JPH01261445A - Glass fiber-reinforced thermoplastic resin - Google Patents

Glass fiber-reinforced thermoplastic resin

Info

Publication number
JPH01261445A
JPH01261445A JP8893088A JP8893088A JPH01261445A JP H01261445 A JPH01261445 A JP H01261445A JP 8893088 A JP8893088 A JP 8893088A JP 8893088 A JP8893088 A JP 8893088A JP H01261445 A JPH01261445 A JP H01261445A
Authority
JP
Japan
Prior art keywords
units
weight
copolymer
glass fiber
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8893088A
Other languages
Japanese (ja)
Inventor
Akihiro Wada
明紘 和田
Jun Sugiyama
潤 杉山
Akihiro Watanabe
昭広 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8893088A priority Critical patent/JPH01261445A/en
Publication of JPH01261445A publication Critical patent/JPH01261445A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title resin excellent in rigidity, heat resistance, etc., by mixing a copolymer composed of methyl methacrylate, aromatic vinyl, (meth) acrylic acid, a six-membered ring acid anhydride and a six-membered ring imide with a glass fiber. CONSTITUTION:A copolymer comprising 29-95wt.% methyl methacrylate units (A), 1-67wt.% aromatic vinyl compound units (B), 1-10wt.% (meth)acrylic acid units (C), 0.1-48wt.% six-membered ring acid anhydride units (D) of formula I (wherein R1 and R2 are each H or methyl) and 2-49wt.% six-membered ring imide units (E) of formula II (wherein R3 is H or a hydrocarbon group) and having a total content of components D and E of 3-80wt.% and a reduced viscosity of 0.1-4 dl/g as measured in a chloroform solution at 25 deg.C is prepared. 100 pts.wt. this copolymer is mixed with 5-100 pts.wt. glass fiber to produce the title resin. This resin can be suitably used for fans of air conditioners for use in both cooling and heating, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガラス繊維強化熱可塑性樹脂組成物、さらに詳
しくいえば、高耐熱性及び高111J性であり、かつ成
形性に優れたガラス繊維強化熱可塑性樹脂組成物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a glass fiber-reinforced thermoplastic resin composition, more specifically, a glass fiber-reinforced thermoplastic resin composition that has high heat resistance, high 111 J property, and excellent moldability. This invention relates to a resin composition.

従来の技術 アク110ニトリル−スチレン共重合体(以下AS樹脂
と略す)のガラス繊維強化樹脂(以下As−GF耐樹脂
略す)は、多くのガラス繊維強化熱可塑性樹脂の中で、
特に高い剛性と良好な耐化学薬品性を有し、かつ成形時
の金型寸法再現性が良い、成形収縮率が小さい、成形品
のソリが少ないなど成形寸法安定性が良好であり、その
上成形条件幅が広くて容易に成形しやすいといった浸れ
た成形性を有する等、多くの特徴があって、例えば自動
車のインストウルメ〉ドパネルやクーラーのライン70
−フア〉′、プロペラファンなどに多く用いられている
Conventional technology Aku-110 nitrile-styrene copolymer (hereinafter referred to as AS resin) glass fiber reinforced resin (hereinafter referred to as As-GF resistant resin) is one of the most popular among many glass fiber reinforced thermoplastic resins.
It has particularly high rigidity and good chemical resistance, as well as good molding dimensional stability such as good mold dimensional reproducibility, low molding shrinkage rate, and little warping of molded products. It has many characteristics such as excellent moldability such as a wide range of molding conditions and easy molding.
- Widely used in propeller fans, etc.

しかしながら、このAs−GF耐樹脂、耐熱性に関して
は必ずしも満足しうるものではなく、前記の用途におけ
る各部品の信頼性をさらに向上させ、またクーラー専用
のみならず、冷暖兼用エアフンのライン・フローファン
用やOA機器のンヤーン類用樹脂などとしても用いうる
ようにするために耐熱性を改善することが強く要望され
ていた。
However, the As-GF resin and heat resistance are not necessarily satisfactory, and it is necessary to further improve the reliability of each part in the above-mentioned applications. There has been a strong desire to improve the heat resistance so that it can be used as a resin for yarns in industrial and OA equipment.

本発明者らは、このような要望にこたえるため、先に特
定の六員環酸無水物単位を含む共重合体のガラス繊維強
化熱可塑性樹脂組成物を提案した(特公昭62−576
59号公報)。
In order to meet such demands, the present inventors previously proposed a glass fiber-reinforced thermoplastic resin composition of a copolymer containing a specific six-membered cyclic acid anhydride unit (Japanese Patent Publication No. 62-576).
Publication No. 59).

発明が解決しようとする課題 本発明は、従来のガラス繊維強化熱可塑性樹脂組成物の
耐熱性、剛性及び成形性をさらに改善し、種々の需要番
ご十分文・j応しうる成形材料を提供することを目的と
してなされtこものである。
Problems to be Solved by the Invention The present invention further improves the heat resistance, rigidity, and moldability of conventional glass fiber-reinforced thermoplastic resin compositions, and provides a molding material that can meet various demands. It was made for the purpose of doing something.

課題を解決するための手段 本発明者らは、ガラス繊維強化樹脂の物性向上について
種々研究を重ねた結果、マトリックス樹脂と17で、六
員環無水物単位と六員環酸イミド単位とを含む、芳香族
ビニル化合物−メタクリル酸メチル共重合体を用いた場
合に、意外にも高耐熱性、高剛性で、成形性に連れたガ
ラス繊維強化樹脂が得られることを見出し、この知見に
基づいて本発明をなすに至った。
Means for Solving the Problems As a result of various studies on improving the physical properties of glass fiber reinforced resins, the present inventors have developed a matrix resin containing 17 6-membered anhydride units and 6-membered cyclic acid imide units. discovered that when an aromatic vinyl compound-methyl methacrylate copolymer was used, a glass fiber-reinforced resin with unexpectedly high heat resistance, high rigidity, and good moldability could be obtained, and based on this knowledge, The present invention has been accomplished.

すなわち、本発明は、 (A)メタクリル酸メチル単位29〜95重量%と、 (B)芳香族ビニル化合物単位1〜67重量%と、(C
)アクリル酸又はメタクリル酸単位1〜10重量%と、 (D)一般式 (式中のR,及びR2は水素原子又はメチル基である) で表わされる六員環酸無水物単位0.1〜48重量%と
、 (E)一般式 (式中のR3及びR3は水素原子又はメチル基、R3は
水素原子又は炭化水素基である)で表わされる六員環イ
ミド単位2〜49重量から成り、かつ(D)単位と(E
)単位の和が3〜80重量%、25°Cのクロロホルム
溶液中の還元粘度(77S11/C)が0.1−4df
l19の共重合体100g量部に対し、ガラス繊維5〜
100重量部を配合したことを特徴とするガラス繊維強
化熱可塑性樹脂組成物を提供するものである。
That is, the present invention comprises (A) 29 to 95% by weight of methyl methacrylate units, (B) 1 to 67% by weight of aromatic vinyl compound units, and (C
) 1 to 10% by weight of acrylic acid or methacrylic acid units; (D) 0.1 to 6-membered cyclic acid anhydride units represented by the general formula (in which R and R2 are hydrogen atoms or methyl groups); (E) 2 to 49 weight 6-membered ring imide units represented by the general formula (in which R3 and R3 are a hydrogen atom or a methyl group, and R3 is a hydrogen atom or a hydrocarbon group); and (D) unit and (E
) unit sum is 3-80% by weight, reduced viscosity (77S11/C) in chloroform solution at 25°C is 0.1-4df
5 to 5 parts of glass fiber per 100 g parts of the copolymer of l19
The present invention provides a glass fiber-reinforced thermoplastic resin composition characterized in that it contains 100 parts by weight.

本発明の樹脂組成物は、前記のような特定の単量体単位
を有する共重き体を用いることが必要である。この共重
合体における(A)単位のメタクリル酸メチル単位は該
共重合体の主体となる単量体単位であって、機械的強度
の改良と耐油性向上の役割を果すものであり、その含有
量は該共重合体に対して29〜95重量%の範囲である
。この含有量が29重量′1′6未満では該共重合体の
機械的強度か低下し、まf二95重量%を超えると該共
重合体の加熱時の流動性と熱安定性が低下する。
The resin composition of the present invention requires the use of a copolymer having the above-mentioned specific monomer units. The methyl methacrylate unit (A) in this copolymer is the main monomer unit of the copolymer, and plays a role in improving mechanical strength and oil resistance. The amount ranges from 29 to 95% by weight, based on the copolymer. If this content is less than 29% by weight, the mechanical strength of the copolymer will decrease, and if it exceeds 295% by weight, the fluidity and thermal stability of the copolymer will decrease when heated. .

本発明の共重合体における第2の単量体単位である(B
)単位の芳香族ビニル化合物単位は、該共重合体の加熱
時の流動性及び熱安定性を向上させる役割を果すもので
あって、その含有量は該共重合体に対して1〜67重量
%の範囲である。その含有量が1重量%未満では、該共
重合体の加熱時の流動性及び熱安定性が低下し、一方6
7重量%を超えると機械的強度及び耐油性が低下する。
The second monomer unit in the copolymer of the present invention (B
) The aromatic vinyl compound unit plays a role in improving the fluidity and thermal stability of the copolymer during heating, and its content is 1 to 67% by weight based on the copolymer. % range. If the content is less than 1% by weight, the fluidity and thermal stability of the copolymer during heating will decrease;
If it exceeds 7% by weight, mechanical strength and oil resistance will decrease.

さらに、この共重合体における前記メタクリル酸メチル
単位と芳香族ビニル化合物単位の合計量は49〜96重
量%の範囲が好ましい。この量が49重量%未満では該
共重合体はぜい弱となり、一方96重量%を超えると、
該共重合体の熱変形性及び熱安定性が低下する。
Furthermore, the total amount of the methyl methacrylate units and aromatic vinyl compound units in this copolymer is preferably in the range of 49 to 96% by weight. If this amount is less than 49% by weight, the copolymer becomes weak, while if it exceeds 96% by weight,
The heat deformability and thermal stability of the copolymer are reduced.

この芳香族ビニル化合物単位としては、例えばスチし一
ン、σ−メチルスチ1/ン、p−メヂルスチレン、2,
4−ジメチルスチレン、P−1erヒブ千ルスチレン、
p−クロロスチレンなどの単量体単位が挙げられるが、
これらの中でスチレン単位が最も一般的である。
Examples of the aromatic vinyl compound unit include styrene, σ-methylstyrene, p-methylstyrene, 2,
4-dimethylstyrene, P-1er Hibuthylstyrene,
Examples include monomer units such as p-chlorostyrene,
Among these, styrene units are the most common.

さらにこの芳香族ビニル化合物単位の重量%内でスチレ
ンとα−メチルスチレン等2種以上の七ツマー単位を利
用することも耐熱性向上の観点からは好ましい。
Furthermore, from the viewpoint of improving heat resistance, it is also preferable to use two or more types of heptad units, such as styrene and α-methylstyrene, within the weight percent of the aromatic vinyl compound units.

本発明の共重合体における(C)単位の”アクリル酸又
はメタクリル酸単位は該共重合体の熱変形性を高める役
割を果すものであり、その含有量は該共重合体に対して
1〜10重量%の範囲であって、その量が10重量%を
超えると、280°C以上の温度で射出成形を行う際、
ガスが発生して成形品の外観を損なうため不都合である
The acrylic acid or methacrylic acid unit (C) in the copolymer of the present invention plays a role in increasing the heat deformability of the copolymer, and the content thereof is 1 to In the range of 10% by weight, if the amount exceeds 10% by weight, when injection molding is performed at a temperature of 280 ° C or higher,
This is inconvenient because gas is generated and the appearance of the molded product is damaged.

本発明の共重合体における(D)単位の六員環酸無水物
単位と(E)単位の六員環イミド単位はそれぞれ熱変形
温度と熱安定性を高める役割を果すものであるが、その
効果は六員環イミド単位の方が大きい。(D)単位及び
(E)単位の含有量については、該共重合体lこ対して
、(D)単位は0.1〜48重量%、好ましくは1〜3
5重量%の範囲、(E)単位は2〜49重量%、好まし
くは2〜38重量%の範囲であり、かつ(D)単位と(
E)単位との合計量が3〜80重量%、好ましくは10
〜50重量%の範囲である。この合計量が3重量%未満
では熱変形性と熱安定性の向上は期待できず、一方80
重量%を超えると、共重合体の熱変形温度は著しく高め
られるものの、成形加工性が低下する。
The six-membered cyclic acid anhydride unit (D) and the six-membered cyclic imide unit (E) in the copolymer of the present invention play a role in increasing the heat distortion temperature and thermal stability, respectively. The effect is greater for the six-membered ring imide unit. Regarding the content of (D) units and (E) units, the (D) units are 0.1 to 48% by weight, preferably 1 to 3% by weight, based on the copolymer.
5% by weight, (E) units range from 2 to 49% by weight, preferably 2 to 38% by weight, and (D) units and (
E) The total amount with units is 3 to 80% by weight, preferably 10
~50% by weight. If the total amount is less than 3% by weight, no improvement in heat deformability and thermal stability can be expected;
If it exceeds % by weight, the heat deformation temperature of the copolymer will be significantly increased, but the moldability will decrease.

前記(D)単位の六員環酸無水物単位は、(E)単位の
六員環イミド単位の前駆体であり、その一部又は大部分
が(E)単位へ変性されることが必要であって、少なく
とも共重合体に対して2重量%が六員環イミド体に変性
されていなければ、該共重合体の熱変形性は改良されな
い。
The six-membered cyclic acid anhydride unit of the (D) unit is a precursor of the six-membered cyclic imide unit of the (E) unit, and it is necessary that a part or most of it be modified into the (E) unit. However, unless at least 2% by weight of the copolymer is modified into a six-membered ring imide, the heat deformability of the copolymer will not be improved.

本発明の共重合体における前記(A)〜(E)の5種の
くり返し単位を定量する方法としては、最も一般的には
赤外分光光度計を利用する方法が挙げられる。特にメタ
クリル酸メチル単位は1730cm−’の吸収が特徴的
であり、また六員環酸無水物単位は1g0f1cm−’
及び1760cm−’の吸収を利用する。六員環イミド
単位において、N−置換体は1670c+n−’に明確
な吸収を有し、メタクリル酸メチル単位の1730c+
++−’とは区別できるが、N−置換体の1700cm
−’の吸収は、前記メタクリル酸メチル単位の1730
cm−’とは分離しにくい。したがって、該六員環イミ
ド単位の定量は元素分析による窒素分定置去を月いる。
The most common method for quantifying the five types of repeating units (A) to (E) in the copolymer of the present invention is a method using an infrared spectrophotometer. In particular, the methyl methacrylate unit is characterized by absorption at 1730 cm-', and the six-membered cyclic acid anhydride unit is 1g0f1cm-'
and 1760 cm-' absorption. In the six-membered ring imide unit, the N-substituted product has a distinct absorption at 1670c+n-', and the methyl methacrylate unit has a distinct absorption at 1730c+
Although it can be distinguished from ++-', the N-substituted 1700 cm
-' absorption is 1730 of the methyl methacrylate unit.
It is difficult to separate from cm-'. Therefore, the determination of the six-membered ring imide unit requires determination of the nitrogen content by elemental analysis.

一方、アクリル酸又はメタクリル酸単位の定量は中和滴
定法が最も好ましく、アセトン中でアルコール性NaO
H溶液による迅速滴定は六員環酸無水物単位と区別して
定量できる。また芳香族ビニル化合物単位の定量につい
ては、赤外分光光度計が一般的であるが、特にその量が
少量のときは紫外吸光法を用いる。
On the other hand, the neutralization titration method is most preferable for the determination of acrylic acid or methacrylic acid units.
Rapid titration with a H solution allows quantitative determination of the unit, distinguishing it from the six-membered cyclic acid anhydride unit. For quantitative determination of aromatic vinyl compound units, an infrared spectrophotometer is generally used, but especially when the amount is small, an ultraviolet absorption method is used.

本発明の共重合体において、六員環酸無水物単位を六員
環イミド単位に変性するために、アンモニア、脂肪族第
一級アミン、芳、香族アミンなどが用いられる。アンモ
ニアとしては、液状アンモニア、アンモニアガス、アン
モニア水を使用することができ、脂肪族第一級アミンと
しては、例えばメチルアミン、エチルアミン、n−プロ
ピルアミン、1so−プロピルアミン、ブチルアミン、
ペンチルアミン、ヘキシルアミン、アリルアミンなどが
挙げられ、これらは水溶液としても用いることができる
。また芳香族アミンとしては、例えばアニリン、o−ト
ルイジン、p−+−ルイジン、0−クロロアニリン、p
−クロロアニリン、!、4.6−1− !Jフクロアニ
リン、α−ナフチルアミン、β−ナフチルアミンなどが
挙げられ、またペンチルアミン、DL−1D−又はL−
σ−7エネチルアミン、β−7エネチルアミンなども用
いることができる。さらに、2−ジエチルアミノエチル
アミンのようなポリアミン類、インプロパツールアミン
のようなヒドロキシルアミン類も使用できる。
In the copolymer of the present invention, ammonia, aliphatic primary amine, aromatic amine, etc. are used to modify six-membered cyclic acid anhydride units into six-membered cyclic imide units. As ammonia, liquid ammonia, ammonia gas, ammonia water can be used, and as aliphatic primary amines, for example, methylamine, ethylamine, n-propylamine, 1so-propylamine, butylamine,
Examples include pentylamine, hexylamine, and allylamine, which can also be used as an aqueous solution. Examples of aromatic amines include aniline, o-toluidine, p-+-luidine, 0-chloroaniline, p-
-Chloroaniline! , 4.6-1-! Examples include J fucroaniline, α-naphthylamine, β-naphthylamine, and pentylamine, DL-1D- or L-
σ-7 enethylamine, β-7 enethylamine, etc. can also be used. Furthermore, polyamines such as 2-diethylaminoethylamine and hydroxylamines such as impropaturamine can also be used.

本発明の共重合体の前駆体である六員環酸無水物単位を
含有する共重合体の製造については、通常のラジカル共
重合法がすべて使用されうるが、特に連続塊状重合法又
は連続溶液重合法が望ましく、ざらに該共重合体の組成
をできるだけ均一にする点で、重合反応器は完全混合型
が好ましい。
For the production of a copolymer containing six-membered cyclic acid anhydride units, which is a precursor of the copolymer of the present invention, all conventional radical copolymerization methods can be used, but especially continuous bulk polymerization methods or continuous solution polymerization methods can be used. A polymerization method is preferable, and a complete mixing type polymerization reactor is preferable in order to make the composition of the copolymer as uniform as possible.

連続溶液重合の場合、溶剤としては、例えばトルエン、
エチルベンゼンなどの芳香族炭化水素、アセトン、メチ
ルエチルケトン、メチルイソブチルケトン、シクロヘキ
サンなどのケトン類、炭素数1〜6のアルキル又はシク
ロアルキルアルコール類、テトラヒドロフランやジオキ
サンなどのエーテル類、エチレングリコールモノアルキ
ルエーテル類などが用いられる。
In the case of continuous solution polymerization, examples of solvents include toluene,
Aromatic hydrocarbons such as ethylbenzene, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexane, alkyl or cycloalkyl alcohols having 1 to 6 carbon atoms, ethers such as tetrahydrofuran and dioxane, ethylene glycol monoalkyl ethers, etc. is used.

次に、六員環酸無水物単位を六員環イミド単位に変性す
る方法としては、種々の方法が用いられる。例えばオー
トクレーブ中に反応前駆体とし、メタクリル酸メチル単
位29〜95重量%、芳香族ビニル化合物単位1〜67
重量%、アクリル酸又はメタクリル酸単位1〜10重量
%及び六員環酸無水物単位3〜80重量%から成る共重
合体を仕込み、次いで溶液状態でアンモニア水を注入し
て反応させ、さらに250°Cの温度で2時間処理して
イミド化する方法、あるいは押出機を用い、前駆体であ
る共重合体を連続して溶融したのち、アンモニア水、メ
チルアミン、アニリンなどを連続して注入し、その後減
圧室でイミドに環化させる方法などが用いられる。
Next, various methods can be used to modify the six-membered cyclic acid anhydride unit into the six-membered cyclic imide unit. For example, as a reaction precursor in an autoclave, 29 to 95% by weight of methyl methacrylate units and 1 to 67% of aromatic vinyl compound units.
A copolymer consisting of 1 to 10% by weight of acrylic acid or methacrylic acid units and 3 to 80% by weight of six-membered cyclic acid anhydride units was charged, and then aqueous ammonia was injected in a solution state to react. You can either imidize it by treating it at a temperature of °C for 2 hours, or use an extruder to continuously melt the precursor copolymer, and then continuously inject aqueous ammonia, methylamine, aniline, etc. , followed by cyclization to imide in a reduced pressure chamber.

この際、本願共重合体の前駆体を含め反応温度、触媒量
、反応率、イミド化率などの条件を適当に制御すること
により、得られる共重合体を作る。
At this time, the resulting copolymer is produced by appropriately controlling conditions including the precursor of the copolymer of the present invention, such as reaction temperature, amount of catalyst, reaction rate, and imidization rate.

この共重合体0.159を25℃のクロロホルムに溶か
し0.5dtを溶液にする。本溶液をキヤノンフェニス
ケ粘度計を利用+7 sp/cを測定する。本共重合体
の溶液粘度ηSp/cが0.1〜4dn/yである事が
望ましいが好ましくは0.2〜2dn/9、更に好まし
くは0.2〜1dM/9の範囲が本発明には好都合であ
る。溶液粘度ty sp/eが0.1dlI/gより低
いと成形時の成形温度、成形圧力は低くできるが、成形
品の機械的強さが低下し、もろくなり成形材料としては
実用的でない。溶液粘度+7 SP/Cが4dl/gに
なると加工流動性が低下し、ガラス繊維と上記共重合体
との複合が困難になるばかりでなく、複合化されたFR
TPの成形加工性も休めて悪くなる。
Dissolve 0.159 dt of this copolymer in chloroform at 25°C to make a solution of 0.5 dt. Measure +7 sp/c of this solution using a Canon Feniske viscometer. The solution viscosity ηSp/c of the present copolymer is preferably in the range of 0.1 to 4 dn/y, preferably in the range of 0.2 to 2 dn/9, and more preferably in the range of 0.2 to 1 dM/9. is convenient. If the solution viscosity ty sp/e is lower than 0.1 dlI/g, the molding temperature and pressure during molding can be lowered, but the mechanical strength of the molded product decreases and becomes brittle, making it impractical as a molding material. Solution viscosity +7 When SP/C becomes 4 dl/g, processing fluidity decreases, not only making it difficult to composite the glass fiber and the above copolymer, but also making it difficult to composite the composite FR.
The moldability of TP also deteriorates.

本発明の樹脂組成物において用いる(口)成分のガラス
繊維は、通常のFRTP (ガラス繊維強化熱可塑性樹
脂)に用いられているガラス繊維でよく、なかでもEガ
ラスで8〜20μ太さ程度のものが好適である。このガ
ラス繊維の処理に用いるカップリング剤については特に
制限はないが、シラン系のものが好適であり、アミノシ
ランで処理したガラス繊維は、他のカップリング剤で処
理したものに比べて補強効果がより良好であった。該ガ
ラス繊維の形態については、チョツプド・ストランドで
もロービングでもよく、また、分散型のペレットでも、
あるいは樹脂組成物ペレットの押出軸方向に該ペレット
の長さと同じ長さで含まれるいわゆる長繊維型のペレッ
トでもよい。
The glass fiber used as the (original) component in the resin composition of the present invention may be the glass fiber used in ordinary FRTP (glass fiber reinforced thermoplastic resin), and in particular, E glass with a thickness of about 8 to 20 μm. Preferably. There are no particular restrictions on the coupling agent used for this treatment of glass fibers, but silane-based agents are preferred, and glass fibers treated with aminosilane have a stronger reinforcing effect than those treated with other coupling agents. It was better. The shape of the glass fibers may be chopped strands or rovings, or dispersed pellets.
Alternatively, it may be a so-called long fiber type pellet that has the same length as the length of the resin composition pellet in the extrusion axis direction.

本発明樹脂組成物における共重合体とガラス繊維との含
有割合については、前者100重量部に対し、後者5〜
100重量部の範囲内にあることが必要である。
Regarding the content ratio of the copolymer and glass fiber in the resin composition of the present invention, the latter is 5 to 5 parts by weight per 100 parts by weight of the former.
It is necessary that the amount is within the range of 100 parts by weight.

このようにして得られた本発明の樹脂組成物は、必要に
応じて着色剤、離型剤、外部潤滑剤、耐候性改良剤、酸
化防止剤などの慣用の成形助剤を加え、200〜320
℃、好ましくは250〜300°Cの樹脂温度において
所定の形状に成形することができる。この成形は射出成
形はもちろんのこと、押出成形や圧縮成形など任意の手
段により行うことができる。
The resin composition of the present invention thus obtained is prepared by adding conventional molding aids such as a coloring agent, a mold release agent, an external lubricant, a weatherability improver, and an antioxidant, as required. 320
It can be molded into a predetermined shape at a resin temperature of 250 to 300°C. This molding can be performed by any means such as injection molding, extrusion molding, and compression molding.

発明の効果 本発明のガラス繊維強化熱可塑性樹脂組成物は、(1)
各種F RT P (ABS−GF、 PP−GF、 
PA−CF、 PC−CFなど)と比較しても高剛性及
び高引張強さを有する、 (2)加熱変形温度が130°C以上であって、実用耐
熱温度が従来にない高いレベルにある、(3)耐冷熱サ
イクル性に優れる、 (4)耐化学薬品性、特に耐油性に優れる、(5)成形
収縮率が非結晶性樹脂のガラス繊維強化樹脂であるため
でもあって、結晶性樹脂から成るFRTPより小さく、
寸法精度の良い、成形寸法安定性に優れる成形品を得や
すい、 (6)  AS−CF樹脂と同様に成形が容易であり、
成形条件の選択幅が大きい、 (7)使用する共重合の七ツマー構成から考えても比較
的安価な樹脂組成物であるにもかかわらず性能的にはエ
ンジニアリング樹脂のFRTPに匹敵する性状を有する などの特徴を有している。
Effects of the Invention The glass fiber reinforced thermoplastic resin composition of the present invention has (1)
Various FRTP (ABS-GF, PP-GF,
(2) It has a heat deformation temperature of 130°C or higher, which is an unprecedentedly high level of practical heat resistance. (3) Excellent cold and heat cycle resistance. (4) Excellent chemical resistance, especially oil resistance. Smaller than FRTP made of resin,
Easy to obtain molded products with good dimensional accuracy and excellent molding dimensional stability. (6) Easy to mold like AS-CF resin.
(7) Even though it is a relatively inexpensive resin composition considering the 7-mer composition of the copolymer used, it has properties comparable to the engineering resin FRTP in terms of performance. It has the following characteristics.

したがって、本発明のガラス繊維強化熱可塑性樹脂組成
物は、特に、近年走行時における燃料消費低減の要請に
より自動車の形状は流線形になって窓ガラス部の面積が
大きくなり、その結果車内温度が上昇し、各種自動車内
装部品の実用耐熱性向上が要請されていることから、こ
のような成形部品用に有利に用いられる。特に、自動車
内装部品の中でもステレオやスピードメーターなどを取
り付ける大型部品であるインストウルメントパ不ル用に
は、前記の特性を生かすことができて好適である。
Therefore, the glass fiber-reinforced thermoplastic resin composition of the present invention can be used particularly in recent years due to the demand for reduced fuel consumption during driving, as the shape of automobiles has become more streamlined and the area of window glass has become larger, resulting in lower interior temperatures. Since there is a demand for improving the practical heat resistance of various automobile interior parts, it is advantageously used for such molded parts. In particular, it is suitable for use in instrument panels, which are large automobile interior parts to which stereos, speedometers, etc. are attached, since the above-mentioned characteristics can be utilized.

また複写機特に感熱タイプのPPCのシャーシー等従来
鉄製であったが、本発明の高剛性、高耐熱、易成形性の
ガラス繊維強化樹脂により各種部品を一体化した樹脂シ
ャーシーが製造可能となるなどの利用範囲の拡大ははか
りしれないものがある。
In addition, the chassis of copiers, especially heat-sensitive PPCs, were conventionally made of iron, but the present invention's high rigidity, high heat resistance, and easily moldable glass fiber-reinforced resin makes it possible to manufacture resin chassis that integrate various parts. The expansion of the scope of use is immeasurable.

さらに、各種の家庭部品においても、近年のいわゆる「
軽薄短小」製品のコンパクトな製品に使用する部品用に
本発明の樹脂組成物を用いると、その部品の信頼性はさ
らに向上する。
Furthermore, in various household parts, the so-called "
When the resin composition of the present invention is used for parts used in compact products such as "light, thin, short, and small" products, the reliability of the parts is further improved.

このような点から、本発明のガラス繊維強化熱可塑性樹
脂組成物は極めて実用的価値の高いものである。
From this point of view, the glass fiber reinforced thermoplastic resin composition of the present invention has extremely high practical value.

次に実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、各例中の物性において、特にJISやASTMに
規定のない性質は、次に示す方法に従って求めた。
In addition, among the physical properties in each example, properties not specified in JIS or ASTM were determined according to the method shown below.

(1)ガラス繊維含有量; 各種FRTPをサンプリングし、これを溶媒(例えば本
発明品ではメチルエチルケトン)に溶かし、不溶のガラ
ス繊維と熱可塑性樹脂とを分離し、該ガラス繊維を秤量
してその含有量を算出する。
(1) Glass fiber content: Sample various FRTPs, dissolve them in a solvent (for example, methyl ethyl ketone in the product of the present invention), separate the insoluble glass fibers and thermoplastic resin, and weigh the glass fibers to determine their content. Calculate the amount.

(2)耐冷熱サイクル性; 射出成形により、たて150 mm、よこ150mm。(2) Cold and heat cycle resistance; Made by injection molding, length 150 mm and width 150 mm.

厚さ3mmの板状サンプルを作成し、このサンプルを一
30℃に1時間、80℃に1時間保持するサイクル試験
を繰り返し、各サイクルごとにクラ・ンクの発生状態を
観察し、次のようにして評価した。
A plate-shaped sample with a thickness of 3 mm was prepared, and a cycle test was repeated in which the sample was held at -30°C for 1 hour and at 80°C for 1 hour, and the occurrence of cracks was observed after each cycle. It was evaluated as follows.

5・・・5サイクル以上繰り返してもクラックの発生な
し。
5: No cracks occur even after 5 cycles or more.

4・・・4サイクルではクラックの発生はないが5サイ
クルでクラックが発生する。
4: No cracks occur after 4 cycles, but cracks occur after 5 cycles.

吐・・3サイクルはクラックの発生はないが、4サイジ
ルではクラックが発生する。
Discharge: No cracks occur during the 3rd cycle, but cracks occur during the 4th cycle.

2・・・1〜2サイクルではクラックの発生はないが3
サイクルではクラックが発生する。
2... No cracks occurred in 1 to 2 cycles, but 3
Cracks occur during the cycle.

1・・・1サイクルでクラックが発生する。1... Cracks occur in one cycle.

この試験では評点3以下のものは実用性が乏しい。In this test, items with a rating of 3 or lower are of poor practical use.

(3)成形収縮率; 射出成形により、たて150 mm、よこ150mm、
厚さ3m+++の板状体を製造し、その成形品の寸法と
対応する金型の寸法とを比較して収縮率を算出する。
(3) Molding shrinkage rate: By injection molding, the length is 150 mm, the width is 150 mm,
A plate-shaped body with a thickness of 3 m+++ is manufactured, and the shrinkage rate is calculated by comparing the dimensions of the molded product and the dimensions of the corresponding mold.

実施例1〜3 メタクリル酸メチル単位33重量%、スチレン単位36
重量%、メタクリル酸単位7重量%式 で表わされる六員環酸無水物単位1重量%及び式で表わ
される六員環イミド(六員環アンモニアイミド)単位2
3重量%から成り溶液粘度ηsp/cが0.30d(1
/9の共重合体をベント付押出機において、樹脂温度が
280°Cになるように押出し、該ベント部により定量
フィード装置により、6mm長さのガラス繊維チョツプ
ドストランドを添加しペレタイズして、ガラス繊維含有
量がそれぞれ10.20.30重量%であるガラス繊維
強化熱可塑性横組成性物を得た。それぞれの物性を第1
表に示す。
Examples 1-3 33% by weight of methyl methacrylate units, 36% of styrene units
% by weight, 7% by weight of methacrylic acid units, 1% by weight of 6-membered cyclic acid anhydride units represented by the formula, and 2% by weight of 6-membered cyclic imide (six-membered cyclic ammoniaimide) units represented by the formula.
3% by weight and the solution viscosity ηsp/c is 0.30d(1
/9 copolymer was extruded in a vented extruder so that the resin temperature reached 280°C, and chopped glass fiber strands of 6 mm length were added and pelletized using a quantitative feed device through the vent. Glass fiber-reinforced thermoplastic transverse composite materials were obtained, each having a glass fiber content of 10, 20, and 30% by weight. Each physical property is the first
Shown in the table.

比較例1〜4 本発明になる共重合体の代わりに現在市販されている代
表的熱可塑性樹脂を使用し実施例2と同じ方法でガラス
繊維含有量20重量%のガラス繊維強化熱可塑性樹脂を
調製した。それぞれの物性を第1表に示す。
Comparative Examples 1 to 4 A glass fiber-reinforced thermoplastic resin with a glass fiber content of 20% by weight was prepared in the same manner as in Example 2, using a currently commercially available typical thermoplastic resin instead of the copolymer of the present invention. Prepared. The physical properties of each are shown in Table 1.

第1表から前記の樹脂組成物はいずれも、従来のFRT
Pに比較して高剛性、高タフネス、高耐性であり、かつ
耐薬品性に優れた寸法精度のよい成形品を与えることが
分る。
From Table 1, all of the above resin compositions are used for conventional FRT.
It can be seen that compared to P, it has higher rigidity, higher toughness, higher resistance, and provides molded products with excellent chemical resistance and dimensional accuracy.

すなわち、本発明品は、比較例1 (AS−GF)より
約40℃高耐熱性であり、比較例2 (PC−GF)、
比較例3 (PPE−GF)より高剛性であり、比較例
4(PA−GF)より低吸水、高寸法精度(低成形収縮
率)であることが分る。比較例1〜4のFRTPはいず
れも有用な成形材料として年間数千トンの量で市販利用
されているが、本発明になるFRTPこれらいずれのF
RTPより高耐熱、高剛性、高寸法精度のFRTPとし
て新しい用途、利用方法を提供できるものであることは
本比較例からも分る。
That is, the product of the present invention has about 40°C higher heat resistance than Comparative Example 1 (AS-GF), and has higher heat resistance than Comparative Example 2 (PC-GF).
It can be seen that it has higher rigidity than Comparative Example 3 (PPE-GF), lower water absorption and higher dimensional accuracy (lower molding shrinkage rate) than Comparative Example 4 (PA-GF). All of the FRTPs of Comparative Examples 1 to 4 are commercially available as useful molding materials in an amount of several thousand tons per year.
It can be seen from this comparative example that FRTP has higher heat resistance, higher rigidity, and higher dimensional accuracy than RTP, and can provide new uses and usage methods.

実施例4〜7、比較例5.6 各モノマー単位の割合が第2表に示すような六員環酸無
水物単位及び六員環イミド単位を含む共重合体に実施例
2と同様の方式でそれぞれガラス繊維を各共重合体に対
し20重量%になるように添加し、ガラス繊維強化熱可
塑性樹脂組成物を調製して、それぞれの物性を測定した
。結果を第2表に示す。
Examples 4 to 7, Comparative Example 5.6 A copolymer containing a six-membered cyclic acid anhydride unit and a six-membered cyclic imide unit in which the ratio of each monomer unit is shown in Table 2 was prepared in the same manner as in Example 2. Glass fibers were added to each copolymer in an amount of 20% by weight to prepare glass fiber-reinforced thermoplastic resin compositions, and the physical properties of each were measured. The results are shown in Table 2.

第2表より共重合体における各イミド単位の種類や重量
%をはじめとする組成により耐熱性を中心とする物性が
変化することが分る。
From Table 2, it can be seen that the physical properties, mainly heat resistance, change depending on the composition including the type and weight % of each imide unit in the copolymer.

また、比較例5にみられるようにηsp/cの0.09
のもの、すなわち分子量の小さなものは引張強さ等の機
械的強さが劣る。比較例6のように芳香族ビニル単位を
含まない共重合体を利用した場合は吸水率が多く利用環
境の変化により吸水、脱水を繰り返すことにより成形品
にクランクが発生する。
In addition, as seen in Comparative Example 5, ηsp/c was 0.09
Those with a small molecular weight are inferior in mechanical strength such as tensile strength. When a copolymer containing no aromatic vinyl units is used as in Comparative Example 6, the water absorption rate is high and cracks occur in the molded product due to repeated water absorption and dehydration due to changes in the usage environment.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 1 (A)メタクリル酸メチル単位29〜95重量%と
、 (B)芳香族ビニル化合物単位1〜67重量%と、(C
)アクリル酸又はメタクリル酸単位1〜10重量%と、 (D)一般式 ▲数式、化学式、表等があります▼ (式中のR_1及びR_2は水素原子又はメチル基であ
る) で表わされる六員環酸無水物単位0.1〜48重量%と
、 (E)一般式 ▲数式、化学式、表等があります▼ (式中のR_1及びR_2は水素原子又はメチル基、R
_3は水素原子又は炭化水素基である) で表わされる六員環イミド単位2〜49重量から成り、
かつ(D)単位と(E)単位の和が3〜80重量%、2
5℃のクロロホルム溶液中の還元粘度(ηsp/c)が
0.1〜4dl/gの共重合体100重量部に対し、ガ
ラス繊維5〜100重量部を配合したことを特徴とする
ガラス強化熱可塑性樹脂組成物。
[Scope of Claims] 1 (A) 29 to 95% by weight of methyl methacrylate units, (B) 1 to 67% by weight of aromatic vinyl compound units, and (C
) 1 to 10% by weight of acrylic acid or methacrylic acid units, and (D) a six-membered compound represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (R_1 and R_2 in the formula are hydrogen atoms or methyl groups) 0.1 to 48% by weight of cyclic acid anhydride units, (E) General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (R_1 and R_2 in the formula are hydrogen atoms or methyl groups, R
_3 is a hydrogen atom or a hydrocarbon group) consisting of 2 to 49 weight six-membered ring imide units,
and the sum of (D) units and (E) units is 3 to 80% by weight, 2
Glass reinforcing heat characterized by blending 5 to 100 parts by weight of glass fiber to 100 parts by weight of a copolymer having a reduced viscosity (ηsp/c) of 0.1 to 4 dl/g in a chloroform solution at 5°C. Plastic resin composition.
JP8893088A 1988-04-13 1988-04-13 Glass fiber-reinforced thermoplastic resin Pending JPH01261445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8893088A JPH01261445A (en) 1988-04-13 1988-04-13 Glass fiber-reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8893088A JPH01261445A (en) 1988-04-13 1988-04-13 Glass fiber-reinforced thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH01261445A true JPH01261445A (en) 1989-10-18

Family

ID=13956618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8893088A Pending JPH01261445A (en) 1988-04-13 1988-04-13 Glass fiber-reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH01261445A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278233A (en) * 1990-06-14 1994-01-11 Sumitomo Chemical Company, Limited Thermoplastic resin composition
WO2021193922A1 (en) * 2020-03-26 2021-09-30 株式会社クラレ Acrylic composition and molded article
WO2022202965A1 (en) * 2021-03-24 2022-09-29 株式会社クラレ Methacrylic copolymer, methacrylic resin composition and method for producing same, and molded body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278233A (en) * 1990-06-14 1994-01-11 Sumitomo Chemical Company, Limited Thermoplastic resin composition
US5420201A (en) * 1990-06-14 1995-05-30 Sumitomo Chemical Company, Limited Thermoplastic resin composition comprising modified polypropylene, anhydride containing copolymer and epoxy containing copolymer
WO2021193922A1 (en) * 2020-03-26 2021-09-30 株式会社クラレ Acrylic composition and molded article
WO2022202965A1 (en) * 2021-03-24 2022-09-29 株式会社クラレ Methacrylic copolymer, methacrylic resin composition and method for producing same, and molded body

Similar Documents

Publication Publication Date Title
JPH0241544B2 (en)
US4504625A (en) Thermoplastic resin composition containing iminated copolymer
CA2061235A1 (en) Methacrylimide group-containing polymer
JP5290066B2 (en) Glass fiber reinforced methacrylic resin composition
US4591619A (en) Process for producing an iminated copolymer
JPH01261445A (en) Glass fiber-reinforced thermoplastic resin
KR20230037494A (en) Resin composition and resin molded article
TW202110900A (en) Maleimide copolymer, manufacturing method therefor, and resin composition using same
JPH01223152A (en) Glass-fiber reinforced methacrylic resin composition
JPH06136212A (en) Glass-fiber reinforced thermoplastic resin composition
JP2594289B2 (en) Production method of transparent heat-resistant resin
JP3216179B2 (en) Transparent resin composition
JP2013107933A (en) Resin composition for optical molded article, method for producing the same and optical molded article
JPS6147707A (en) Heat-resistant copolymer
JPS6060111A (en) Thermoplastic polymer
JPH0243207A (en) Modified copolymer
CN115637030B (en) Polyketone-containing composition and application thereof in preparation of polymer composite material
JPS6143604A (en) Modified copolymer
JPH0510385B2 (en)
JP3208811B2 (en) Transparent resin composition
JP3208810B2 (en) Transparent resin composition
JP2987975B2 (en) Low gloss thermoplastic resin composition
JPH0511141B2 (en)
JPS6257659B2 (en)
CN116041928A (en) Low-odor low-emission high-weather-resistance PC/ABS resin alloy and preparation method thereof