the P1).
This oxide film (4) is in contact with the central part of the region (2).
), (6> is N
" type channel stopper, (7> is the field plate.

なお、前記半導体基体(1)中のP0領域(2)および
N3領域(3)を除いた領域がイントリンシック層とし
て動作する。
Note that the region in the semiconductor substrate (1) other than the P0 region (2) and the N3 region (3) operates as an intrinsic layer.

この構成によるPINダイオードの主要な電気的特性は
周知のように、静電容量Cと順方向直列抵抗r、とがあ
る。これらの特性はPINダイオードの設計寸法と密接
な関係があり、例えば順方向直列抵抗r、はPINダイ
オードのイントリンシック層厚さtiに正比例し、接合
面積Sに反比例する。今、順方向直列抵抗r、を非常に
小さな値に設計したい場合にはイントリンシック層厚d
tiを非常に薄くするか、または接合面積Sを非常に大
きくするかの何れかである。いいかえればPINダイオ
ードの機能を理想的な状態に近ずけるためにはこのイン
トリンシック層の実行的不純物濃度をできるだけ低下さ
せるため、P′″′″(2)およびN9領域(3)はそ
の不純物分布を階段状に形成する必要があり、そのため
にはP4領域(2)およびN4領域(3)を浅くする必
要がある。
As is well known, the main electrical characteristics of a PIN diode with this configuration are a capacitance C and a forward series resistance r. These characteristics are closely related to the design dimensions of the PIN diode; for example, the forward series resistance r is directly proportional to the intrinsic layer thickness ti of the PIN diode and inversely proportional to the junction area S. Now, if you want to design the forward series resistance r to a very small value, the intrinsic layer thickness d
Either ti should be made very thin, or the bonding area S should be made very large. In other words, in order to bring the function of the PIN diode close to the ideal state, the effective impurity concentration of this intrinsic layer should be reduced as much as possible, so the P'''''' (2) and N9 regions (3) are It is necessary to form a stepwise distribution, and for this purpose it is necessary to make the P4 region (2) and the N4 region (3) shallow.

しかしながら、従来のPINダイオードではイントリン
シック層厚さtiを非常に薄くするためには半導体基体
の厚さを非常に薄くしなければならず、製造工程中で破
損し易くなる。現在の製造技術では、このイントリンシ
ック層厚キtiは150μm以上ないと、実際上取扱い
ができない。このため、大量生産を実施する上で、イン
トリンシック層厚さtiには下限があるため、性能上満
足できるPINダイオードが得られない。一方、接合面
積Sを非常に大きくして、順方向直列抵抗r、を非常に
小言くする場合、PINダイオードチップの面積も必然
的に非常に大きくなり、製造原価が高く、実際上市場性
がなくなる。
However, in a conventional PIN diode, in order to make the intrinsic layer thickness ti very thin, the thickness of the semiconductor substrate must be made very thin, making it easy to break during the manufacturing process. With current manufacturing technology, it is practically impossible to handle this intrinsic layer thickness if it is less than 150 μm. For this reason, in carrying out mass production, there is a lower limit to the intrinsic layer thickness ti, making it impossible to obtain a PIN diode with satisfactory performance. On the other hand, if the junction area S is made very large and the forward series resistance r is made very small, the area of the PIN diode chip will inevitably become very large, and the manufacturing cost will be high, making it practically unmarketable. It disappears.

また、PINダイオードの静電容量Cは空乏層の浮きと
反比例し、その空乏層の厚きはイントリンシック層の不
純物濃度と厚みtiによって大きく左右される。静電容
量Cを小さくしたい場合には、前記空乏層がより拡がり
易いように設計すれば良い。ところが、N型半導体基体
(1)と酸化膜(4)の界面付近では酸化膜(4)中に
含まれるNaイオンの影響等により表面状態が変化し、
前記空乏層の厚みが他の部分よりも薄くなる為、静電容
量Cを増加させてしまう。
Furthermore, the capacitance C of the PIN diode is inversely proportional to the lift of the depletion layer, and the thickness of the depletion layer is largely influenced by the impurity concentration and thickness ti of the intrinsic layer. If it is desired to reduce the capacitance C, the depletion layer may be designed to expand more easily. However, near the interface between the N-type semiconductor substrate (1) and the oxide film (4), the surface condition changes due to the influence of Na ions contained in the oxide film (4).
Since the thickness of the depletion layer becomes thinner than other parts, the capacitance C increases.

(ハ〉発明が解決しようとする課題 このように、従来は順方向直列抵抗r、が非常に小さい
PINダイオードを量産的規模で製造するには製造技術
上の問題があり、実現が困難である欠点があった。また
、静電容量Cが小さいPINダイオードを得るには前記
表面状態の問題があり、やはり実現が困難である欠点が
あった。
(C) Problems to be Solved by the Invention As described above, it has been difficult to manufacture PIN diodes with very small forward series resistance r on a mass production scale due to manufacturing technology problems. In addition, there was the problem of the surface condition mentioned above in order to obtain a PIN diode with a small capacitance C, which also had the drawback of being difficult to realize.

(ニ)課題を解決するための手段 本発明は衛士した欠点に鑑み、P′″型半型体導体層4
)の周囲を囲むようにP0型のガードリング領域(15
)を設けることによって、順方向直列抵抗r。
(d) Means for Solving the Problems In view of the disadvantages of the present invention, the P''' type semi-conductor conductor layer 4
) P0 type guard ring area (15
), the forward series resistance r.

が小さく、且つ静電容量Cが小さいPINダイオードを
提供するものである。
The present invention provides a PIN diode with a small capacitance C and a small capacitance C.

(*)作用 N型半導体基板(11)は比抵抗が極めて高く、表面に
P型反転層が生じる為、P′″型半型体導体層4)とP
′″′″−ドリング領域(15)とが前記反転層によっ
てつながり、電流注入がPゝ型ガードリング領域(15
)からも行なわれる。また、P1型型半体層(14)か
ら横方向へ注入されたキャリアはガードリング領域(1
5)で捕獲され、再度下方向へ注入される。その為、実
質的にP+型半導体層〈14)をガードリング領域(1
5)の位置まで拡大したものに略等しくなり、電流の注
入効率が増す、さらに、N型半導体基板(11)にはP
+型ガードリング領域(15)の拡散電位だけで空乏層
が拡がるので、との空乏層とP′″型半型体導体層4)
による空乏層とを重ねることにより基板(11)表面近
傍での空乏層(21)の厚みを厚くできる。
(*) The working N-type semiconductor substrate (11) has an extremely high resistivity and a P-type inversion layer is formed on the surface, so the P''' type semi-conductor layer 4) and the P
The ``''''''-guard ring region (15) is connected by the inversion layer, and the current injection is connected to the P-type guard ring region (15).
) is also performed. Further, carriers injected laterally from the P1 type half layer (14) are transferred to the guard ring region (14).
5) and is injected downward again. Therefore, the P+ type semiconductor layer (14) is substantially covered by the guard ring region (1
5), which increases the current injection efficiency.Furthermore, the N-type semiconductor substrate (11) contains P.
Since the depletion layer expands only by the diffusion potential of the + type guard ring region (15), the depletion layer and the P'' type semi-conductor layer 4)
The thickness of the depletion layer (21) near the surface of the substrate (11) can be increased by overlapping the depletion layer (21) with the depletion layer (21).

〈へ)実施例 以下、本発明の一実施例を図面を参照しながら詳細に説
明する。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明によるPINダイオードの断面構造を示
す、同図において、(11)は面方位(111)、比抵
抗ρ=2000Ω・σ、厚さti−100乃至200μ
m程度のイントリンシック(I型)層となるN型半導体
シリコン基板、(12)は基板(11)の裏面に拡散法
あるいはエピタキシャル成長法によって形成した低比抵
抗のN9型半導体層、(13)は基板<11)表面の周
端部にリング状に形成したN+型のチャンネルストッパ
、(14)は基板(11)表面に選択的に拡散形成した
拡散深さ3乃至4μmのP00型半導層、(15)はP
+型半導体層(14)を囲む基板(11)表面にリング
状に形成したP″型ガードリング領域、(16〉は基板
(11)表面を覆う酸化膜、(17)はP+型半導体層
(14)にオーミックコンタクトするアノード電極、(
18)はN″)型半導体層(12)の全面にオーミック
コンタクトするカソード電極、(19)はフィールドプ
レートである。
Figure 1 shows the cross-sectional structure of the PIN diode according to the present invention. In the figure, (11) is the plane orientation (111), resistivity ρ = 2000Ω・σ, thickness ti-100 to 200μ
(12) is a low resistivity N9 type semiconductor layer formed on the back surface of the substrate (11) by a diffusion method or epitaxial growth method; (13) is an Substrate <11) N+ type channel stopper formed in a ring shape at the peripheral edge of the surface; (14) is a P00 type semiconductor layer with a diffusion depth of 3 to 4 μm selectively diffused on the surface of the substrate (11); (15) is P
A P″ type guard ring region formed in a ring shape on the surface of the substrate (11) surrounding the + type semiconductor layer (14), (16> is an oxide film covering the surface of the substrate (11), and (17) is a P+ type semiconductor layer ( 14) Anode electrode in ohmic contact with (
18) is a cathode electrode that makes ohmic contact with the entire surface of the N'' type semiconductor layer (12), and (19) is a field plate.

本願の特徴とするP+型ガードリング領域(15)は−
例としてP99型半導層(14)の形成と同時に拡散形
成しである。
The P+ type guard ring region (15), which is a feature of the present application, is -
For example, diffusion is performed simultaneously with the formation of the P99 type semiconductor layer (14).

この様な本願構成のPINダイオードの両端に順方向バ
イアス電圧を印加するとP′″型半導体層(14)から
!型層へのキャリア(ホール)の注入が行なわれ、アノ
ードからカソードへ順方向電流Itが流れる。その際、
順方向電流I、の大半はP33型半導層(14)の底部
から垂直にN1型半導体層(12)へと流れる。
When a forward bias voltage is applied to both ends of the PIN diode having the structure of the present invention, carriers (holes) are injected from the P'' type semiconductor layer (14) to the ! type layer, and a forward current flows from the anode to the cathode. It flows. At that time,
Most of the forward current I flows vertically from the bottom of the P33 type semiconductor layer (14) to the N1 type semiconductor layer (12).

ところが、N型半導体基板(14)は比抵抗ρが約20
00Ω・国と極めて高いので、基板(11)の表面は外
部からの影響を受は易く、その表面順位や重金属の影響
等によりP型反転層(2o)が生じている。すると、P
+型半導体層(14)とP9型ガードリング領域(15
)とがつながるので、順方向電流I。
However, the specific resistance ρ of the N-type semiconductor substrate (14) is approximately 20.
Since the resistance is extremely high at 00 Ω/mm, the surface of the substrate (11) is easily affected by external influences, and a P-type inversion layer (2o) is generated due to the surface order and the influence of heavy metals. Then, P
+ type semiconductor layer (14) and P9 type guard ring region (15)
) are connected, so the forward current I.

はP+型ガードリング領域(14)底部からの注入によ
っても流れる。また、順バイアス時にP99型半導層(
14)からI型層へ横方向に注入きれたキャリアは、大
部分が消滅せずにP4′型ガードリング領域(15)に
達し、ガードリング領域(15)に達したキャリアは、
順バイアスによる電界によってガードリング領域(15
)底部から■型層へと再度注入される。その為、構造的
にはP99型半導層(14)をガードリング領域(15
)の位置まで拡大したものに略等しく、順方向電流I、
の効率が増すので、順方向電圧V、を小さく、従って順
方向直列抵抗r。
also flows due to injection from the bottom of the P+ type guard ring region (14). In addition, when forward biasing, the P99 type semiconductor layer (
Most of the carriers that have been injected laterally into the I-type layer from 14) reach the P4'-type guard ring region (15) without disappearing, and the carriers that have reached the guard ring region (15) are
The guard ring region (15
) is injected again from the bottom into the ■ type layer. Therefore, structurally, the P99 type semiconductor layer (14) is connected to the guard ring region (15).
), and the forward current I,
The efficiency of the forward voltage, V, is reduced, and hence the forward series resistance, r, increases.

を低減できる。can be reduced.

一方、本願構造のPINダイオードの両端に逆方向バイ
アス電圧を印加すると、P00型半導層(14)とN型
半導体基板(11)とが形成するPN接合に空乏層(2
1)が拡がり、その空乏層(21)の厚みによってPI
Nダイオードの接合容量Cが決まる。
On the other hand, when a reverse bias voltage is applied to both ends of the PIN diode of the present structure, a depletion layer (2
1) expands, and due to the thickness of the depletion layer (21), PI
The junction capacitance C of the N diode is determined.

ところで、N型半導体基板(11)のN型(I型)層は
比抵抗ρが極めて高いので、前記逆バイアス電圧が無く
てもP+型半導体層(14)の拡散電位だけである程度
の空乏層(21)が拡がる。この現象は何の電位も印加
されないP0型ガードリング領域(15)でも同様であ
る。その為、無バイアス時にこれらの空乏層(21)が
連結するような位置にP0型ガードリング領域(15)
を配設しておけば、空乏層(21)が重畳するので基板
(11)表面近傍における空乏層(21〉の厚みを増大
できる。結果、PINダイオードの接合容量Cを低減で
きる。尚、前記逆バイアス電圧を変化させてもP′″型
ガードリング領域(15)の拡散電位による空乏層(2
1)は変化しないので、P′″型半導体層(14)から
の空乏層(21)がガードリング領域(15)からの空
乏層(21)を追い越すような逆バイアスを与えると前
記接合容量Cの低減効果は薄れる。
By the way, since the N-type (I-type) layer of the N-type semiconductor substrate (11) has an extremely high specific resistance ρ, a depletion layer can be formed to some extent by the diffusion potential of the P+ type semiconductor layer (14) even without the reverse bias voltage. (21) expands. This phenomenon also occurs in the P0 type guard ring region (15) to which no potential is applied. Therefore, a P0 type guard ring region (15) is placed at a position where these depletion layers (21) are connected when no bias is applied.
By disposing the depletion layer (21), the thickness of the depletion layer (21) near the surface of the substrate (11) can be increased.As a result, the junction capacitance C of the PIN diode can be reduced. Even if the reverse bias voltage is changed, the depletion layer (2) due to the diffusion potential of the P'' type guard ring region (15)
1) does not change, so if a reverse bias is applied such that the depletion layer (21) from the P''' type semiconductor layer (14) overtakes the depletion layer (21) from the guard ring region (15), the junction capacitance C The reduction effect of

第2図に本願の第2の実施例を示す0本実施例はP+型
ガードリング領域(15)を深さ5〜10μmとより深
く形成したものであり、ガードリング領域(15)が高
不純物濃度で深い為、ガードリング領域〈15)の底部
から注入きれる電流経路の抵抗成分がP11型半導層(
14)の底部から注入される電流経路のそれよりも小さ
い、その為、全体の順方向直列抵抗r、を一層低減でき
る。この効果はガードリング領域(15)が深い程大き
く、またガードリング領域(15)の不純物濃度が高い
程大きい、−方、ガードリング領域(15)には何ら電
極が配設きれないので、ガードリング領域(15)が形
成するPN接合の空乏層はその拡散電位によるものより
は厚く拡がらない。その為、上述したPINダイオード
の耐圧はやはりPゝ型半導体層(14)が形成するPN
接合の空乏層によるので、ガードリング領域(15)を
深くしたことによる耐圧劣化は無い。
FIG. 2 shows a second embodiment of the present application. In this embodiment, the P+ type guard ring region (15) is formed deeper to a depth of 5 to 10 μm, and the guard ring region (15) is highly impurity-containing. Because the concentration is deep, the resistance component of the current path that can be injected from the bottom of the guard ring region (15) is the P11 type semiconductor layer (
14) is smaller than that of the current path injected from the bottom of 14), so the overall forward series resistance r can be further reduced. This effect increases as the guard ring region (15) becomes deeper, and as the impurity concentration in the guard ring region (15) increases. The depletion layer of the PN junction formed by the ring region (15) does not expand to be as thick as that due to its diffusion potential. Therefore, the withstand voltage of the above-mentioned PIN diode is still the same as that of the PN formed by the P-type semiconductor layer (14).
Since this is due to the depletion layer of the junction, there is no breakdown voltage deterioration due to making the guard ring region (15) deep.

このように、本願はPI型ガードリング領域(15)を
設けることにより高性能のPINダイオードを得るもの
であり、その効果は第3図乃至第5図に示す如くになる
。第3図と第4図は夫々PINダイオードのr、−I、
特性とI、−V、特性を示す0本願のPINダイオード
は順方向直列抵抗r。
As described above, the present invention provides a high performance PIN diode by providing the PI type guard ring region (15), and the effects thereof are as shown in FIGS. 3 to 5. Figures 3 and 4 show r, -I, and PIN diodes, respectively.
Characteristics and I, -V, Characteristics 0 The PIN diode of this application has a forward series resistance r.

が従来の5Ωから2〜3Ω(I F−10mA )に低
減できると共に、同図から明らかな如く順方向電流!、
に対する順方向直列抵抗r、の直線性に優れる。また、
第5図はPINダイオードのC−V *特性を示し、同
図から明らかな如く、本願構造のものは逆方向電圧V、
が小さい領域で特に接合容量Cの低減効果が大きい。
can be reduced from the conventional 5Ω to 2 to 3Ω (IF-10mA), and as is clear from the figure, the forward current! ,
Excellent linearity of the forward series resistance r. Also,
Figure 5 shows the C-V* characteristics of a PIN diode, and as is clear from the figure, the structure of the present invention has a reverse voltage V,
The effect of reducing the junction capacitance C is particularly large in the region where C is small.

(ト〉発明の詳細 な説明した如く、本発明によれば順方向直列抵抗r、が
小きく且つ直線性に優れ、接合容量Cが小さい高性能の
PINダイオードを提供できる利点を有する。その為、
電子チューナの高周波信号切替スイッチとして用いて好
適である。
(G) As described in detail, the present invention has the advantage of providing a high-performance PIN diode with a small forward series resistance r, excellent linearity, and a small junction capacitance C. ,
It is suitable for use as a high frequency signal changeover switch for an electronic tuner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々本発明の第1と第2の実施例を
説明する為の断面図、第3図乃至第5図は本発明を説明
する為の特性図、第6図は従来例を説明する為の断面図
である。 〈11)は1層となるN型半導体基板、(12〉はN3
型半導体層、(14)はP+型半導体暦、(15)はP
゛型ガードリング領域、(21)は空乏層である。
1 and 2 are sectional views for explaining the first and second embodiments of the present invention, FIGS. 3 to 5 are characteristic diagrams for explaining the present invention, and FIG. 6 is a sectional view for explaining the first and second embodiments of the present invention. FIG. 2 is a sectional view for explaining a conventional example. (11) is a single layer N-type semiconductor substrate, (12) is N3
type semiconductor layer, (14) is P+ type semiconductor layer, (15) is P
The ゛-type guard ring region (21) is a depletion layer.

Claims (3)

【特許請求の範囲】[Claims] (1)一導電型高濃度層を有する高比抵抗基板の表面に
選択的に逆導電型の半導体層を形成したPINダイオー
ドにおいて、前記逆導電型半導体層を囲む前記高比抵抗
基板の表面に逆導電型のガードリング領域を設け、前記
逆導電型半導体層から前記高比抵抗基板へのキャリア注
入を行なうと共に、前記ガード、リング領域からもキャ
リア注入が行なわれるようにしたことを特徴とするPI
Nダイオード。
(1) In a PIN diode in which a semiconductor layer of an opposite conductivity type is selectively formed on the surface of a high resistivity substrate having a high concentration layer of one conductivity type, the surface of the high resistivity substrate surrounding the opposite conductivity type semiconductor layer is A guard ring region of opposite conductivity type is provided, and carriers are injected from the opposite conductivity type semiconductor layer to the high resistivity substrate, and carriers are also injected from the guard and ring regions. P.I.
N diode.
(2)前記逆導電型半導体層の拡散電位が形成する空乏
層と前記ガードリング領域の拡散電位が形成する空乏層
とが連結するような位置にガードリング領域を配置した
ことを特徴とする請求項第1項に記載のPINダイオー
ド。
(2) A guard ring region is arranged at a position such that a depletion layer formed by the diffusion potential of the opposite conductivity type semiconductor layer and a depletion layer formed by the diffusion potential of the guard ring region are connected. PIN diode according to item 1.
(3)前記ガードリング領域は前記逆導電型半導体層と
同時形成されたものであることを特徴とする請求項第1
項に記載のPINダイオード。
(3) Claim 1, wherein the guard ring region is formed simultaneously with the opposite conductivity type semiconductor layer.
PIN diode described in section.
JP9197388A 1988-04-14 1988-04-14 Pin diode Pending JPH01262672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9197388A JPH01262672A (en) 1988-04-14 1988-04-14 Pin diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9197388A JPH01262672A (en) 1988-04-14 1988-04-14 Pin diode

Publications (1)

Publication Number Publication Date
JPH01262672A true JPH01262672A (en) 1989-10-19

Family

ID=14041470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9197388A Pending JPH01262672A (en) 1988-04-14 1988-04-14 Pin diode

Country Status (1)

Country Link
JP (1) JPH01262672A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304824A (en) * 1990-08-31 1994-04-19 Sumitomo Electric Industries, Ltd. Photo-sensing device
US6504178B2 (en) * 1999-07-02 2003-01-07 Digirad Corporation Indirect back surface contact to semiconductor devices
WO2015194590A1 (en) * 2014-06-18 2015-12-23 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304824A (en) * 1990-08-31 1994-04-19 Sumitomo Electric Industries, Ltd. Photo-sensing device
US6504178B2 (en) * 1999-07-02 2003-01-07 Digirad Corporation Indirect back surface contact to semiconductor devices
WO2015194590A1 (en) * 2014-06-18 2015-12-23 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
JPWO2015194590A1 (en) * 2014-06-18 2017-04-20 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US10050133B2 (en) 2014-06-18 2018-08-14 Fuji Electric Co., Ltd. Application of thin insulating film layer in semiconductor device and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4607270A (en) Schottky barrier diode with guard ring
US5028548A (en) Method of manufacturing a planar semiconductor device having a guard ring structure
US6885077B2 (en) Schottky diode
US5041881A (en) Whiskerless Schottky diode
KR910008712B1 (en) Schottky barrier semiconductor device
US5345100A (en) Semiconductor rectifier having high breakdown voltage and high speed operation
US5705830A (en) Static induction transistors
JPH0766433A (en) Semiconductor rectifier element
US4999683A (en) Avalanche breakdown semiconductor device
US6225653B1 (en) Semiconductor components and methods of manufacturing semiconductor components
US4380021A (en) Semiconductor integrated circuit
US3755722A (en) Resistor isolation for double mesa transistors
JPH01262672A (en) Pin diode
US3707656A (en) Transistor comprising layers of silicon dioxide and silicon nitride
US4157561A (en) High power transistor
EP0064614B1 (en) Improved emitter structure for semiconductor devices
US3579278A (en) Surface barrier diode having a hypersensitive {72 {30 {0 region forming a hypersensitive voltage variable capacitor
US3855609A (en) Space charge limited transistor having recessed dielectric isolation
JPH08130317A (en) Semiconductor device provided with resistive field plate
JP3266250B2 (en) Semiconductor device
JP2001250962A (en) Diode
US4097887A (en) Low resistance, durable gate contact pad for thyristors
JPH02202061A (en) Reverse conduction gate turn off thyristor
JPH09181335A (en) Semiconductor device
KR19990010738A (en) Power semiconductor device and manufacturing method