JPH01261850A - Resin-sealed semiconductor device - Google Patents

Resin-sealed semiconductor device

Info

Publication number
JPH01261850A
JPH01261850A JP8902688A JP8902688A JPH01261850A JP H01261850 A JPH01261850 A JP H01261850A JP 8902688 A JP8902688 A JP 8902688A JP 8902688 A JP8902688 A JP 8902688A JP H01261850 A JPH01261850 A JP H01261850A
Authority
JP
Japan
Prior art keywords
resin
layer
sealing resin
substrate
peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8902688A
Other languages
Japanese (ja)
Inventor
Ikuo Yoshida
吉田 育生
Noriyuki Sakuma
憲之 佐久間
Yoshio Honma
喜夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8902688A priority Critical patent/JPH01261850A/en
Publication of JPH01261850A publication Critical patent/JPH01261850A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve reliability of a resin-sealed semiconductor device which has an increased size, fine construction and multilayer interconnections, by interposing an adhesive layer having high adhesion properties to both a peripheral substrate layer and a sealing resin between the peripheral substrate layer and the sealing resin. CONSTITUTION:The top of a silicon substrate 100 is covered with a first interlayer insulating film 102, except an electrode connecting hole 103 and the peripheral edge (substrate peripheral layer) 500 of a semiconductor chip. A metallic wiring layer 110 of aluminium alloy or the like is deposited and then a titanium nitride film 120 is deposited on the substrate peripheral layer on which the silicon substrate is exposed. A chip is mounted on a lead frame and an electrode of the chip is connected with a lead of the lead frame through a gold wire 300. The lead frame is set in molds so that the device is sealed with a sealing resin 400 principally composed of epoxy resin or the like. The titanium nitride film 120 presents extremely high adhesion to the silicon substrate 100 as well as to the sealing resin 400. Accordingly, in the peripheral edge region of the semiconductor chip, the chip can be adhered with the sealing resin with improved adhesion strength. Thus, the sealing resin can be prevented from being broken or peeled by a thermal shock test.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂封止型半導体装置に係り、特に樹脂封止後
の封止!I4脂の硬化収縮によって、封入される回路基
板(以後、半導体チップと記す)の機能および封止樹脂
自体の特性が劣化するのを軽減するための構造の改良に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a resin-sealed semiconductor device, and particularly to sealing after resin-sealing! The present invention relates to an improvement in a structure for reducing deterioration of the function of an encapsulated circuit board (hereinafter referred to as a semiconductor chip) and the characteristics of the sealing resin itself due to curing shrinkage of I4 resin.

〔従来の技術〕[Conventional technology]

樹脂封止型半導体装置は、半導体素子、配線。 Resin-sealed semiconductor devices include semiconductor elements and wiring.

保護膜等が多数作り込まれた半導体ウェハを半導体チッ
プ(以下チップと略記する)に分割し、得られたチップ
をリードフレームに搭載し、チップの1′t!極とリー
ドフレームのリードとを金線などで結線した後、該リー
ドフレームを金型にセットしてエポキシ樹脂等を主成分
とする樹脂により封止している。近年の大規模集積回路
では、チップ寸法が増々大きくなる傾向にあり、封Il
ユ樹脂の硬化収縮によって発生する内部応力が急増大す
る。その結果、応力の集中するチップ周辺、特にコーナ
ー部での装ff!!成材料の変形や割れ、素子特性の劣
化等、さまざまな問題が顕在化してきた。
A semiconductor wafer on which a large number of protective films and the like have been fabricated is divided into semiconductor chips (hereinafter abbreviated as chips), the resulting chips are mounted on a lead frame, and the 1't! After the poles and the leads of the lead frame are connected with gold wire or the like, the lead frame is set in a mold and sealed with a resin whose main component is epoxy resin or the like. In recent years, in large-scale integrated circuits, the chip size has tended to become larger and larger, and the packaging
The internal stress generated by the curing and shrinkage of the resin suddenly increases. As a result, mounting around the chip where stress is concentrated, especially at the corners, is reduced! ! A variety of problems have emerged, including deformation and cracking of component materials and deterioration of device characteristics.

第5図は、従来の樹脂封止型半導体装置の要部構造を示
す断面概略図であり、同図(a)はパッケージ内全体を
表わす断面図、同図(b)は半導体チップ周辺領域の部
分断面図である。第5図(、i)において400はエポ
キシ等の樹脂から成る封止用樹脂、200はリードフレ
ーム、100は半導体素子(図示せず)が形成されてい
る半導体チップ、110はアルミニウム等から成る金属
配線、111はアルミニウム等から成る外部端子取出し
電極(ポンディングパッド)、150はシリコン酸化膜
(S i Oz )もしくはポリイミド樹脂等から成る
表面保護膜、3oOは結線用の金線を表わす、また、同
図(b)において101は半導体基板内の不純物拡散層
、102はシリコン酸化膜等の第1の層間絶縁層、10
3は該層間絶縁層の一部に設けた接続用開孔部を表わす
、なおチップ分割を容易にするためにチップ周縁部(基
板VRa層)500上の表面保護膜は通常除去する。
FIG. 5 is a schematic cross-sectional view showing the structure of the main part of a conventional resin-sealed semiconductor device. FIG. FIG. In FIG. 5(,i), 400 is a sealing resin such as epoxy, 200 is a lead frame, 100 is a semiconductor chip on which a semiconductor element (not shown) is formed, and 110 is a metal such as aluminum. Wiring, 111 is an external terminal extraction electrode (ponding pad) made of aluminum or the like, 150 is a surface protection film made of silicon oxide film (S i Oz ) or polyimide resin, etc., 3oO is a gold wire for connection, and In the same figure (b), 101 is an impurity diffusion layer in the semiconductor substrate, 102 is a first interlayer insulating layer such as a silicon oxide film, and 10
Reference numeral 3 represents a connection opening provided in a part of the interlayer insulating layer. Note that the surface protective film on the chip peripheral portion (substrate VRa layer) 500 is usually removed to facilitate chip division.

このようなチップ100を樹脂対+hL、た場合。When such a chip 100 is made of resin +hL.

特にこの樹脂封止型半導体装置を低温と高温の雰囲気に
繰り返しさらした場合(熱衝撃試験)には、封L)、樹
脂の硬化収縮により半導体チップ100に応力が加わる
。この応力は半導体チップ100の端部、特にコーナー
部で大きく、その近傍の封止樹脂400には割れが生じ
たり、チップ周縁部500上のシリコン酸化膜から剥離
したりする。
In particular, when this resin-sealed semiconductor device is repeatedly exposed to low and high temperature atmospheres (thermal shock test), stress is applied to the semiconductor chip 100 due to curing and shrinkage of the resin. This stress is large at the edges of the semiconductor chip 100, especially at the corners, and the sealing resin 400 in the vicinity may crack or peel off from the silicon oxide film on the chip peripheral portion 500.

特に封止用樹脂はシリコン、シリコン酸化膜、シリコン
窒化膜等との接着力は弱く、収縮応力により封止用樹脂
が割れたり、剥離したりしやすい。
In particular, the sealing resin has weak adhesion to silicon, silicon oxide film, silicon nitride film, etc., and is likely to crack or peel off due to shrinkage stress.

その結果、応力の集中場所がより内側に移動し。As a result, the location of stress concentration moves further inward.

この応力によりチップ上の表面保護膜150がシリコン
酸化膜の場合には割れが生じ、ポリイミド樹脂膜の場合
には変形、剥離が生じ、その結果金属配線110が変形
、断線、短絡したりする故障が問題となっている。また
、封止用樹脂の割れは。
This stress causes cracks in the case where the surface protection film 150 on the chip is a silicon oxide film, and causes deformation and peeling in the case of a polyimide resin film, resulting in failures such as deformation, disconnection, and shorting of the metal wiring 110. is a problem. Also, cracks in the sealing resin.

外部からの水の浸入を促すため、配線金属等の腐食を加
速させたり外部端子接続用の金線とボンデインパッドと
の接合も破壊したりし装置の信頼性を低下せしめ1重大
な問題となる。
Because it encourages water intrusion from the outside, it accelerates the corrosion of metal wiring, etc., and destroys the bond between the gold wire for external terminal connection and the bonding pad, reducing the reliability of the device.1 This is a serious problem. Become.

このような問題に対して、従来からいくつかの対策が請
じられている。これらは、封止樹脂400を改良して低
応力化すること、チップ上の表面保護膜150を改良し
てチップに加オ)る応力を軽減したり緩和することの2
つに大別できろ、このうち1表面保護膜の改良方法とし
て以下の公知例などがある。特公昭61−34256に
は表面保護膜として用いるシリコン酸化膜150のPi
みを金属配線110の厚み以上にする、また特開昭61
−284930には半導体チップの外周部だけに表面保
護膜として機械的強度の大きな窒化膜を設けることが記
載されている。また、他の例として、特開昭60−14
0739には表面保護膜としてシリコン酸化膜から成る
層の上にさらにポリイミド樹脂等の比較的弾性率の小さ
な材料を設は応力を吸収しようとするもの、特開昭61
−171156には半導体チップ周縁部にシリコン樹脂
等の軟質材を設は同じく応力負荷を吸収するもの等が記
載されている。
Several countermeasures have been sought to address such problems. These include improving the sealing resin 400 to reduce stress and improving the surface protective film 150 on the chip to reduce or alleviate the stress applied to the chip.
It can be roughly divided into two types. Among these methods, there are the following known examples of methods for improving the surface protective film. Japanese Patent Publication No. 61-34256 discloses a silicon oxide film 150 used as a surface protection film.
The thickness of the metal wiring 110 is made to be greater than the thickness of the metal wiring 110.
284930 describes that a nitride film with high mechanical strength is provided as a surface protection film only on the outer periphery of a semiconductor chip. In addition, as another example, JP-A-60-14
No. 0739 discloses a method in which a material with a relatively low elastic modulus such as a polyimide resin is further provided on a layer of silicon oxide film as a surface protective film in order to absorb stress.
171156 describes a device in which a soft material such as silicone resin is provided at the peripheral edge of a semiconductor chip to absorb the stress load.

さらにまた特開昭58−2734!1に記載の半導体装
置は、半導体チップの周囲に溝を形成し、半導体チップ
と封止樹脂との密着性を向上させ半導体装置の信頼性を
高めていた。
Furthermore, in the semiconductor device disclosed in Japanese Patent Application Laid-Open No. 58-2734!1, a groove is formed around the semiconductor chip to improve the adhesion between the semiconductor chip and the sealing resin, thereby increasing the reliability of the semiconductor device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、半導体装置の集積化が進み、チップの大型化や素
子、配線の微細化が急速に進んでいる。
In recent years, the integration of semiconductor devices has progressed, and the size of chips and the miniaturization of elements and wiring are rapidly progressing.

その結果、チップサイズが10m口を起えたり。As a result, the chip size increased to 10m.

配線の幅や間隔がサブミクロン領域にまで縮小された来
秋回路が実現されている。これらのチップを樹脂封止し
た場合、前記従来技術ではチップに加わる応力の軽減が
不充分となってきた。
A circuit will be realized next fall in which the width and spacing of wiring lines has been reduced to the submicron range. When these chips are sealed with resin, the stress applied to the chips has not been sufficiently reduced by the conventional techniques.

特に前述の従来例のうち最初の2つの例では。Especially in the first two examples of the prior art mentioned above.

表面保護膜としてのシリコン酸化膜や窒化膜と封止用レ
ジンとの接着力が弱いという欠点をいぜん有しており、
収縮応力の増大にともない封止用樹脂が割れたり、剥離
したりし半導体装置の信頼性を低下させる。また、その
次の2つの公知例のようにチップ表面や周縁部にポリイ
ミド樹脂やシリコン樹脂等の軟質材を設けても1本構造
の場合以下の点で問題があった。半導体ウェハをチップ
に分割する時には1分離のためにダイヤモンドポイント
やダイヤモンドブレードで溝を入れるスクライビング工
程および溝に応じてウェハを割り個々のチップに分割す
るクラッキング工程を行なう必要がある。前述の公知例
(従来構造)では、スクライブ領域にもポリイミド樹脂
やシリコーン樹脂等の軟質材があり、スクライビング時
にはこれらの材料をも切断することになる。しかしなが
らポリイミド樹脂やシリコーン樹脂等の軟質材の切断は
極めて作業性が悪い、また、本工程はこれらの樹脂層の
剥離の原因ともなり、樹脂封lヒ後の半導体装置の信頼
性の低下をきたす要因ともなる。
However, it still has the disadvantage of weak adhesion between the silicon oxide film or nitride film used as a surface protection film and the sealing resin.
As the shrinkage stress increases, the sealing resin may crack or peel, reducing the reliability of the semiconductor device. Further, even if a soft material such as polyimide resin or silicone resin is provided on the chip surface or peripheral portion as in the following two known examples, the single-piece structure has the following problems. When dividing a semiconductor wafer into chips, it is necessary to perform a scribing process in which grooves are created with a diamond point or a diamond blade for one separation, and a cracking process in which the wafer is divided into individual chips according to the grooves. In the above-mentioned known example (conventional structure), there is also a soft material such as polyimide resin or silicone resin in the scribe area, and these materials are also cut during scribing. However, cutting soft materials such as polyimide resin and silicone resin is extremely difficult to work with, and this process also causes peeling of these resin layers, reducing the reliability of semiconductor devices after resin sealing. It can also be a factor.

また前述の最後に示した公知例においては、半導体チッ
プ周辺に設けた溝内へ、封止樹脂が充填されにくいため
にその効果が少なく、封止樹脂の割れ9表面保護膜の剥
離、配線特性の劣化等に起因した故障の発生は避けられ
なかった。
In addition, in the known example shown at the end of the above, the sealing resin is difficult to fill into the groove provided around the semiconductor chip, so the effect is small, cracks in the sealing resin, peeling of the surface protective film, and wiring characteristics. The occurrence of failures due to deterioration, etc., was unavoidable.

なお、大規模化、複雑化する集積回路の実現に不可欠な
多層配線構造においても、封止樹脂の収縮応力に起因し
て生じる配線層間の絶縁性の劣化や配線層間の接続(コ
ンタクト)特性の劣化等がより深刻な問題となっている
In addition, even in the multilayer wiring structure that is essential for realizing integrated circuits that are becoming larger and more complex, there is a risk of deterioration of the insulation between wiring layers due to the shrinkage stress of the sealing resin, and of the connection (contact) characteristics between the wiring layers. Deterioration has become a more serious problem.

本発明の目的は、前述の問題、特に封止用樹脂の割れや
剥離の問題を解決し、ひいては表面保護膜の変形、剥離
、配線特性の劣化の問題を解決し大型化、微細化、多層
配線化する樹脂封止半導体装置の信頼性を向上すること
にある。
The purpose of the present invention is to solve the above-mentioned problems, especially the problems of cracking and peeling of the sealing resin, and also solve the problems of deformation, peeling, and deterioration of wiring characteristics of the surface protective film, and to solve the problem of increasing size, miniaturization, and multilayer The object of the present invention is to improve the reliability of resin-sealed semiconductor devices that are wired.

〔RMを解決するための手段〕[Means to solve RM]

上記目的は、従来技術においては周辺基板層と封止用樹
脂との接着性に留意されていなかったのに対し、本発明
においては、周縁部領域の表面がシリコン、シリコン酸
化膜、シリコン窒化膜などの比較的封止用樹脂と密着力
が弱い周縁基板層を有する半導体チップであっても、前
記周縁部領域の該周縁基板層や封止用樹脂との密着性が
、該周縁基板層と該封止用樹脂との密着性より大なる接
着層を該周縁基板層と該封止用樹脂との間に介在させる
ことにより達成される。前述の接着層としては、金属膜
や金属の酸化物、窒化物、硅化物等の金属化合物膜が適
している。
The above object is achieved by using a method in which the surface of the peripheral region is coated with silicon, silicon oxide film, silicon nitride film, etc. whereas in the prior art, no attention was paid to the adhesion between the peripheral substrate layer and the sealing resin. Even in a semiconductor chip having a peripheral substrate layer having relatively weak adhesion to the encapsulating resin such as This is achieved by interposing an adhesive layer with greater adhesion than the sealing resin between the peripheral substrate layer and the sealing resin. As the adhesive layer mentioned above, a metal film or a metal compound film such as a metal oxide, nitride, or silicide is suitable.

〔作用〕[Effect]

本発明においては、前記接着層が半導体チップの周縁部
領域の基板周縁層と封止用樹脂との接着層となる。半導
体チップと封止用樹脂の密着力が強くなると、封止用樹
脂の割れや剥離が生じにくくなり、その結果表面保護膜
の変形や剥離、金属配線の変形、断線、短絡等の故障の
発生率が低減する。
In the present invention, the adhesive layer serves as an adhesive layer between the substrate peripheral layer in the peripheral region of the semiconductor chip and the sealing resin. When the adhesion between the semiconductor chip and the encapsulating resin becomes stronger, cracking and peeling of the encapsulating resin become less likely to occur, resulting in failures such as deformation and peeling of the surface protective film, deformation of metal wiring, disconnection, and short circuits. rate is reduced.

〔実施例〕〔Example〕

以下1本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 第1図は本発明の樹脂封止型半導体装置の一例である。Example 1 FIG. 1 shows an example of a resin-sealed semiconductor device of the present invention.

同図は、半導体チップの周a領域の部分断面概略図であ
り、(a)〜(Q)は半導体ウニへ上での製作過程を示
し、(d)は半導体チップを組立て、封止した後の樹脂
封止型半導体装置を示す、以下第1図に従って説明する
が製作方法はすべて周知の半導体装置製造技術によるも
のである。まず同図(、)に示すように、不純物拡@層
101を形成したシリコン基板100上に、ftt横取
出し孔103および半導体チップの周縁領域(基板周縁
層)500以外を0.5μm程度のノダさを有するシリ
コン酸化物から成る第1の層間絶$1[102によって
被覆する。なお、160で示した位置は隣接する半導体
チップとの境界となり。
The same figure is a partial cross-sectional schematic diagram of the peripheral region a of the semiconductor chip, (a) to (Q) show the manufacturing process of the semiconductor chip, and (d) shows the process after the semiconductor chip is assembled and sealed. A resin-sealed semiconductor device will be described below with reference to FIG. 1, and all manufacturing methods are based on well-known semiconductor device manufacturing techniques. First, as shown in FIG. The first interlayer 102 is made of silicon oxide having a high temperature. Note that the position indicated by 160 is the boundary between adjacent semiconductor chips.

この位置で半導体ウェハが切断され、チップに分割され
ることになる。
At this location, the semiconductor wafer will be cut and divided into chips.

次に、同図(b)に示すようにアルミニウム合金等から
成る厚さ約1μmの金属配線110を被覆し、所望のパ
ターンに加工する。ついで、シリコン基板が露出した基
板周縁層に、0.1μm程度の厚さを有する窒化チタン
膜120を形成する。
Next, as shown in FIG. 4B, a metal wiring 110 made of aluminum alloy or the like having a thickness of about 1 μm is coated and processed into a desired pattern. Next, a titanium nitride film 120 having a thickness of about 0.1 μm is formed on the substrate peripheral layer where the silicon substrate is exposed.

本窒化チタン膜は、スパッタターゲットとしてチタンを
用い、放電ガスとしてアルゴンと窒素の混合ガスを用い
た通常のRFスパッタ法により堆積した。加工は、四塩
化炭素と酸素を主成分とした反応ガスを用いたドライエ
ツチングにより行った。
This titanium nitride film was deposited by a normal RF sputtering method using titanium as a sputtering target and a mixed gas of argon and nitrogen as a discharge gas. The processing was carried out by dry etching using a reactive gas containing carbon tetrachloride and oxygen as main components.

次に第1図(Q)に示すように1表面保護膜150を形
成した0本表面保護膜は2μm程度の厚さを有するポリ
イミド系の高分子樹脂から成り、ポンディングパッド1
11および基板周縁層500上の表面保護膜は除去した
。その後、半導体ウェハをスクライブライン160に沿
って通常のスクライビングおよびクラッキング工程によ
りチップ分割した。その後周知の樹脂封止組立技術によ
り。
Next, as shown in FIG. 1 (Q), the surface protective film 150 on which the single surface protective film 150 is formed is made of polyimide-based polymer resin with a thickness of about 2 μm, and the bonding pad 150 is
11 and the surface protective film on the substrate peripheral layer 500 were removed. Thereafter, the semiconductor wafer was divided into chips along the scribe line 160 by a conventional scribing and cracking process. Then, using the well-known resin sealing assembly technology.

同図(d)に示すように該チップをリードフレーム(図
示せず)に搭載し、チップのW1極とリードフレームの
リードとを金線300で結線し、該リードフレームを金
型にセットしてエポキシ等を主成分とする封止用樹脂4
00により封止した。
As shown in the same figure (d), the chip is mounted on a lead frame (not shown), the W1 pole of the chip and the lead of the lead frame are connected with a gold wire 300, and the lead frame is set in a mold. Sealing resin 4 whose main component is epoxy etc.
It was sealed with 00.

本実施例で適用した窒化チタン膜は、シリコン基板10
0および封止用樹脂400との接着力は極めて強い、し
たがって、本実施例によれば半導体チップ周縁領域にお
けるチップと封止用樹脂との被着強度が向上し、熱衝撃
試験による封止用樹脂の割れや剥離を防止する効果があ
る。したがって、封止用樹脂の割れやはがれに起因した
半導体回路の劣化を防ぐことができる。
The titanium nitride film applied in this example was applied to a silicon substrate 10.
0 and the sealing resin 400 are extremely strong. Therefore, according to this example, the adhesion strength between the chip and the sealing resin in the peripheral area of the semiconductor chip is improved, and the sealing resin 400 is It has the effect of preventing cracking and peeling of the resin. Therefore, deterioration of the semiconductor circuit due to cracking or peeling of the sealing resin can be prevented.

8mm口サイズのテストチップを樹脂封止した試料を用
いて配線特性の熱N撃試験を行った結果。
The results of a thermal N shock test on wiring characteristics using a resin-sealed test chip with an 8mm opening size.

従来法による場合の不良率が40%以上あったのに対し
1本実施例によるものの不良率は10%以下に低減され
た。
While the defective rate in the case of the conventional method was 40% or more, the defective rate in the case of the present embodiment was reduced to 10% or less.

なお1本実施例では、接着層120が表面保護膜150
の外周部下の一部に延在しているが、基板周縁層上のみ
に配置しても本発明の効果が失われるものではない。
Note that in this embodiment, the adhesive layer 120 is the surface protective film 150.
However, the effects of the present invention are not lost even if it is placed only on the peripheral edge layer of the substrate.

また、本実施例ではチップ分割工程(スクライビング、
クラッキング)での作業性の低下や製品留歩りの低下と
いった問題は全く生じなかった。
In addition, in this example, the chip dividing process (scribing,
There were no problems such as a decrease in workability due to cracking or a decrease in product retention.

実施例2 第2図は1本発明の樹脂封止型半導体装置の他の実施例
を表わす図であり、半導体チップ周縁部の部分断面概略
図を示す0本実施例では、チップの基板周縁層500上
に設けた窒化チタン膜120が、表面保護膜であるポリ
イミド樹脂150上の一部の上に延在していることが先
の実施例1と大きく異なる点である。製作工程も実施例
1とほとんど同じであるが1表面保護膜の形成・加工後
に接着層120の形成加工を行い、かつ接着層である窒
化チタン膜の加工は過酸化水素水によるウェットエツチ
ングにより行った事が先の例とは異なる点である。
Embodiment 2 FIG. 2 is a diagram showing another embodiment of the resin-sealed semiconductor device of the present invention, and shows a partial cross-sectional schematic diagram of the peripheral edge of a semiconductor chip. In this embodiment, the peripheral layer of the substrate of the chip is This embodiment differs greatly from the first embodiment in that the titanium nitride film 120 provided on the surface protection film 120 extends over a portion of the polyimide resin 150 serving as the surface protection film. The manufacturing process is also almost the same as in Example 1, except that the adhesive layer 120 is formed after the surface protective film is formed and processed, and the titanium nitride film that is the adhesive layer is processed by wet etching with hydrogen peroxide solution. This is different from the previous example.

本実施例の構造では、接着層120が表面保護膜150
の外周端部を保護しているため1表面保護膜150の剥
離防止により効果がある。
In the structure of this embodiment, the adhesive layer 120 is connected to the surface protective film 150.
Since it protects the outer peripheral edge of the first surface protective film 150, it is more effective in preventing peeling of the first surface protective film 150.

実施例3 第3図は、本発明の樹脂封止型半導体装置の他の実施例
を表わす図である0本実施例ではチップの基板周縁層5
00の表面はシリコン酸化物102から成ることが実施
例1と異なる点である。接着層である窒化チタンIIJ
 120はシリコン酸化物との接着力も強く本構造にお
いても封止用樹脂の割れ、剥離等は発生せず、従来構造
に比べ装置の信頼性が向上した。
Embodiment 3 FIG. 3 is a diagram showing another embodiment of the resin-sealed semiconductor device of the present invention. In this embodiment, the substrate peripheral layer 5 of the chip is
The difference from Example 1 is that the surface of 00 is made of silicon oxide 102. Titanium nitride IIJ as adhesive layer
120 has strong adhesion to silicon oxide, and even in this structure, cracking or peeling of the sealing resin did not occur, and the reliability of the device was improved compared to the conventional structure.

実施例4 第4図は1本発明の樹脂封止型半導体装置の他の実施例
を表わす図であり、半導体チップの周縁領域の部分断面
概略図である0本実施例は金属配線110,130が第
2の層間絶縁膜140を介して二層構造化していること
が先の実施例1と異なる。実施例1と同様にシリコン基
板100上に第1の層間絶縁膜102として0.5μm
厚さのシリコン酸化膜、接着層120として0.1μm
の厚さを有する窒化チタン股、第1の配線WJ110と
して1μmの厚さのアルミニウム合金属を形成した後、
第2の層間絶縁膜130としてポリイミド樹脂を約2.
3μmの厚さに形成し、配線層間接続孔115をおよび
基板周a層500の領域を除去した後、1.5μmの厚
さを有するアルミニウム合金から成る第2の配線層14
0を形成した。
Embodiment 4 FIG. 4 is a diagram showing another embodiment of the resin-sealed semiconductor device of the present invention, and is a schematic partial cross-sectional view of the peripheral area of a semiconductor chip. This embodiment differs from the first embodiment in that it has a two-layer structure with a second interlayer insulating film 140 interposed therebetween. As in Example 1, a first interlayer insulating film 102 of 0.5 μm is formed on a silicon substrate 100.
Silicon oxide film with a thickness of 0.1 μm as the adhesive layer 120
After forming a titanium nitride crotch with a thickness of , and an aluminum alloy metal with a thickness of 1 μm as the first wiring WJ110,
The second interlayer insulating film 130 is made of polyimide resin about 2.
A second wiring layer 14 made of aluminum alloy is formed to have a thickness of 3 μm, and after removing the interconnection interlayer connection hole 115 and the area of the substrate peripheral A layer 500, the second wiring layer 14 is formed to have a thickness of 1.5 μm.
0 was formed.

その後、ポリイミド樹脂から成る表面保護膜150を実
施例1と同様に、ポンディングパッド111および基板
間a層500以外の領域に形成し、最後に樹脂封止組立
てを行った。
Thereafter, a surface protection film 150 made of polyimide resin was formed in a region other than the bonding pad 111 and the inter-substrate a layer 500 in the same manner as in Example 1, and finally resin sealing was performed.

従来の二層金属配線構造は、特に封止樹脂の応力が加わ
った場合に配線がTpfr線したり短絡したりしやすく
、その耐性が弱かった。しかしながら、本実施例によれ
ば、二層金属配線構造においても封止樹脂の割れ、剥離
や配線特性の劣化などに起因した不良率は、従来の17
5以下となり、信頼性の向上に効果があった。
In the conventional two-layer metal wiring structure, the wiring tends to become a Tpfr line or short-circuit, especially when stress from the sealing resin is applied, and its resistance is weak. However, according to this example, even in a two-layer metal wiring structure, the defective rate due to cracking and peeling of the sealing resin, deterioration of wiring characteristics, etc. is lower than the conventional 17.
5 or less, which was effective in improving reliability.

なお、本実施例ではチップ上に形成した金属配線は二層
箭造であるが、配線が3XIJ以上の構造の場合でも本
発明が有効であることは言うまでもない。
In this embodiment, the metal wiring formed on the chip has a two-layer structure, but it goes without saying that the present invention is effective even when the wiring has a structure of 3XIJ or more.

以上の実施例では、基板周、11!層500はシリコン
やシリコン酸化物の例を挙げたが、窒化チタン膜と接着
力が大きい物質、シリコン窒化膜等でも同様の効果が得
られる。
In the above embodiment, the substrate circumference is 11! Although the layer 500 is made of silicon or silicon oxide as an example, the same effect can be obtained by using a material that has strong adhesion to the titanium nitride film, such as a silicon nitride film.

また、実施例では、基板周縁層500上に設ける接着層
として窒化チタン膜を適用したが、封止樹脂やシリコン
等との接着力が、封止樹脂とシリコン等との接着力が大
なるものであれば、他の物質を適用しても本発明の効果
は得られる。封止用樹脂やシリコン等との接着力が比較
的大きな材料としては、本実施例で採用した窒化チタン
の他。
In addition, in the embodiment, a titanium nitride film was used as the adhesive layer provided on the substrate peripheral layer 500, but the adhesive strength with the sealing resin, silicon, etc. is strong, and the adhesive strength between the sealing resin and silicon, etc. is strong. If so, the effects of the present invention can be obtained even if other substances are used. In addition to titanium nitride, which was used in this example, materials that have relatively strong adhesive strength with sealing resin, silicon, etc.

チタン、アルミニウム、タングステン等の金属やアルミ
ナ、酸化チタン等の金属の窒化物、M化物。
Nitride and Mide of metals such as titanium, aluminum, and tungsten, and metals such as alumina and titanium oxide.

硅化物等があり、ニオしらの単層膜もしくは積層膜を用
いても本発明の目的は達成される。
There are silicides, etc., and the object of the present invention can be achieved even if a single layer film or a laminated film of niobium silica is used.

なお、樹脂封止型半導体装置では半導体チップに働く応
力はチップ外縁部、特にチップコーナー部で最も大きく
、その影響による故障も発生しやすい0本発明で示した
接着層を、少なくともチップコーナー部に設けることだ
けでも本発明の効果があられれることは明らかである。
In a resin-sealed semiconductor device, the stress acting on the semiconductor chip is greatest at the outer edges of the chip, especially at the chip corners, and failures due to this influence are likely to occur. It is clear that the effects of the present invention can be achieved simply by providing the above.

【発明の効果〕【Effect of the invention〕

以上説明したように本発明によれば、封止用樹脂と半導
体チップの周縁領域との接着強度が向上し、熱衝撃等で
生じる封止用樹脂の応力によって引き起こされる封止用
樹脂の割れや剥離2表面保護膜の変形やクラックや剥離
等を防止することができる。したがって、それらに起因
した配線の変形、断線、短絡等の劣化による装置の品質
の低下が防止されるので、半導体装置の信頼性が向上す
る。
As explained above, according to the present invention, the adhesive strength between the encapsulating resin and the peripheral area of the semiconductor chip is improved, and cracks in the encapsulating resin caused by stress in the encapsulating resin caused by thermal shock, etc. can be improved. Peeling 2 Deformation, cracking, peeling, etc. of the surface protective film can be prevented. Therefore, deterioration of the quality of the device due to deterioration such as deformation, disconnection, short circuit, etc. of the wiring caused by these is prevented, and the reliability of the semiconductor device is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例の樹脂封止型半導体
装置の部分断面概略図、第5図は従来の樹脂封止型半導
体装置の全体断面概略図および部分断面概略図である。 100・・・半導体チップ、102・・・第1の層間絶
縁膜、110・・・第1の配線層、120・・・接M層
。 130・・・第2の層間絶縁膜、140・・・第2の配
線層、150・・・表面保護膜、200・・・リードフ
レーム、300・・・ボンディングワイヤ、400・・
・封止用樹脂、500・・・基板周縁層。 第5凹 (b) 750 表面伏jl躾
1 to 4 are partial cross-sectional schematic diagrams of a resin-sealed semiconductor device according to an embodiment of the present invention, and FIG. 5 is an overall cross-sectional schematic diagram and a partial cross-sectional schematic diagram of a conventional resin-sealed semiconductor device. be. 100... Semiconductor chip, 102... First interlayer insulating film, 110... First wiring layer, 120... Contact M layer. 130... Second interlayer insulating film, 140... Second wiring layer, 150... Surface protective film, 200... Lead frame, 300... Bonding wire, 400...
- Sealing resin, 500...substrate peripheral layer. 5th concave (b) 750 surface down jl discipline

Claims (1)

【特許請求の範囲】 1、少なくとも周縁部以外の領域に半導体素子、配線お
よび表面保護膜を有し、該周縁部領域の表面がシリコン
、シリコン酸化物もしくはシリコン窒化物の層からなる
基板周縁層をそなえた半導体回路基板を封止用樹脂によ
り封止した半導体装置において、前記周縁部領域の基板
周縁層および該封止用樹脂との密着性が、該基板周縁層
と該封止用樹脂との密着性より大なる接着層を該基板周
縁層と該封止用樹脂との間に介在させたことを特徴とす
る樹脂封止型半導体装置。 2、前記接着層が少なくとも金属、金属の酸化物、窒化
物もしくは硅化物等の膜であることを特徴とする特許請
求の範囲第1項記載の樹脂封止型半導体装置。 3、前記表面保護膜がポリイミド系の高分子樹脂膜であ
ることを特徴とする特許請求の範囲第1項もしくは第2
項記載の樹脂封止型半導体装置。 4、前記接着層が少なくとも前記表面保護膜の外周部上
もしくは外周部下に延在していることを特徴とする特許
請求の範囲第1項ないし第3項記載の半導体装置。 5、前記基板周縁層が、前記半導体回路基板の少なくと
もコーナー部に位置していることを特徴とする特許請求
の範囲第1項ないし第3項記載の半導体装置。 6、前記半導体回路基板上の配線が、層間絶縁膜を介し
て2層以上の金属配線層を有する多層配線構造であるこ
とを特徴とする特許請求の範囲第1項ないし第5項記載
の半導体装置。
[Claims] 1. A substrate peripheral layer having a semiconductor element, wiring, and a surface protective film in at least a region other than the peripheral region, and the surface of the peripheral region is made of a layer of silicon, silicon oxide, or silicon nitride. In a semiconductor device in which a semiconductor circuit board having a semiconductor circuit board is sealed with a sealing resin, the adhesion between the substrate peripheral layer and the sealing resin in the peripheral region is such that the adhesiveness between the substrate peripheral layer and the sealing resin is 1. A resin-sealed semiconductor device, characterized in that an adhesive layer having an adhesiveness greater than that of the substrate is interposed between the substrate peripheral layer and the sealing resin. 2. The resin-sealed semiconductor device according to claim 1, wherein the adhesive layer is at least a film of metal, metal oxide, nitride, or silicide. 3. Claim 1 or 2, characterized in that the surface protective film is a polyimide-based polymer resin film.
The resin-sealed semiconductor device described in Section 1. 4. The semiconductor device according to any one of claims 1 to 3, wherein the adhesive layer extends at least above or below the outer periphery of the surface protection film. 5. The semiconductor device according to any one of claims 1 to 3, wherein the substrate peripheral layer is located at least at a corner portion of the semiconductor circuit board. 6. The semiconductor according to claims 1 to 5, wherein the wiring on the semiconductor circuit board has a multilayer wiring structure having two or more metal wiring layers with an interlayer insulating film interposed therebetween. Device.
JP8902688A 1988-04-13 1988-04-13 Resin-sealed semiconductor device Pending JPH01261850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8902688A JPH01261850A (en) 1988-04-13 1988-04-13 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8902688A JPH01261850A (en) 1988-04-13 1988-04-13 Resin-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH01261850A true JPH01261850A (en) 1989-10-18

Family

ID=13959400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8902688A Pending JPH01261850A (en) 1988-04-13 1988-04-13 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH01261850A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661076B2 (en) * 2000-11-29 2003-12-09 Nec Electronics Corporation Semiconductor device
KR100764363B1 (en) * 2005-04-28 2007-10-08 산요덴키가부시키가이샤 Semiconductor device and manufacturing method thereof
US7830023B2 (en) 2007-05-30 2010-11-09 Denso Corporation Resin molded semiconductor device
JP2014116333A (en) * 2012-12-06 2014-06-26 Mitsubishi Electric Corp Semiconductor device
JP6005306B2 (en) * 2014-04-28 2016-10-12 三菱電機株式会社 Semiconductor device
WO2018194090A1 (en) * 2017-04-20 2018-10-25 ローム株式会社 Semiconductor device
JP2018182330A (en) * 2017-04-20 2018-11-15 ローム株式会社 Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661076B2 (en) * 2000-11-29 2003-12-09 Nec Electronics Corporation Semiconductor device
KR100764363B1 (en) * 2005-04-28 2007-10-08 산요덴키가부시키가이샤 Semiconductor device and manufacturing method thereof
US7830023B2 (en) 2007-05-30 2010-11-09 Denso Corporation Resin molded semiconductor device
JP2014116333A (en) * 2012-12-06 2014-06-26 Mitsubishi Electric Corp Semiconductor device
JP6005306B2 (en) * 2014-04-28 2016-10-12 三菱電機株式会社 Semiconductor device
US10068825B2 (en) 2014-04-28 2018-09-04 Mitsubishi Electric Corporation Semiconductor device
WO2018194090A1 (en) * 2017-04-20 2018-10-25 ローム株式会社 Semiconductor device
JP2018182330A (en) * 2017-04-20 2018-11-15 ローム株式会社 Semiconductor device
CN110447099A (en) * 2017-04-20 2019-11-12 罗姆股份有限公司 Semiconductor devices
US11233037B2 (en) 2017-04-20 2022-01-25 Rohm Co., Ltd. Semiconductor device
US11776936B2 (en) 2017-04-20 2023-10-03 Rohm Co., Ltd. Semiconductor device
CN110447099B (en) * 2017-04-20 2023-11-07 罗姆股份有限公司 Semiconductor device with a semiconductor layer having a plurality of semiconductor layers

Similar Documents

Publication Publication Date Title
US6602803B2 (en) Direct attachment semiconductor chip to organic substrate
US4086375A (en) Batch process providing beam leads for microelectronic devices having metallized contact pads
JP4049035B2 (en) Manufacturing method of semiconductor device
US4866505A (en) Aluminum-backed wafer and chip
JP3389517B2 (en) Chip size package and manufacturing method thereof
JP2699517B2 (en) Semiconductor device having round or tapered edges and corners
US7247576B2 (en) Method of manufacturing a semiconductor device
JP2001015516A (en) Semiconductor device and manufacture thereof
JPH01261850A (en) Resin-sealed semiconductor device
US7042070B2 (en) Direct attachment of semiconductor chip to organic substrate
JPS62112348A (en) Manufacture of semiconductor device
KR20010002843A (en) mole type wafer level package
WO2001026146A1 (en) Semiconductor device and method of manufacture thereof
JPH02113533A (en) Semiconductor device
JPH08330310A (en) Semiconductor device
JPH06302744A (en) Machining method for leadframe for molded package device
JPH053249A (en) Semiconductor device and its manufacture
JP2865224B2 (en) Resin-sealed semiconductor device
JP2533293B2 (en) Method for manufacturing resin-sealed semiconductor device
JPS615562A (en) Semiconductor device
JPS60145628A (en) Semiconductor device
JP2745887B2 (en) Resin-sealed semiconductor device
JPH08288447A (en) Lead frame
JPS59167026A (en) Manufacture of semiconductor device
JPH01233739A (en) Manufacture of semiconductor device