JPH0126146B2 - - Google Patents

Info

Publication number
JPH0126146B2
JPH0126146B2 JP58131531A JP13153183A JPH0126146B2 JP H0126146 B2 JPH0126146 B2 JP H0126146B2 JP 58131531 A JP58131531 A JP 58131531A JP 13153183 A JP13153183 A JP 13153183A JP H0126146 B2 JPH0126146 B2 JP H0126146B2
Authority
JP
Japan
Prior art keywords
deflection yoke
magnets
picture tube
guns
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58131531A
Other languages
Japanese (ja)
Other versions
JPS6023937A (en
Inventor
Toshio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP13153183A priority Critical patent/JPS6023937A/en
Publication of JPS6023937A publication Critical patent/JPS6023937A/en
Publication of JPH0126146B2 publication Critical patent/JPH0126146B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • H01J29/702Convergence correction arrangements therefor
    • H01J29/703Static convergence systems

Description

【発明の詳細な説明】 産業上の利用分野 本発明はインライン型カラー受像管の画像補正
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an image correction device for an in-line color picture tube.

従来技術 一般に、カラーテレビジヨン受像機、カラーデ
イスプレイ装置等のインライン型カラー受像管に
おいては、3つの電子銃(3ガン)から個々に出
射されたR(RED)、G(GREEN)、B(BLUE)
の3色の電子ビームが互いに異なる入射角で受像
管のスクリーン上において集束し且つ集中(コン
バーゼンス)することが必要である。
Prior Art In general, in an in-line color picture tube for color television receivers, color display devices, etc., R (RED), G (GREEN), and B (BLUE) are individually emitted from three electron guns (3 guns). )
It is necessary for the electron beams of the three colors to be focused and concentrated (convergence) on the screen of the picture tube at mutually different angles of incidence.

このため、従来のインライン型3ガンカラー受
像管においては、3電子ビームのスクリーン上に
おける良好な集中を得るために3ガン及びスクリ
ーン間に設けられた偏向ヨークの水平偏向磁界を
強いピンクツシヨン形(糸巻形)磁界、垂直偏向
磁界を強いバレル形(ビール樽形)磁界に形成
し、これらの磁界により上記互いに入射角の異な
る3ビームの進行方向を変えてスクリーン上で一
致集中させるようにしている。
For this reason, in conventional in-line three-gun color picture tubes, in order to obtain good concentration of the three electron beams on the screen, the horizontal deflection magnetic field of the deflection yoke provided between the three guns and the screen is applied in a strong pink tension type (pincushion type). The vertical deflection magnetic field is formed into a strong barrel-shaped (beer barrel-shaped) magnetic field, and these magnetic fields change the traveling directions of the three beams with different incident angles so that they are focused on the screen.

しかるに、インライン型3ガンの水平軸と偏向
ヨーク磁界の水平軸とは組付技術上予め完全に一
致させるのは困難であり、このままだと上記集中
(コンバーゼンス)を行ないえず3色画像のずれ
(ミスコンバーゼンス)を生ずる不都合が発生し
てしまう。従つてこの不都合を解消するため、従
来、3ガン及び偏向ヨーク間に更にマグネツトを
設けて上記ミスコンバーゼンスを補正するように
したものがあり、以下この従来例(特公昭57−
30262号公報「コンバーゼンス装置」)につき第1
図、第2図A,B、第3図を併せて説明する。
However, due to assembly technology, it is difficult to make the horizontal axis of the in-line 3-gun and the horizontal axis of the deflection yoke magnetic field perfectly match in advance, and if this continues, the above-mentioned convergence will not be possible and the three-color image will shift. Inconveniences such as (misconvergence) occur. Therefore, in order to eliminate this inconvenience, there is a conventional method in which a magnet is further provided between the three guns and the deflection yoke to correct the above misconvergence.
No. 30262 “Convergence device”)
FIG. 2, FIGS. 2A and B, and FIG. 3 will be explained together.

第1図中、受像管アツセンブリ1は、受像管2
(スクリーン2a、ネツク2bを有する)のネツ
ク2bに、3ガン3(3−R,3−G,3−Bよ
りなる)とスタテイツクコンバーゼンス装置4と
偏向ヨーク5とを有する。スタテイツクコンバー
ゼンス装置4は一組の2極マグネツト6と一組の
6極マグネツト7と二組の4極マグネツト8−
1,8−2とを組合せてなる。2極マグネツト6
はスクリーン中央部の色純度調整用に用いられ、
又6極マグネツト7はスクリーン中央部における
3ガン3からの両サイド電子ビームR,Bとセン
ター電子ビームGとのコンバーゼンス調整用に用
いられる。又二組の4極マグネツト8−1,8−
2は第2図の如く、4極磁界が発生するよう予め
着磁されており、この磁界により水平軸上の両サ
イド電子ビームR,Bに互いに逆方向に移動する
力を発生させる。尚各組のマグネツト6,7,8
−1,8−2は夫々2枚のマグネツト板が一組と
なつており、2枚のマグネツト板の互いの回転角
度を変えることにより、電子ビームの移動量を変
えることができ、又2枚のマグネツト板を同一方
向へ回転させることにより、電子ビームの移動方
向を任意に変えることができる。
In FIG. 1, a picture tube assembly 1 is a picture tube assembly 1.
The net 2b (having a screen 2a and a net 2b) has three guns 3 (consisting of 3-R, 3-G, and 3-B), a static convergence device 4, and a deflection yoke 5. The static convergence device 4 includes one set of two-pole magnets 6, one set of six-pole magnets 7, and two sets of four-pole magnets 8-.
1, 8-2 in combination. 2 pole magnet 6
is used to adjust the color purity in the center of the screen.
Further, the hexapole magnet 7 is used to adjust the convergence between the electron beams R and B on both sides from the three guns 3 and the center electron beam G at the center of the screen. Also, two sets of 4-pole magnets 8-1, 8-
2 is magnetized in advance to generate a quadrupole magnetic field, as shown in FIG. 2, and this magnetic field generates a force that moves both side electron beams R and B on the horizontal axis in opposite directions. In addition, each set of magnets 6, 7, 8
-1 and 8-2 each consist of a set of two magnetic plates, and by changing the mutual rotation angle of the two magnetic plates, the amount of movement of the electron beam can be changed. By rotating the magnetic plates in the same direction, the moving direction of the electron beam can be changed arbitrarily.

ここで、インライン3ガン3−R,3−G,3
−Bの水平軸が偏向ヨーク5の水平軸に対して角
度θ1左回転してセツトされた場合、ビームR及び
ビームBは夫々Z軸に対し上側及び下側の径路を
通過して第3図Aの如く、3ビームR,G,Bの
水平軸が上記回転角度θ1を保つたまま進行する。
そして、4極マグネツト8−1,8−2がないと
仮定した場合には、第3図Aの如く、R(赤)、G
(緑)、B(青)の各ビームは偏向ヨーク5の水平
偏向磁界Uにより夫々FHR,FHG,FHBの偏向方向
力を受け且つ垂直偏向磁界Vにより夫々FVR
FVG,FVBの力を受け、スクリーン2a上では第3
図Bの如く、赤の横線では両側が垂れ下がり且つ
青の横線では両側が跳ね上るようなミスコンバー
ゼンスを発生する。
Here, inline 3 guns 3-R, 3-G, 3
When the horizontal axis of -B is rotated counterclockwise by an angle θ 1 with respect to the horizontal axis of the deflection yoke 5, beam R and beam B pass through the upper and lower paths with respect to the Z axis, respectively, and the third As shown in Figure A, the horizontal axes of the three beams R, G, and B advance while maintaining the rotation angle θ 1 .
If it is assumed that there are no quadrupole magnets 8-1 and 8-2, R (red), G
(green) and B (blue) beams are subjected to deflection forces F HR , F HG , F HB , respectively, by the horizontal deflection magnetic field U of the deflection yoke 5, and F VR , F HB , respectively by the vertical deflection magnetic field V.
Under the force of F VG and F VB , the third
As shown in Figure B, a misconvergence occurs in which both sides of the red horizontal line hang down and both sides of the blue horizontal line jump up.

しかるに、4極マグネツト8−1,8−2があ
ると、第4図中、ガン3−Rから出射されたビー
ムRはP位置において、第1の4極マグネツト8
−1により第2図の原理により下方向の力を受け
R′の方向に進行し、且つ同図中ガン3−Bから
出射されたビームBは同じく第1の4極マグネツ
ト8−1により上方向の力を受けてB′の方向に
進行する。その後第4図中ビームR′はQ位置に
おいて第2の4極マグネツト8−2により今度は
上方向の力を受け且つビームBは第2の4極マグ
ネツト8−2により今度は下方向の力を受け、
夫々R″,B″の方向に進行する。その結果3個の
電子ビームR,G,Bはスクリーン2aの中央部
では一致集中しうる状態とされる。そして全体と
して第5図(第4図のT位置における断面図)の
如く、ビームR,G,Bの水平軸が偏向ヨーク5
の磁界の水平軸に対し微少角度θ2だけ(但しθ2
θ1)左回転した状態に補正され、即ちスタテイツ
クコンバーゼンスを取られて第4図中T位置で偏
向ヨーク5の磁界内に進入する。しかる後ビーム
R,G,Bは偏向ヨーク5の磁界によりスクリー
ン2aの中央部を除いた周辺部の全域にわたつて
スクリーン2a上に集中するようダイナミツクコ
ンバーゼンスを取られ、上記第3図Bのミスコン
バーゼンスが補正される。
However, if there are quadrupole magnets 8-1 and 8-2, the beam R emitted from the gun 3-R in FIG.
-1 receives a downward force according to the principle shown in Figure 2.
The beam B traveling in the direction R' and emitted from the gun 3-B in the same figure is similarly subjected to an upward force by the first quadrupole magnet 8-1 and travels in the direction B'. Thereafter, beam R' in FIG. 4 is now subjected to an upward force by the second quadrupole magnet 8-2 at position Q, and beam B is now subjected to a downward force by the second quadrupole magnet 8-2. receive,
They proceed in the directions of R″ and B″, respectively. As a result, the three electron beams R, G, and B can be concentrated at the center of the screen 2a. As a whole, as shown in FIG. 5 (cross-sectional view at position T in FIG. 4), the horizontal axes of the beams R, G, and B are aligned with the deflection yoke 5.
by a small angle θ 2 with respect to the horizontal axis of the magnetic field (where θ 2 <
θ 1 ) It is corrected to a left-rotated state, that is, static convergence is taken, and it enters the magnetic field of the deflection yoke 5 at position T in FIG. Thereafter, the beams R, G, and B are dynamically converged by the magnetic field of the deflection yoke 5 so that they are concentrated on the screen 2a over the entire peripheral area of the screen 2a except for the central area, and as shown in FIG. 3B above. Misconvergence is corrected.

ここで、ビームの水平軸の回転補正量△θ(=
θ1−θ2)は次式で与えられる。
Here, the horizontal axis rotation correction amount △θ (=
θ 1 −θ 2 ) is given by the following equation.

△θ=θ1−sin-1{S(1−l/M)(1−a/L−l
/W}
…(1) 但し、 W…第5図中、ビームR,G,Bどうしの間隔 S…第4図中、P位置に至る前のビームR,G,
Bどうしの上下方向寸法差 M…第4図中、P位置とZ軸及びビームの交点と
の距離(マグネツト8−1,8−2の磁界強度
に反比例する) l…二組の4極マグネツト8−1,8−2間の距
離 L…P位置とスクリーン2aとの距離 a…Q位置とT位置との距離 ここで、受像管2の形状が決まれば、上記(1)式
中のW、S、及びl+aの値は略決定してしまう
ので、上記最大補正量△θはM(磁界強度に反比
例)即ちマグネツト8−1,8−2の着磁量、及
びマグネツト8−1,8−2間距離lによつて決
定されることになる。この最大補正量△θ及び距
離lの関係は第6図の如く、略比例関係となつて
おり、十分な最大補正量△θを得るには距離lを
大きくした方が有利であることがわかる。
△θ=θ 1 −sin −1 {S(1-l/M)(1-a/L-l
/W}
...(1) However, W...In Fig. 5, the distance S between beams R, G, and B...In Fig. 4, the beams R, G, and B before reaching position P,
Dimension difference in the vertical direction between B...Distance between the P position and the intersection of the Z axis and the beam in Fig. 4 (inversely proportional to the magnetic field strength of magnets 8-1 and 8-2) l...Two sets of quadrupole magnets Distance L between 8-1 and 8-2... Distance a between P position and screen 2a... Distance between Q position and T position Here, once the shape of the picture tube 2 is determined, W in the above equation (1) , S, and l+a are almost determined, so the maximum correction amount Δθ is determined by M (inversely proportional to the magnetic field strength), that is, the amount of magnetization of the magnets 8-1 and 8-2, and the amount of magnetization of the magnets 8-1 and 8-2. -2 distance l. The relationship between the maximum correction amount △θ and the distance l is approximately proportional as shown in Fig. 6, and it can be seen that it is advantageous to increase the distance l in order to obtain a sufficient maximum correction amount △θ. .

しかるに、従来のインライン型3ガンカラー受
像管では、第1図中偏向ヨーク5の締付パツド9
が邪魔になり、しかも色純度調整のための偏向ヨ
ーク5の可動範囲を考慮しなければならず、その
ため十分な距離lを取ることができなかつた。従
つて十分な最大補正量△θを得るためには、マグ
ネツト8−1,8−2の着磁量を大きくしなけれ
ばならず、その結果、マグネツト8−1,8−2
が大型化してしまうという欠点があり、又着磁量
が大きいために衝撃や環境条件の変化に対し敏感
になり、調整後のコンバーゼンスがずれてしまう
という欠点があつた。
However, in the conventional in-line three-gun color picture tube, the tightening pad 9 of the deflection yoke 5 in FIG.
Moreover, the movable range of the deflection yoke 5 for color purity adjustment had to be taken into consideration, and therefore a sufficient distance l could not be obtained. Therefore, in order to obtain a sufficient maximum correction amount Δθ, it is necessary to increase the amount of magnetization of the magnets 8-1 and 8-2.
However, since the amount of magnetization is large, it becomes sensitive to shocks and changes in environmental conditions, and the convergence after adjustment may deviate.

問題点を解決するための手段 本発明は二組の4極マグネツトのうち スクリ
ーン側の一組のマグネツトを偏向ヨークの3ガン
側端部に設けて上記距離lを大に設定して、上記
欠点を除去したインライン型カラー受像管の画像
補正装置を提供することを目的とする。
Means for Solving the Problems The present invention solves the above drawbacks by providing one set of magnets on the screen side of the two sets of 4-pole magnets at the end of the deflection yoke on the 3-gun side and setting the above-mentioned distance l large. An object of the present invention is to provide an image correction device for an in-line color picture tube that eliminates this.

そのための構成は、カラー受像管と、インライ
ン型3ガンと、該3ガンからの3ビームを夫々偏
向させ該受像管のスクリーン上に集中させる偏向
ヨークと、該3ガン及び偏向ヨーク間に配され、
該3ガンの水平軸と該偏向ヨークの水平軸との回
転誤差に起因する上記集中のミスコンバーゼンス
を補正する二組の4極マグネツトとよりなり、上
記二組の4極マグネツトのうち、該スクリーン側
の一組のマグネツトを上記偏向ヨークの該3ガン
側端部に隣接して設け、該二組のマグネツト間の
離間距離を比較的大に設定して、上記補正を十分
に行なわしめる構成としてなるものである。
The configuration for this includes a color picture tube, three in-line guns, a deflection yoke that deflects the three beams from the three guns and concentrates them on the screen of the picture tube, and a color picture tube arranged between the three guns and the deflection yoke. ,
It consists of two sets of quadrupole magnets for correcting the concentration misconvergence caused by a rotational error between the horizontal axis of the three guns and the horizontal axis of the deflection yoke, and of the two sets of quadrupole magnets, the screen A set of side magnets is provided adjacent to the end of the three guns side of the deflection yoke, and a distance between the two sets of magnets is set to be relatively large to sufficiently perform the above correction. It is what it is.

実施例 第7図は本発明になるインライン型カラー受像
管の画像補正装置の一実施例を適用した受像管ア
ツセンブリの側面図、第8図は上記画像補正装置
の分解斜視図であり、第7図中、第1図と同一部
分には同一符号を付してその説明を省略する。
Embodiment FIG. 7 is a side view of a picture tube assembly to which an embodiment of the in-line color picture tube image correction device of the present invention is applied, and FIG. 8 is an exploded perspective view of the image correction device. In the figure, the same parts as in FIG. 1 are given the same reference numerals, and the explanation thereof will be omitted.

図中、受像管アツセンブリ11の偏向ヨーク
5′はセパレータの両端12,13間に垂直コイ
ル14及び水平コイル(図示せず)を配してな
り、セパレータ後端部12は第8図の如く外側に
一のボス部12a(周方向等分位置の複数の軸方
向切欠き12bにより複数部分に画成される)と
周方向等分位置の複数の係合アーム部12cとを
有する。尚本願の偏向ヨーク5′は従来の偏向ヨ
ーク5と略同一形状であるが、ボス部12aの軸
方向長が後述する4極マグネツト8−2′を取付
けるために従来より若干大としたものである。上
記偏向ヨーク5′は第7図の如く受像管2のネツ
ク2bに嵌合される。
In the figure, the deflection yoke 5' of the picture tube assembly 11 has a vertical coil 14 and a horizontal coil (not shown) disposed between both ends 12 and 13 of a separator, and the rear end 12 of the separator is located on the outside as shown in FIG. It has one boss portion 12a (defined into a plurality of parts by a plurality of axial notches 12b at equal positions in the circumferential direction) and a plurality of engagement arm portions 12c at equal positions in the circumferential direction. The deflection yoke 5' of the present application has approximately the same shape as the conventional deflection yoke 5, but the axial length of the boss portion 12a is slightly larger than the conventional one in order to mount a 4-pole magnet 8-2', which will be described later. be. The deflection yoke 5' is fitted into the neck 2b of the picture tube 2 as shown in FIG.

二組の4極マグネツト8−1,8−2′のうち
一組の4極マグネツト8−2′は従来の4極マグ
ネツト8−2に比して大径とされており、第8図
の如く、大なる軸長のボス部12aに遊嵌され複
数の係合アーム部12cに該各アーム部12cの
弾性変形を伴い嵌合されてセパレータの後端面1
2に当接され、該各アーム部12cの先端爪部に
より係止される。尚この4極マグネツト8−2′
の組付、分解はワンタツチで行ないうる。
Of the two sets of four-pole magnets 8-1, 8-2', one set of four-pole magnets 8-2' has a larger diameter than the conventional four-pole magnet 8-2, as shown in FIG. As shown in FIG.
2, and is locked by the tip claw portion of each arm portion 12c. Furthermore, this 4-pole magnet 8-2'
Assembling and disassembling can be done with one touch.

9は締付パツドで、帯体9aにネジ9bを螺合
してなり、ボス部12aに遊嵌された状態でネジ
9bを締付ける。これによりボス部12aの複数
部分が内方へ弾性変形され、偏向ヨーク5′はネ
ツク2bに締付固定される。
Reference numeral 9 denotes a tightening pad, which is formed by threading a screw 9b onto a band 9a, and tightens the screw 9b while being loosely fitted into the boss portion 12a. As a result, the plurality of portions of the boss portion 12a are elastically deformed inward, and the deflection yoke 5' is tightened and fixed to the neck 2b.

その他のマグネツト6,8−1,7の取付位置
は従来例と同様である。
The other mounting positions of the magnets 6, 8-1, and 7 are the same as in the conventional example.

従つて、本願の構成では、二組の4極マグネツ
ト8−1,8−2′のうち スクリーン側の4極
マグネツト8−2′を締付バンド9より更にスク
リーン側の偏向ヨーク5′のセパレータ12端面、
即ち偏向ヨーク5′の3ガン側端部に隣接して設
けているため、4極マグネツト8−1,8−2′
間の離間寸法l′は従来の寸法lに比してかなり大
となる(l′>l)。
Therefore, in the configuration of the present application, of the two sets of 4-pole magnets 8-1 and 8-2', the 4-pole magnet 8-2' on the screen side is connected to the separator of the deflection yoke 5' on the screen side further than the tightening band 9. 12 end faces,
That is, since it is provided adjacent to the 3-gun side end of the deflection yoke 5', the 4-pole magnets 8-1, 8-2'
The distance l' between them is considerably larger than the conventional dimension l (l'>l).

又本願においても、3ガン3,3−G,3−B
の水平軸と偏向ヨーク5′の水平軸との回転誤差
がある場合において、従来例と同様に二組の4極
マグネツト8−1,8−2′によりスタテイツク
コンバーゼンスを取ることができる。
Also in this application, 3 guns 3, 3-G, 3-B
When there is a rotational error between the horizontal axis of the deflection yoke 5' and the horizontal axis of the deflection yoke 5', static convergence can be achieved by the two sets of quadrupole magnets 8-1 and 8-2', as in the conventional example.

この場合、上記(1)式中のlに相当するl′の値を
上記理由により従来例の場合(15mm程度)よりか
なり大きく30mm程度まで取ることができ約2倍と
しうる。これにより逆にマグネツト8−1,8−
2′の着磁量は従来例の約1/2とすることができ、
この状態で十分な最大補正量△θを得ることがで
きる。従つて、マグネツト8−1,8−2′を小
型化でき全体も小型化でき、又マグネツト8−
1,8−2′の着磁量が少ないので衝撃や環境条
件の変化に対するコンバーゼンスの変化を低減し
うる。
In this case, the value of l', which corresponds to l in the above formula (1), can be set to about 30 mm, which is considerably larger than that of the conventional example (about 15 mm), and can be about twice that of the conventional example (about 15 mm). As a result, the magnets 8-1, 8-
The amount of magnetization at 2' can be reduced to about 1/2 of that of the conventional example,
In this state, a sufficient maximum correction amount Δθ can be obtained. Therefore, the magnets 8-1, 8-2' can be made smaller and the whole can be made smaller, and the magnets 8-1 and 8-2' can also be made smaller.
Since the amount of magnetization of 1,8-2' is small, changes in convergence due to impact or changes in environmental conditions can be reduced.

上述の如く、本発明になるインライン型カラー
受像管の画像補正装置によれば、二組の4極マグ
ネツトのうちスクリーン側の一組のマグネツトを
偏向ヨークの3ガン側端部に隣接して設けて二組
の4極マグネツト間の離間距離を大としているた
め、上記各マグネツトにより3ガン及び偏向ヨー
クの各水平軸の回転誤差に起因するミスコンバー
ゼンスを補正をするに際して、各マグネツトの着
磁量を低減しうるのでマグネツト及び全体を小型
且つ軽量化しうると共に、衝撃や環境条件の変化
に対してもコンバーゼンスの低下を招くことなく
性能を向上しえ、工業的価値がきわめて大きい等
の特長を有する。
As described above, according to the image correction device for an in-line color picture tube according to the present invention, of the two sets of quadrupole magnets, one set of magnets on the screen side is provided adjacent to the 3-gun side end of the deflection yoke. Since the separation distance between the two sets of 4-pole magnets is large, the amount of magnetization of each magnet is The magnet and the entire magnet can be made smaller and lighter, and the performance can be improved without causing a decrease in convergence even in response to shocks or changes in environmental conditions, and has extremely large industrial value. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はインライン型カラー受像管の画像補正
装置の従来例を適用した受像管アツセンブリの側
面図、第2図は上記受像管アツセンブリの4極マ
グネツトの磁界の説明図、第3図A,Bは夫々上
記受像管アツセンブリの偏向ヨークの磁界の説明
図及びそのスクリーンにおけるミスコンバーゼン
ス状態を説明する図、第4図は上記受像管アツセ
ンブリの動作を説明するための側面図、第5図は
上記受像管アツセンブリでビームが偏向磁界へ進
入する際の状態を説明する図、第6図は上記受像
管アツセンブリで3ガンから出射した3ビームの
水平軸の3ガンの水平軸からの回転補正量が二組
の4極マグネツトの離間距離に応じて変化する状
態を説明する図、第7図は本発明になるインライ
ン型カラー受像管の画像補正装置の一実施例を適
用した受像管アツセンブリの側面図、第8図は上
記画像補正装置の分解斜視図である。 1,11……インライン型カラー受像管アツセ
ンブリ、2……受像管、3(3−R,3−G,3
−B)……3ガン、4,4′……スタテイツクコ
ンバーゼンス装置、5,5′……偏向ヨーク、8
−1,8−2,8−2′……4極マグネツト、9
……締付バンド、12……セパレータ、12a…
…ボス部、12b……係合アーム部。
Fig. 1 is a side view of a picture tube assembly to which a conventional example of an in-line color picture tube image correction device is applied, Fig. 2 is an explanatory diagram of the magnetic field of the quadrupole magnet of the picture tube assembly, and Figs. 3A and B. 4 is a side view illustrating the operation of the picture tube assembly, and FIG. Fig. 6 is a diagram explaining the state when the beam enters the deflection magnetic field in the tube assembly. FIG. 7 is a side view of a picture tube assembly to which an embodiment of the in-line color picture tube image correction device of the present invention is applied. FIG. 8 is an exploded perspective view of the image correction device. 1, 11... In-line color picture tube assembly, 2... Picture tube, 3 (3-R, 3-G, 3
-B)...3 guns, 4, 4'...static convergence device, 5,5'...deflection yoke, 8
-1, 8-2, 8-2'...4-pole magnet, 9
...Tightening band, 12...Separator, 12a...
...Boss part, 12b...Engagement arm part.

Claims (1)

【特許請求の範囲】[Claims] 1 カラー受像管と、インライン型3ガンと、該
3ガンからの3ビ−ムを夫々偏向させ該受像管の
スクリーン上に集中させる偏向ヨークと、該3ガ
ン及び偏向ヨーク間に配され、該3ガンの水平軸
と該偏向ヨークの水平軸との回転誤差に起因する
上記集中のミスコンバーゼンスを補正する二組の
4極マグネツトとよりなり、上記二組の4極マグ
ネツトのうち該スクリーン側の一組のマグネツト
を上記偏向ヨークの該3ガン側端部に隣接して設
け、該二組のマグネツト間の離間距離を比較的大
に設定して、上記補正を十分に行なわしめる構成
としてなることを特徴とするインライン型カラー
受像管の画像補正装置。
1 a color picture tube, an in-line type 3 gun, a deflection yoke that deflects the 3 beams from the 3 guns and concentrates them on the screen of the picture tube, and a deflection yoke disposed between the 3 guns and the deflection yoke; It consists of two sets of quadrupole magnets that correct the above-mentioned concentration misconvergence caused by a rotational error between the horizontal axis of the three guns and the horizontal axis of the deflection yoke. A set of magnets is provided adjacent to the end of the deflection yoke on the three-gun side, and a distance between the two sets of magnets is set to be relatively large, so that the above correction is sufficiently performed. An in-line color picture tube image correction device featuring:
JP13153183A 1983-07-19 1983-07-19 Picture correction device of inline type color picture tube Granted JPS6023937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13153183A JPS6023937A (en) 1983-07-19 1983-07-19 Picture correction device of inline type color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13153183A JPS6023937A (en) 1983-07-19 1983-07-19 Picture correction device of inline type color picture tube

Publications (2)

Publication Number Publication Date
JPS6023937A JPS6023937A (en) 1985-02-06
JPH0126146B2 true JPH0126146B2 (en) 1989-05-22

Family

ID=15060247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13153183A Granted JPS6023937A (en) 1983-07-19 1983-07-19 Picture correction device of inline type color picture tube

Country Status (1)

Country Link
JP (1) JPS6023937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239866U (en) * 1988-09-02 1990-03-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654616A (en) * 1985-09-30 1987-03-31 Rca Corporation Blue bow correction for CRT raster
KR930000223Y1 (en) * 1990-10-24 1993-01-18 삼성전관주식회사 Magnet structure for convergence calribration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324726A (en) * 1976-08-20 1978-03-07 Hitachi Ltd Color receiving tube
JPS5730262A (en) * 1980-07-31 1982-02-18 Tokyo Shibaura Electric Co Method of producing bulb
JPS57180286A (en) * 1981-04-30 1982-11-06 Hitachi Ltd In-line color picture tube device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817324Y2 (en) * 1978-10-25 1983-04-08 株式会社日立製作所 deflection yoke
JPS56150057U (en) * 1980-04-11 1981-11-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324726A (en) * 1976-08-20 1978-03-07 Hitachi Ltd Color receiving tube
JPS5730262A (en) * 1980-07-31 1982-02-18 Tokyo Shibaura Electric Co Method of producing bulb
JPS57180286A (en) * 1981-04-30 1982-11-06 Hitachi Ltd In-line color picture tube device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239866U (en) * 1988-09-02 1990-03-16

Also Published As

Publication number Publication date
JPS6023937A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
JPH0542776B2 (en)
JPH0126146B2 (en)
US6573668B1 (en) Color cathode ray tube having a convergence correction apparatus
JPH0350598Y2 (en)
JP3041898B2 (en) Deflection yoke
JP2000100347A (en) Color cathode-ray tube device
JP2710880B2 (en) Centralized adjustment method for in-line type cathode ray tube using quadrupole magnetic field generator
JPH0359931A (en) Deflection yoke for color television picture tube
JPS645820Y2 (en)
JP2557854B2 (en) Deflection device for color cathode ray tube
KR950005807B1 (en) Crt color purity magnets
JP3984605B2 (en) Color picture tube device
JP2551059Y2 (en) Deflection yoke device
JPH0512912Y2 (en)
JPH0421243Y2 (en)
JPH01115038A (en) Deflection yoke
JPS6010047Y2 (en) deflection yoke
JPH023248Y2 (en)
JP2001023540A (en) Color image display device
JPH0531090U (en) Electron beam adjuster
JPH069260U (en) Deflection yoke device
JPS6326499B2 (en)
JPH0592946U (en) Deflection yoke
JPH10208666A (en) Deflection yoke
JPS63141486A (en) Convergence correcting device