JPH01262069A - Heating device for substrate and heating method - Google Patents

Heating device for substrate and heating method

Info

Publication number
JPH01262069A
JPH01262069A JP9103188A JP9103188A JPH01262069A JP H01262069 A JPH01262069 A JP H01262069A JP 9103188 A JP9103188 A JP 9103188A JP 9103188 A JP9103188 A JP 9103188A JP H01262069 A JPH01262069 A JP H01262069A
Authority
JP
Japan
Prior art keywords
substrate
heating
temperature
solder
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9103188A
Other languages
Japanese (ja)
Inventor
Tomohide Hirono
広野 友英
Hiroyuki Naka
裕之 中
Naoki Suzuki
直樹 鈴木
Susumu Saito
進 斎藤
Takao Naito
孝夫 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9103188A priority Critical patent/JPH01262069A/en
Publication of JPH01262069A publication Critical patent/JPH01262069A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace

Abstract

PURPOSE:To uniformize the temp. of a substrate face and to enable the reflow soldering of small and large electronic components at the same time by blowing the hot blast of specified temp. into a soldering furnace in the case of soldering the electronic components onto the substrate by reflow soldering. CONSTITUTION:The creamy solder for reflow soldering is printed on a substrate blank stock 7 and various small and large electronic components are mounted. This substrate 11 is placed on an endless conveyor 12, preheated by infrared rays heaters 13a, 13b with transporting it inside a heating device, heated by infrared ray heaters 13e, 13f further by executing the stabilization of the temp. by infrared ray heaters 13c, 13d in succession and the hot blast heated at 230 deg.C by a heating source 16 is blown into the furnace from a nozzle 17. The temp. of the lead part A of a small electronic part 8a and the lead part B of a large electronic part 8b located on the substrate are respectively made at the uniform temp. of more than the m.p. of a solder and yet less than the heat resistant temp. of the electronic parts and all of the electronic parts 8 are taken out to the outside of a heating furnace by solidifying the solder by cooling by a cooling fan 14 after their reflow soldering. The soldering defect rate is drastically reduced and soldering work efficiency is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種の電気・電子機器に使用される回路基板
(以下基板と呼ぶ)の製造工程で半田付けのために基板
を加熱する装置及び加熱方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus and a heating device for heating circuit boards for soldering in the manufacturing process of circuit boards (hereinafter referred to as "boards") used in various electrical and electronic devices. It is about the method.

従来の技術 近来、電子機器の小型化に伴ない、これらの機器に使用
される基板も小型化・高密度化されている。これらの基
板は、リフロー半田づけ法で、基板表面上に部品の半田
づけがなされる場合が多い。
BACKGROUND OF THE INVENTION In recent years, as electronic devices have become smaller, the substrates used in these devices have also become smaller and more dense. In many cases, components are soldered onto the surface of these boards using a reflow soldering method.

リフロー半田づけは、基板素材表面にスクリーン印刷や
デイスペンサーを用いて、リフロー用半田を塗布し、部
品を前記基板素材表面にマウント3 、 した後に、リフロー装置と称する半田付は装置によシ加
熱し、前記リフロー用半田を溶融し、冷却再固化(凝固
)させることによシ行なわれるものである。
In reflow soldering, reflow solder is applied to the surface of the board material using screen printing or a dispenser, and after the components are mounted on the surface of the board material, the soldering process is carried out using a device called a reflow soldering machine. This is accomplished by melting the reflow solder, cooling it, and re-solidifying (solidifying) it.

従来のりフロー装置では様々な加熱方法が用いられ、た
とえば赤外線による加熱(ふく耐加熱)、熱風による加
熱、蒸気潜熱を利用した加熱々どの方法がある。また、
これらの加熱方法を複合した方法(例えば特公昭61−
2561号公報)を用いた装置もある。
Conventional glue flow devices use various heating methods, including heating with infrared rays (heat resistant), heating with hot air, and heating using latent heat of steam. Also,
A method that combines these heating methods (for example,
There is also a device using the method (Japanese Patent No. 2561).

具体的に図を用いてリフロー加熱装置についてその構造
及び加熱方法について説明を行々う。第8図において、
リフロー用半田を塗布し、電子部品をマウントした基板
1は、搬送ベルト2の上に載置され、赤外線ヒータ3の
配置されたトンネル状の炉体4中へと搬送される。一般
的に搬送装置トシては、ステンレヌ製のメノンユベルト
又は−組のチェーンベルトが用いられている。基板1は
赤外線ヒータ3により加熱され、前記リフロー用半田が
溶融する温度以下で温度変化の割合が小さくなるように
安定化される。この安定化期間によりリフロー用半田中
の溶剤の気化が行なわれる。
The structure and heating method of the reflow heating device will be specifically explained using figures. In Figure 8,
A substrate 1 coated with reflow solder and mounted with electronic components is placed on a conveyor belt 2 and conveyed into a tunnel-shaped furnace body 4 in which an infrared heater 3 is arranged. Generally, a menonyu belt made of stainless steel or a set of chain belts is used as a conveying device. The substrate 1 is heated by an infrared heater 3 and stabilized so that the rate of temperature change is reduced below the temperature at which the reflow solder melts. During this stabilization period, the solvent in the reflow solder is vaporized.

リフロー用半田に共晶半田を用いた場合、半田の融点温
度は183℃であるだめ140℃〜170℃の間で基板
1の温度が安定化される。安定化後、基板1は前記搬送
ベルト2により炉体4から搬出され、熱風の吐出装置で
あるー(風プロワ5から吐出される高温の気体によシ半
田が溶融する温度以上まで温度上昇が行なわれる。共晶
半田の場合、220℃程度まで半田の温度を上昇させる
ことが好せしいとされている。温度上昇後、基板1は冷
却ファン6から送られる風により半田の凝固(固化)す
る温度まで冷却される。
When eutectic solder is used for reflow solder, the melting point temperature of the solder is 183°C, so the temperature of the substrate 1 is stabilized between 140°C and 170°C. After stabilization, the board 1 is carried out from the furnace body 4 by the conveyor belt 2, and the temperature rises to a temperature higher than the temperature at which the solder melts due to the high temperature gas discharged from the hot air blower 5. In the case of eutectic soldering, it is said that it is preferable to raise the temperature of the solder to about 220°C. After the temperature rises, the solder is solidified (solidified) on the board 1 by the air sent from the cooling fan 6. temperature.

発明が解決しようとする課題 しかしながら、上記のような方法を用いてリフローを行
なった場合、安定化温度から半田の溶融する温度まで温
度上昇を行なうために、熱風プロワ6から吐出される熱
風の温度は400′C〜6Q○℃の間のきわめて高い温
度が必要である。この為、基板上では220 ”C程度
壕でしか温度が1月・して5 ・・−7 いないにもかかわらず 部品の表面温度は300℃以上
にもなシ、部品は熱によシ損傷を受けることがある。ま
た、同一の基板面上でも部品の実装密度が低い箇所と高
い箇所では熱容量差による温度差が生じ、部品密度の高
いところではりフロー用半田が十分に溶融しない場合も
ある。
Problems to be Solved by the Invention However, when reflow is performed using the method described above, the temperature of the hot air discharged from the hot air blower 6 increases in order to raise the temperature from the stabilization temperature to the temperature at which the solder melts. requires extremely high temperatures between 400'C and 6Q°C. For this reason, even though the temperature on the board is only around 220"C in the trenches, the surface temperature of the parts never exceeds 300°C, and the parts are damaged by heat. In addition, even on the same board surface, there is a temperature difference due to the difference in heat capacity between areas where the component mounting density is low and high, and the solder for beam flow may not melt sufficiently in areas where the component density is high. .

以上は熱風と赤外線ヒータの2つの方式を併用したりフ
ローについての説明であるが、半田の溶融を赤外線ヒー
タで行なった場合にも同様な現象が生じる。
The above description is about the combination of two methods, hot air and infrared heater, and the flow, but a similar phenomenon occurs when solder is melted by an infrared heater.

本発明は上記問題点に鑑み、基板の部品温度の均一化を
行ないつつ基板を加熱する装置及び加熱方法を提供しよ
うとするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides an apparatus and a heating method for heating a substrate while uniformizing the temperature of the components of the substrate.

課題を解決するだめの手段 上記問題点を解決するために、本発明の基板加熱装置は
、リフロー用半田と電子部品を表面に持つ被加熱基板を
載置して連続的もしくは間欠的に走行する搬送装置と、
前記搬送装置を取シ囲んで設けられたトンネル状の炉体
にふく射加熱装置を持つ加熱炉と、前記加熱炉の内部に
前記リフロー用半田の融点以上で前記部品の耐熱温度以
下の温度の熱風を吹き出す熱風吐出装置と、前記加熱炉
の最終部に位置し搬送装置の搬送面向きに冷風を吹きつ
ける冷風吐出装置を備えている。
Means for Solving the Problems In order to solve the above problems, the substrate heating device of the present invention runs continuously or intermittently while placing a heated substrate having reflow solder and electronic components on its surface. A transport device;
A heating furnace having a radiation heating device in a tunnel-shaped furnace body provided around the conveying device, and a hot air having a temperature higher than the melting point of the reflow solder and lower than the heat resistance temperature of the component inside the heating furnace. and a cold air discharge device located at the final part of the heating furnace and blowing cold air toward the conveying surface of the conveying device.

また、本発明の基板加熱方法は、リフロー用半田と電子
部品を表面に有する被加熱基板を搬送装置上に載置する
工程と、前記搬送装置にて被加熱基板を走行させると共
に、ふく射加熱装置及び熱風吐出装置にて前記リフロー
用半田の融点以下の温度に加熱し基板の温度を均一化し
た後、半田融点以上の温度に前記基板を加熱する工程と
、前記搬送装置にて被加熱基板を走行させると共に、冷
風吐出装置にて冷却する工程とからなる基板加熱方法に
おいて、前記基板を半田融点以上の温度に加熱する工程
で前記の熱風吐出装置から吹き出される熱風の温度が、
前記半田の融点以上であり、かつ前記部品の耐熱温度以
下であることを特徴とする。
Further, the substrate heating method of the present invention includes a step of placing a substrate to be heated having solder for reflow and electronic components on the surface on a transfer device, running the substrate to be heated by the transfer device, and placing the substrate to be heated by a radiation heating device. and a step of heating the substrate to a temperature below the melting point of the solder for reflow using a hot air discharge device to equalize the temperature of the substrate, and then heating the substrate to a temperature above the melting point of the solder, and a step of heating the substrate to be heated using the transfer device. In a substrate heating method comprising the steps of running and cooling with a cold air discharge device, the temperature of the hot air blown from the hot air discharge device in the step of heating the substrate to a temperature equal to or higher than the solder melting point is
It is characterized in that it is higher than the melting point of the solder and lower than the heat resistance temperature of the component.

作用 本発明は上記の構成及び工程からなるもので、その作用
は以下のようになる。すなわち、半田の融点以下の温度
で均一化された基板は、赤外線ヒータによシ半田の融点
以上の温度に加熱されるが、部品の持つ熱容量の差によ
り基板の温度上昇に差が生じる。ここで半田の融点温度
以上でかつ部品の耐熱温度以下の熱風(温度をTAとす
る)を使用し基板のリフローする面に熱風が加わるよう
にすると、例えば第4図において赤外線ヒータのみによ
る場合は実線でかかれたように、基板及び部品温度がT
Aを越えるものに対して、熱風の影響によシ温度の上昇
する割合が減少し、破線のようになる。又、逆にTAを
下回る温度の部品や基板は、第5図に示すように熱風を
用いない場合実線のような温度変化になるのに対し、熱
風を用いた場合には破線のように温度の上昇が増加する
。この結果、部品や基板の温度は均一化し、温度上昇に
よる部品の損傷や、半田の不十分な溶融などを防ぐこと
が可能になる。
Effects The present invention consists of the above-mentioned structure and steps, and its effects are as follows. That is, a board that has been made uniform at a temperature below the melting point of the solder is heated by an infrared heater to a temperature above the melting point of the solder, but differences in the heat capacity of the parts cause differences in the temperature rise of the board. Here, if you use hot air (temperature is TA) that is above the melting point of the solder and below the heat-resistant temperature of the component so that the hot air is applied to the surface to be reflowed of the board, for example, in the case of using only an infrared heater as shown in Figure 4, As shown by the solid line, the temperature of the board and components is T.
For those exceeding A, the rate of increase in temperature due to the influence of hot air decreases, as shown by the broken line. Conversely, as shown in Figure 5, for parts and boards whose temperature is below TA, the temperature changes as shown by the solid line when hot air is not used, but when hot air is used, the temperature changes as shown by the broken line. The rise of increases. As a result, the temperatures of the parts and the board become uniform, making it possible to prevent damage to the parts and insufficient melting of the solder due to temperature rise.

実施例 次に、本発明の一実施例を図面に基づいて説明する。Example Next, one embodiment of the present invention will be described based on the drawings.

第1図は本発明の一実施例における加熱リフロー装置の
基本構造を示した炉の断面図である。また第2図は、本
実施例で用いた基板の斜視図である。第2図において、
基板はガラスエポキシを月質とした厚さ1゜emmの基
板素材了に、リフロー半田用のクリーム半田(融点18
3’Cの共晶半田粒子及び溶剤・レジン等からなり、図
では′電子部品8のリード下部となるため省略)が印刷
され各種の電子部品8がマウントされている。
FIG. 1 is a sectional view of a furnace showing the basic structure of a heating reflow apparatus in an embodiment of the present invention. Further, FIG. 2 is a perspective view of the substrate used in this example. In Figure 2,
The board is made of glass epoxy with a thickness of 1 mm, and cream solder for reflow soldering (melting point 18
It is made of 3'C eutectic solder particles, solvent, resin, etc., and in the figure, '' (omitted because it is the lower part of the lead of the electronic component 8) is printed, and various electronic components 8 are mounted.

第1図において基板11(第2図に示した基板)を連続
的に移動する書法用コンベア12上に載置し、ふく耐加
熱装置の一種である赤外線ヒータ13a、13bにより
加熱を行ない、さらに赤外線ヒータ130 、13dで
温度の安定化を行ない、引き続き赤外線ヒータ13e、
13fで加熱、冷風吐出装置である冷却ファン14から
室温の風を吹きつけることにより冷却を行なった。この
場合、第2図における小さい電子部品(耐熱温度240
′Cのフィルムコンデンサ)8aのリード部でアルA9
 \−7 点と、大きな電子部品(PLCC)sbのリード部であ
るB点の温度は、第3図に示すように変化し、A点の最
高温度は245℃・B点の最高温度は200℃となった
。A点における温度は、部品の耐熱温度を上回るためこ
れ以下の温度でリフローすることが望ましいが、B点に
おける温度は、共晶半田の望ましいりフロー温度220
℃より20℃低く、これよりも高い温度でリフローする
ことが望ましく、ふく射による加熱を用いた場合には、
この2つを満たすことは困囃である。
In FIG. 1, a substrate 11 (the substrate shown in FIG. 2) is placed on a continuously moving calligraphy conveyor 12, heated by infrared heaters 13a and 13b, which are a type of heat-resistant device, and further The infrared heaters 130 and 13d stabilize the temperature, and then the infrared heaters 13e and 13d
13f, and cooling was performed by blowing air at room temperature from a cooling fan 14, which is a cold air discharge device. In this case, the small electronic components shown in Figure 2 (heat resistant temperature 240
'C film capacitor) A9 at the lead part of 8a
The temperatures at point \-7 and point B, which is the lead part of a large electronic component (PLCC) sb, change as shown in Figure 3, with the maximum temperature at point A being 245°C and the maximum temperature at point B being 200°C. It became ℃. The temperature at point A exceeds the heat resistance temperature of the component, so it is desirable to reflow at a temperature lower than this, but the temperature at point B is lower than the desired flow temperature of eutectic solder, 220
It is desirable to reflow at a temperature that is 20 degrees Celsius or higher than this, and if radiation heating is used,
It is difficult to satisfy these two requirements.

そこで、本実施例では第1図の装置において、供給プロ
ワ15によシ矢印Bの方向に炉外の空気を熱源16に送
シ、熱源16で230℃に加熱しノズ/L’17よシ風
速1.3m/sの速度で炉内に常時送風を行ないつつ、
基板11を搬送ベルト12上に載置し、赤外線ヒータ1
3a〜13fで加熱を行なったところ、A点の最高温度
は234℃に、寸だB点の最高温度は218℃となった
。寸だ、温度変化のプロファイルは第3図におけるt1
以前はほとんど変化かなく、tl 以後のノズルから1
゜ の熱風が影響する部分のみが異なった。これにより、t
l 以前の条件を変更する必要はなく、電子部品8aは
耐熱温度以下の温度となり、また、電子部品8bのリー
ド部B点は、望ましいりフロー温度とほぼ等しい温度と
なった。以上の事例では、赤外線ヒータの温度設定を赤
外線ヒータ13a〜13fで、順に400’C,400
”C,150”C。
Therefore, in the present embodiment, in the apparatus shown in FIG. While constantly blowing air into the furnace at a speed of 1.3 m/s,
The substrate 11 is placed on the conveyor belt 12, and the infrared heater 1
When heating was performed at points 3a to 13f, the maximum temperature at point A was 234°C, and the maximum temperature at point B was 218°C. The temperature change profile is t1 in Figure 3.
Previously, there was almost no change, and from the nozzle after tl
The only difference was the part affected by the hot air. As a result, t
l There was no need to change the previous conditions; the temperature of the electronic component 8a was below the heat resistant temperature, and the temperature at point B of the lead portion of the electronic component 8b was approximately equal to the desired flow temperature. In the above example, the temperature settings of the infrared heaters 13a to 13f are set to 400'C and 400'C, respectively.
"C, 150"C.

150℃、400℃、40o”cとした。また、搬送コ
ンベアは連続的に移動するものとしたが、搬送の途中で
間欠的に停止を行ないつつ走行する搬送ベルトでもよく
、さらにウオーキングビームのようなものでも構わない
150℃, 400℃, and 40o"c. Also, although the conveyor was assumed to move continuously, a conveyor belt that runs while stopping intermittently during conveyance may also be used. It doesn't matter if it's something.

なお本実施例では風速1.377Z/S の速度の熱風
を炉内に送ったが、風が基板に熱を与える割合(熱伝達
率)は第6図に示すように風速の0.6〜0.8乗に比
例するので、高い速度の風を送った方がよシ基板温度を
均一化することができる。しかし、電子部品がこの風に
より移動子る可能性があるので、概ね3 yn/ s程
度以下の風が適切だと考えられる。
In this example, hot air was sent into the furnace at a speed of 1.377 Z/S, but the rate at which the air imparts heat to the substrate (heat transfer coefficient) is 0.6 to 0.6 of the wind speed, as shown in Figure 6. Since it is proportional to the 0.8th power, it is better to send air at a higher speed to make the substrate temperature more uniform. However, since there is a possibility that electronic components may be moved by this wind, a wind of approximately 3 yn/s or less is considered appropriate.

なお、ふく型加熱と熱風加熱を組み合わせることによる
岐加熱物の均一化加熱は、他のさ1ざ寸な場合について
も有効である。たとえば、今まで説明してきたりフロー
加熱の中で、半田融点以下の温度で均一化加熱をする場
合に、第7図に示す加熱装置を用いて、ノズル23a 
、23bから均一化する温度の熱風、たとえば150℃
の熱風を吹き出すことにより、第4図で示したCのよう
なオーバーシュートなしに漸近的に均一化することも可
能である。
Note that the uniform heating of the heated material by combining the oven-shaped heating and the hot air heating is also effective for other small-sized cases. For example, when performing uniform heating at a temperature below the solder melting point in the flow heating described so far, the heating device shown in FIG.
, 23b at a uniform temperature, e.g. 150°C.
By blowing out hot air, it is also possible to asymptotically equalize without overshooting as shown in C shown in FIG.

発明の効果 以上のように本発明は、リフロー半田づけにおける基板
加熱において、半田を溶融させる工程で半田の融点以上
のγ温度でかつ半田づけをする部品の耐熱温度以下であ
る熱風を炉中に流し基板温度の均一化をはかることによ
って、従来の方式と比較して次の様な効果が得られる。
Effects of the Invention As described above, the present invention provides a method for heating a board in reflow soldering by blowing hot air into a furnace at a gamma temperature higher than the melting point of the solder and lower than the heat resistance temperature of the parts to be soldered in the step of melting the solder. By making the flow substrate temperature uniform, the following effects can be obtained compared to the conventional method.

(i)耐熱濡髪が低〈従来別工程で人手により半田づけ
されていた部品も、同時にリフロー半田づけが可能とな
り、製造コストを引き下げることができる。
(i) Low heat resistance when wet. Components that were conventionally soldered manually in a separate process can now be reflow soldered at the same time, reducing manufacturing costs.

(11)半田側は不良率が低下し歩留9が向上する。(11) On the solder side, the defective rate is reduced and the yield rate is improved.

(1巾 また、これに加え、炉内に積極的に一定温髪の
空気を導入しているため、炉内に存在する被加熱基板の
大きさ、数の影響を受は変動していた炉中の雰囲気温度
を安定化することができ、従来と比して被加熱基板間で
のIg +変可現性が大幅に高くなる。
(1 width) In addition, since air at a constant temperature is actively introduced into the furnace, the temperature of the furnace fluctuates depending on the size and number of substrates to be heated inside the furnace. The temperature of the atmosphere inside can be stabilized, and the variability of Ig+ between heated substrates can be significantly increased compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における基板加熱装置の概略
構造を示す断面図、第2図は実施例に用いた基板の斜視
図、第3図、第4図及び第5図は時間と温度の関係を示
すグラフ、第6図は風速と熱伝達率の関係を示すグラフ
、第7図は本発明の他の実施例における基板加熱装置の
概略構造を示す断面図、第8図は従来の基板加熱装置の
概略構造を示す断面図である。 11・・・・・・基板、12・・・・・搬送ベルト、1
3・・・・・・赤外線ヒータ、14・・・・・・冷却フ
ァン、15・・・・・・送風ファン、16・・・・・・
熱源、17・・・・・・ノズル。 δα 第3図 77′  \、7ハ l     \ 、  b S′8ツ ノ皿/ゝ”’−−’+++−/\ 浅  / / / / (′C) 第5図 査問 第6図 T、f 第。。  時間 詩聖 虱 【
FIG. 1 is a sectional view showing a schematic structure of a substrate heating device in an embodiment of the present invention, FIG. 2 is a perspective view of a substrate used in the embodiment, and FIGS. A graph showing the relationship between temperature, FIG. 6 a graph showing the relationship between wind speed and heat transfer coefficient, FIG. 7 a cross-sectional view showing the schematic structure of a substrate heating device in another embodiment of the present invention, and FIG. 8 a conventional one. FIG. 2 is a cross-sectional view showing the schematic structure of the substrate heating device of FIG. 11... Board, 12... Conveyor belt, 1
3...Infrared heater, 14...Cooling fan, 15...Blower fan, 16...
Heat source, 17...nozzle. δα Fig. 3 77' \, 7 ha l \ , b S'8 horn plate / ゝ''--'+++-/\ Shallow / / / / ('C) Fig. 5 Question Fig. 6 T, f No. .. Time Poem Seigo [

Claims (2)

【特許請求の範囲】[Claims] (1)リフロー用半田と電子部品を表面に持つ被加熱基
板を載置して連続的もしくは間欠的に走行する搬送装置
と、前記搬送装置を取り囲んで設けられたトンネル状の
炉体にふく射加熱装置を持つ加熱炉と、前記加熱炉の内
部に前記リフロー用半田の融点以上で前記部品の耐熱温
度以下の温風を吹き出す熱風吐出装置と、前記加熱炉の
最終部に位置し搬送装置の搬送面向きに冷風を吹きつけ
る冷風吐出装置を備えた基板の加熱装置。
(1) A transfer device that carries a substrate to be heated with reflow solder and electronic components on its surface and runs continuously or intermittently, and radiation heating in a tunnel-shaped furnace surrounding the transfer device. a heating furnace having a device; a hot air discharge device that blows hot air that is higher than the melting point of the reflow solder and lower than the heat-resistant temperature of the component into the inside of the heating furnace; and a conveying device located at the final part of the heating furnace. A substrate heating device equipped with a cold air discharge device that blows cold air toward the surface.
(2)リフロー用半田と、電子部品を表面に有する被加
熱基板を搬送装置上に載置する工程と、前記搬送装置に
て被加熱基板を走行させると共に、ふく射加熱装置及び
熱風吐出装置にて前記リフロー用半田の融点以下の温度
に加熱し基板の温度を均一化した後半田融点以上の温度
に基板を加熱する工程と、前記搬送装置にて被加熱基板
を走行させると共に、冷風吐出装置にて冷却する工程か
らなる基板加熱方法において、前記基板を半田融点以上
の温度に加熱する工程で、前記の熱風吐出装置から吹き
出される熱風の温度が前記半田の融点以上であり、かつ
前記電子部品の耐熱温度以下であることを特徴とする基
板の加熱方法。
(2) A process of placing a substrate to be heated having solder for reflow and electronic components on the surface on a transfer device, and running the substrate to be heated by the transfer device, and a step of transferring the substrate to be heated by a radiation heating device and a hot air discharge device. A step of heating the substrate to a temperature equal to or higher than the melting point of the solder after heating the substrate to a temperature lower than the melting point of the solder for reflow and uniformizing the temperature of the substrate, and a step of driving the substrate to be heated by the transfer device and moving the substrate to a cold air discharge device. In the substrate heating method, the step of heating the substrate to a temperature equal to or higher than the melting point of the solder has a temperature of the hot air blown from the hot air discharge device equal to or higher than the melting point of the solder, and the electronic component A method for heating a substrate, characterized in that the heating temperature is below the heat-resistant temperature.
JP9103188A 1988-04-13 1988-04-13 Heating device for substrate and heating method Pending JPH01262069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9103188A JPH01262069A (en) 1988-04-13 1988-04-13 Heating device for substrate and heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9103188A JPH01262069A (en) 1988-04-13 1988-04-13 Heating device for substrate and heating method

Publications (1)

Publication Number Publication Date
JPH01262069A true JPH01262069A (en) 1989-10-18

Family

ID=14015150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9103188A Pending JPH01262069A (en) 1988-04-13 1988-04-13 Heating device for substrate and heating method

Country Status (1)

Country Link
JP (1) JPH01262069A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253564A (en) * 1991-02-04 1992-09-09 Matsushita Electric Ind Co Ltd Local soldering method by light beam or the like
JPH04356351A (en) * 1990-07-17 1992-12-10 Nippondenso Co Ltd Heating furnace for brazing
US5358166A (en) * 1992-04-16 1994-10-25 Hitachi Techno Engineering Co. Ltd. Reflow soldering apparatus
US6345757B1 (en) 1997-07-31 2002-02-12 Fujitsu Limited Reflow soldering method
KR100676353B1 (en) * 2000-10-26 2007-01-31 산요덴키가부시키가이샤 Method for manufacturing hybrid integrated circuit device
CN102554396A (en) * 2012-01-18 2012-07-11 欧朗科技(苏州)有限公司 Cooling fan device for wave soldering
US20130062399A1 (en) * 2010-04-14 2013-03-14 Afc-Holcroft Apparatus for and method of brazing aluminium products with closed loop conveyor within the furnace
CN103227127A (en) * 2008-06-11 2013-07-31 应用材料意大利有限公司 Short thermal profile oven useful for screen printing
CN112002650A (en) * 2020-08-20 2020-11-27 上海应用技术大学 Vacuum reflow eutectic soldering process method
US11090751B2 (en) 2016-11-18 2021-08-17 Denso Corporation Reflow device and method for manufacturing substrate using the reflow device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356351A (en) * 1990-07-17 1992-12-10 Nippondenso Co Ltd Heating furnace for brazing
JPH04253564A (en) * 1991-02-04 1992-09-09 Matsushita Electric Ind Co Ltd Local soldering method by light beam or the like
US5358166A (en) * 1992-04-16 1994-10-25 Hitachi Techno Engineering Co. Ltd. Reflow soldering apparatus
US6345757B1 (en) 1997-07-31 2002-02-12 Fujitsu Limited Reflow soldering method
KR100676353B1 (en) * 2000-10-26 2007-01-31 산요덴키가부시키가이샤 Method for manufacturing hybrid integrated circuit device
CN103227127A (en) * 2008-06-11 2013-07-31 应用材料意大利有限公司 Short thermal profile oven useful for screen printing
US20130062399A1 (en) * 2010-04-14 2013-03-14 Afc-Holcroft Apparatus for and method of brazing aluminium products with closed loop conveyor within the furnace
US8714432B2 (en) * 2010-04-14 2014-05-06 Afc-Holcroft Apparatus for and method of brazing aluminium products with closed loop conveyor within the furnace
CN102554396A (en) * 2012-01-18 2012-07-11 欧朗科技(苏州)有限公司 Cooling fan device for wave soldering
US11090751B2 (en) 2016-11-18 2021-08-17 Denso Corporation Reflow device and method for manufacturing substrate using the reflow device
CN112002650A (en) * 2020-08-20 2020-11-27 上海应用技术大学 Vacuum reflow eutectic soldering process method

Similar Documents

Publication Publication Date Title
EP0307319A2 (en) Reflow furnace
JPH01262069A (en) Heating device for substrate and heating method
US20020011511A1 (en) Apparatus and method for soldering electronic components to printed circuit boards
JPS61289697A (en) Soldering
JPH02137691A (en) Reflow device
JP6502909B2 (en) Reflow device
JPH036890A (en) Heating and device therefor
JPH0751273B2 (en) Substrate heating device
JPS61289967A (en) Continuous heater
JPH038565A (en) Reflow device
JPH02396A (en) Heating method of soldered circuit board
JP2001308511A (en) Method and device for reflow soldering
JP2791158B2 (en) Heating equipment
JPH0749150B2 (en) Substrate heating device
JPH05110242A (en) Board
JP3171179B2 (en) Reflow device and temperature control method in reflow device
JP2597695Y2 (en) Reflow furnace
JPS606270A (en) Method and device for soldering with cream solder
JP2000183511A (en) Reflow soldering method and its device
JPH0241770A (en) Reflow device
JPS63130266A (en) Continuous heating device
JP2852456B2 (en) Solder reflow equipment
JPH0335876A (en) Reflowing device
JPH06188556A (en) Reflowing device
JPH084933B2 (en) Substrate heating device