JPH01260804A - Hard magnetic thin film - Google Patents

Hard magnetic thin film

Info

Publication number
JPH01260804A
JPH01260804A JP8936688A JP8936688A JPH01260804A JP H01260804 A JPH01260804 A JP H01260804A JP 8936688 A JP8936688 A JP 8936688A JP 8936688 A JP8936688 A JP 8936688A JP H01260804 A JPH01260804 A JP H01260804A
Authority
JP
Japan
Prior art keywords
thin film
magnetic thin
hard magnetic
film
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8936688A
Other languages
Japanese (ja)
Inventor
Hiroyuki Omori
広之 大森
Kazuhiko Hayashi
和彦 林
Masatoshi Hayakawa
正俊 早川
Koichi Aso
阿蘇 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8936688A priority Critical patent/JPH01260804A/en
Publication of JPH01260804A publication Critical patent/JPH01260804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To heighten coercive force and avoid high temperature heating and heat treatment at the time of film formation by forming a hard magnetic thin film by the use of a MnGaIn alloy which satisfies a specific composition condition. CONSTITUTION:The composition of a hard magnetic thin film is shown by MnxGayInz (where x, y and z each shows atom%) and satisfies the relation of y<=x<=2y, 0.5<=z<=50 and x+y+z=100. The hard magnetic thin film of the above composition can obtain high coercive force Hc to a face direction and a vertical direction at right angles therewith, the film formation can be formed by sputtering, vapor deposition and the like, and allows crystallization, namely, crystal magnetic anisotropy, by the addition of In at low temperature. Base substance is not specially not be heated at the time of the film formation and thereafter heat treatment is not needed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種磁気記録媒体に用いて好適な磁気的に硬
質すなわち高保磁力を有する硬質磁性薄膜に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hard magnetic thin film that is magnetically hard, that is, has a high coercive force and is suitable for use in various magnetic recording media.

[発明の概要] 本発明は、MIIX Gay Inz (但し、X 、
! 、Zはそれぞれ原子%)なる組成で、 !≦I≦2y 0.5≦Z≦50 x +y +z =lOO 或いはそのGaの一部を、Al,  B、 Ag、 C
u、 Au、 Sn。
[Summary of the invention] The present invention is based on MIIX Gay Inz (However, X,
! , Z are each in atomic %), and ! ≦I≦2y 0.5≦Z≦50 x +y +z =lOO Or a part of the Ga can be replaced with Al, B, Ag, C
u, Au, Sn.

C,Si、 Geの一種以上で置換した高保磁力の硬質
磁性薄膜であって、例えば磁気記録媒体に適用して高密
度記録化を図る。
This is a hard magnetic thin film with high coercive force substituted with one or more of C, Si, and Ge, and is applied to, for example, a magnetic recording medium to achieve high-density recording.

[従来の技術] 従来の磁気記録媒体にはγ−Fe20+ 、 Cr0t
[Prior art] Conventional magnetic recording media include γ-Fe20+ and Cr0t.
.

Coγ−Fe203 、或いはいわゆる金属蒸着膜等が
用いられているが、いずれもその保磁力Hcは、2KO
eより低いものである。
Coγ-Fe203 or a so-called metal evaporated film is used, but both have a coercive force Hc of 2KO
It is lower than e.

[発明が解決しようとする課題] ところが、磁気記録媒体において、より高密度記録化が
要求されていて、これに伴ってより高い保磁力Haを有
する硬質磁性薄膜の開発が要求されている。
[Problems to be Solved by the Invention] However, there is a demand for higher density recording in magnetic recording media, and along with this, there is a demand for the development of hard magnetic thin films having higher coercive force Ha.

そしてこり高保磁力を有する硬質磁性薄膜の開発研究も
すでに多くなされているところである。
Much research has already been done to develop hard magnetic thin films with high coercive force.

例えば結晶磁気異方性を利用した磁性薄膜として、Mn
Ga系の磁性膜の考察がなされているところであるが、
この場合、その成膜に当っての例えばスパッタリング後
に高温のアニール、すなわち熱処理を必要とするもので
あり、これによって磁性膜の坦持体、すなわち基体とし
ては耐熱性の低い廉価なPET (ポリエチレンテレフ
タレート)ヲ用いることができないという課題がある。
For example, as a magnetic thin film using magnetocrystalline anisotropy, Mn
Ga-based magnetic films are currently being considered.
In this case, for example, high-temperature annealing, that is, heat treatment, is required after sputtering to form the film, and as a result, the carrier of the magnetic film, that is, the substrate, is made of inexpensive PET (polyethylene terephthalate) with low heat resistance. ) is not available.

本発明は、このような課題の解決をはかり、高い保磁力
を有し、しかもその成膜に当って高温下での形成、或い
は熱処理を必要としない硬質磁性薄膜を提供する。
The present invention aims to solve these problems and provides a hard magnetic thin film that has a high coercive force and does not require formation at high temperatures or heat treatment.

すなわち、本発明においては、結晶磁気異方性を利用し
た硬質磁性薄膜に係わるものであるが、成膜時の高温加
熱、熱処理を回避できて、PETフィルムのような耐熱
性の低い廉価な坦持体、すなわち基体の使用を可能にす
る。
That is, the present invention relates to a hard magnetic thin film that utilizes magnetocrystalline anisotropy, but it is possible to avoid high-temperature heating and heat treatment during film formation, and to use an inexpensive film with low heat resistance such as PET film. It allows the use of a carrier, i.e. a substrate.

[課題を解決するための手段] 本発明は組成式Mnx Gay Inz (但し、x、
!、2はそれぞれ原子%)で示され、 y≦!≦2y 0.5≦2≦50 x +y +z =100 なる関係を満足する硬質磁性薄膜を形成する。
[Means for Solving the Problems] The present invention has a compositional formula Mnx Gay Inz (however, x,
! , 2 are each shown in atomic %), and y≦! A hard magnetic thin film is formed that satisfies the following relationships: ≦2y 0.5≦2≦50 x +y +z =100.

また本発明においては、上述の硬質磁性薄膜において、
その組成式中のGaの一部を、Al,  B、 Ag。
Further, in the present invention, in the above-mentioned hard magnetic thin film,
Part of Ga in the composition formula is Al, B, Ag.

Cu、 Au、 Sn、 C,Si、 Ge 伝≠−の
うちの少なくとも1種以上で置換する。
Replacement with at least one of Cu, Au, Sn, C, Si, and Ge.

[作用] 本発明による硬質磁性膜は1面方向及びこれと直交する
垂直方向の双方に対して高い保磁力Hcと、すぐれた角
型を示した。また、その成膜は、スパッタ、蒸着等によ
って形成でき、Inの添加によって低温での結晶化、す
なわち結晶磁気異方性を呈せしめ得るものであり、成膜
時に基体を特別加熱する必要はなく、またその後の熱処
理も特別には必要としない、したがってPETフィルム
等の耐熱性の低い基体上への成膜が可能となる。
[Function] The hard magnetic film according to the present invention exhibited a high coercive force Hc in both the one-plane direction and the perpendicular direction orthogonal thereto, and an excellent square shape. In addition, the film can be formed by sputtering, vapor deposition, etc., and by adding In, it can be crystallized at a low temperature, that is, exhibit magnetic crystalline anisotropy, and there is no need to specially heat the substrate during film formation. Further, there is no special need for subsequent heat treatment, so it is possible to form a film on a substrate with low heat resistance such as a PET film.

[実施例] 実施例l MnGaln合金の3インチ型鋳造ターゲットを用いて
スライドガラス板の上にスパッタを行って磁性薄膜を形
成した。このスパッタはマグネトロン型スパッタ装置を
用い、アルゴンガスと投入電力とをそれぞれ30mTo
rrと80W(以下この条件を条件Iとする) 、 1
0mTorrと100 W (以下この条件を条件II
とする)及びlomTorrと200 W (以下この
条件をIとする)の条件下で、充分冷却されたスライド
ガラス板に約 IIL■の厚さに成膜した。
[Examples] Example 1 A magnetic thin film was formed on a slide glass plate by sputtering using a 3-inch casting target of MnGaln alloy. This sputtering uses a magnetron type sputtering device, with argon gas and input power of 30mTo each.
rr and 80W (hereinafter this condition will be referred to as Condition I), 1
0 mTorr and 100 W (hereinafter this condition will be referred to as Condition II)
A film was formed to a thickness of about IIL on a sufficiently cooled slide glass plate under the conditions of 200 W (hereinafter these conditions will be referred to as I) and lo m Torr.

上述した実施例1の方法によるも、そのターゲットの組
成を、口を50〜75M子%、 Inを 1〜25WL
子%、残部Gaとし、スパッタ条件を上述の条件I〜■
として磁化の有無をみた。この磁化の測定は。
According to the method of Example 1 described above, the composition of the target is 50 to 75 M% and 1 to 25 WL of In.
%, and the remainder is Ga, and the sputtering conditions are as described above.
The presence or absence of magnetization was examined as follows. The measurement of this magnetization is.

各磁性薄膜を一定の大きさに切り、VSM (振動資料
型磁化特性測定装置)によって測定した。磁場は膜面に
平行な方向と垂直な方向とし、−15KOeから+15
KOe変化させて磁化ループを描かせた。
Each magnetic thin film was cut into a certain size and measured using a VSM (vibrating material magnetization characteristic measuring device). The magnetic field is parallel to and perpendicular to the film surface, and varies from -15 KOe to +15 KOe.
A magnetization loop was drawn by changing KOe.

第1図にその一部の試料のターゲットの組成と、スパッ
タ条件と、スパッタによって得た膜の組成と磁化の有無
(磁化がある場合はO印、ない場合は×印)を示す、そ
して、 i2r!!Jに各試料のターゲットの組成をプ
ロットして示し、図中、上述のスパッタ条件下、II及
びIIでそれぞれ高保磁力を示−した範囲をそれぞれ実
線a、破線す及び鎖線Cで囲んで示す。
Figure 1 shows the composition of the target for some of the samples, the sputtering conditions, the composition of the film obtained by sputtering, and the presence or absence of magnetization (marked O if magnetized, marked × if not), and i2r! ! The target composition of each sample is plotted and shown in J, and in the figure, the ranges in which high coercive force was shown in II and II under the above-mentioned sputtering conditions are shown surrounded by solid line a, broken line A, and chain line C, respectively.

また、 Hc>2 KOeが得られた磁性薄膜での組成
範囲は、第3図中実線eで囲んだ範囲となり1組成式M
nx Gay Inzにおいて、y≦x≦2yで、0.
5≦2≦50である。
In addition, the composition range of the magnetic thin film in which Hc > 2 KOe is obtained is the range surrounded by the solid line e in Figure 3, and has the composition formula M
nx Gay Inz, y≦x≦2y, 0.
5≦2≦50.

第4図は”51.9 Ga43.21”4.9 (第1
図中試料No、3)の磁束B−磁界Hの磁化曲線で、同
図中実線曲線(1)は、磁性薄膜の膜面に対して垂直方
向の磁化曲線、破線曲線(2)は膜面に沿う方向の磁化
曲線で、いずれの方向についてもすぐれた磁気特性、す
なわち高い磁化、角型比を示し、垂直方向の保磁力Hc
は3.2 kOeで、膜面方向の保磁力Hcは、 3.
5 kOeで、残留磁束密度はいずれも2.3 kGで
あった。
Figure 4 shows "51.9 Ga43.21" 4.9 (1st
In the figure, the solid line curve (1) is the magnetization curve perpendicular to the film surface of the magnetic thin film, and the broken line curve (2) is the magnetization curve of magnetic flux B - magnetic field H for sample No. 3) in the figure. The magnetization curve in the direction along the
is 3.2 kOe, and the coercive force Hc in the film surface direction is 3.
5 kOe, and the residual magnetic flux density was 2.3 kG in both cases.

また、本発明による磁性画WJ、(第1図中試料No、
3)と、磁化の小さい薄膜(第1図中試料No、 1)
の各構造を小角X線回折でみた回折パターンを第5図A
及びBに示す、これによれば、試料N001のものは、
Inの回折線以外にはピークがみられず、Inの結晶化
のみが生じているのに比し、試料N003の本発明のも
は、In以外にもMnGaの結晶構造の回折ピークがみ
られ、MnGaが結晶化していることがわかる。つまり
、この試料N003の高保磁力の原因はMnGaの結晶
化にあるものと思われる、そして、この結晶化をInが
促進していると考えられる。そして、この場合MnGa
の(100)面と、大きいピークではないがInの(1
01)面が同一角度にあることが特徴的である。
In addition, the magnetic image WJ according to the present invention (sample No. in FIG. 1,
3) and a thin film with low magnetization (sample No. 1 in Figure 1)
Figure 5A shows the diffraction pattern of each structure observed by small-angle X-ray diffraction.
According to this, the sample N001 is shown in and B.
No peaks were observed other than the In diffraction line, and only In crystallization occurred, whereas in sample N003 of the present invention, diffraction peaks of the MnGa crystal structure were observed in addition to In. , it can be seen that MnGa is crystallized. In other words, it seems that the cause of the high coercive force of sample N003 is the crystallization of MnGa, and that this crystallization is promoted by In. And in this case MnGa
The (100) plane of In and the (100) plane of In, although it is not a large peak.
01) It is characteristic that the surfaces are at the same angle.

実施例2 実施例1と同様の方法で、膜組成MnxGay Inz
(!≦X≦27,0.5≦2≦50 、 x+y+z 
= 100)において、Gaを50原子%Alで置換し
た。この場合保磁力は上記組成においてGaを他の元素
で置換したものと同程度であった。
Example 2 In the same manner as in Example 1, film composition MnxGay Inz
(!≦X≦27, 0.5≦2≦50, x+y+z
= 100), Ga was replaced with 50 atom % Al. In this case, the coercive force was comparable to that of the above composition in which Ga was replaced with another element.

実施例3゜ 実施例1と同様の方法で、膜組成MnxGay 111
!2(y≦!≦27.0.5≦2≦50 、 x+y+
zlIIOo)において、Gaを30原子%Agで置換
した。この場合においても高い保磁力が得られた。
Example 3゜By the same method as in Example 1, the film composition MnxGay 111
! 2 (y≦!≦27.0.5≦2≦50, x+y+
zlIIOo), Ga was replaced with 30 atom % of Ag. A high coercive force was also obtained in this case.

実施例4゜ 実施例1と同様の方法で、膜組成MnXGay Inz
(!≦夏≦27.0.5≦2≦50.x十Y+Z−10
0)において、Gaを30原子%Snで置換した。この
場合においても高い保磁力が得られた。
Example 4 In the same manner as in Example 1, the film composition MnXGay Inz
(!≦Summer≦27.0.5≦2≦50.x10Y+Z-10
In 0), Ga was replaced with 30 atom % of Sn. A high coercive force was also obtained in this case.

同様にして、Gaの一部を、それぞれB、  Cu。Similarly, part of Ga is replaced with B and Cu, respectively.

Au、 C,Si、 Geによって置換しても、またG
aの一部をAI 、  B、 Ag、 Cu、 Au、
 S!!、 C,Si、 Ge (7)うちの2種以上
で置換しても高い保磁力が得られた。
Even if replaced by Au, C, Si, Ge, G
A part of a is AI, B, Ag, Cu, Au,
S! ! , C, Si, Ge (7) A high coercive force was obtained even when two or more of them were substituted.

また、上述の各本発明による磁性薄膜において、Fe、
Go、Xiの1種以上を添加することもでき、この場合
は、飽和磁束密度、残留磁束密度を高めることができた
Furthermore, in the magnetic thin films according to each of the above-described inventions, Fe,
It is also possible to add one or more of Go and Xi, and in this case, it was possible to increase the saturation magnetic flux density and the residual magnetic flux density.

比較例 MnGaの合金ターゲットを用いて実施例1の条件■の
方法で成膜した。この場合の磁化を前述したと同様の方
法によって測定したところガラス基体自体の反磁性が測
定されたに過ぎなかった。
Comparative Example A film was formed using a MnGa alloy target in accordance with the method of Condition (2) of Example 1. When the magnetization in this case was measured by the same method as described above, only the diamagnetic property of the glass substrate itself was measured.

尚、上述した例では磁性薄膜をスパッタによって形成し
た場合であるが、真空蒸着等によって形成することもで
きるなど、成膜方法等種々の変更を行うことができる。
In the above example, the magnetic thin film is formed by sputtering, but various changes can be made to the film forming method, such as forming by vacuum evaporation or the like.

[発明の効果コ 本発明による硬質磁性薄膜は、面方向及びこれと直交す
る垂直方向の双方に対して高い保磁力Heを得ることが
できることから、各種磁気記録媒体に適用して高記録密
度化をはかることができる。
[Effects of the Invention] The hard magnetic thin film according to the present invention can obtain a high coercive force He in both the in-plane direction and the perpendicular direction, so it can be applied to various magnetic recording media to increase recording density. can be measured.

また、その成膜は、スパッタ、蒸着等によって形成でき
、II+の添加によって低温での結晶化、すなわち結晶
磁気異方性を呈せしめ得るものであり、成膜時に基体を
特別加熱する必要もなく、またその後の熱処理も特別に
は必要としない、したがつてPETフィルム等の耐熱性
の低い基体上への成膜が可能となり、各種磁気記録媒体
の価格の砥廉化をはかることができる。
In addition, the film can be formed by sputtering, vapor deposition, etc., and by adding II+, it can be crystallized at a low temperature, that is, it can exhibit magnetocrystalline anisotropy, and there is no need to specially heat the substrate during film formation. Further, there is no special need for subsequent heat treatment, so it is possible to form a film on a substrate with low heat resistance such as a PET film, and it is possible to reduce the price of various magnetic recording media.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各試料と磁化の有無の測定結果を示した表面、
第2図はスパッタによる磁性薄膜のターゲット組成とス
パッタ条件と高保磁力を示す範囲を示す図、第3図は磁
化の得られる膜組成範囲を示す図、第4図は本発明によ
る硬質磁性薄膜の一例の磁化曲線図、第5図A及びBは
小角X線回折パターンである。
Figure 1 shows the surface of each sample and the measurement results for the presence or absence of magnetization.
Figure 2 is a diagram showing the target composition, sputtering conditions, and range of high coercive force for a magnetic thin film produced by sputtering, Figure 3 is a diagram showing a film composition range in which magnetization can be obtained, and Figure 4 is a diagram showing a hard magnetic thin film produced by the present invention. An example magnetization curve diagram, FIGS. 5A and 5B, is a small-angle X-ray diffraction pattern.

Claims (2)

【特許請求の範囲】[Claims] 1.組成式Mn_xGa_yIn_z(但し、x,y,
zはそれぞれ原子%)で示され、 y≦x≦2y 0.5≦z≦50 x+y+z=100 なる関係を満足する硬質磁性薄膜。
1. Composition formula Mn_xGa_yIn_z (however, x, y,
A hard magnetic thin film that satisfies the following relationships: y≦x≦2y 0.5≦z≦50 x+y+z=100, where z is expressed in atomic %.
2.上記特許請求の範囲第1項の硬質磁性薄膜において
、上記組成式中のGaの一部を、Al,B,Ag,Cu
,Au,Sn,C,Si,Geのうちの少なくとも1種
以上と置換した硬質磁性薄膜。
2. In the hard magnetic thin film according to claim 1, a part of Ga in the composition formula is replaced by Al, B, Ag, Cu.
, Au, Sn, C, Si, and Ge.
JP8936688A 1988-04-12 1988-04-12 Hard magnetic thin film Pending JPH01260804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8936688A JPH01260804A (en) 1988-04-12 1988-04-12 Hard magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8936688A JPH01260804A (en) 1988-04-12 1988-04-12 Hard magnetic thin film

Publications (1)

Publication Number Publication Date
JPH01260804A true JPH01260804A (en) 1989-10-18

Family

ID=13968704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8936688A Pending JPH01260804A (en) 1988-04-12 1988-04-12 Hard magnetic thin film

Country Status (1)

Country Link
JP (1) JPH01260804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724367A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content alloy compositions
JP2014228166A (en) * 2013-05-20 2014-12-08 Tdk株式会社 Magnetic work substance for magnetic refrigeration device, and magnetic refrigeration device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724367A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content alloy compositions
EP1724367A3 (en) * 2004-10-12 2010-02-17 Heraeus, Inc. Low oxygen content alloy compositions
JP2014228166A (en) * 2013-05-20 2014-12-08 Tdk株式会社 Magnetic work substance for magnetic refrigeration device, and magnetic refrigeration device

Similar Documents

Publication Publication Date Title
US20060188743A1 (en) Fept magnetic thin film having perpendicular magnetic anisotropy and method for preparation thereof
Naoe et al. Properties of amorphous Co–Ta and Co–W films deposited by rf sputtering
EP0154158B1 (en) Process for manufacturing magnetic recording media
JPH01260804A (en) Hard magnetic thin film
JPH0454367B2 (en)
Takao et al. Insoluble binary system thin film
Nakagawa et al. Low temperature deposition of c-axis oriented Sr-ferrite thin films prepared by facing targets sputtering with mixture gas of Ar and Kr
EP0187169B1 (en) Process of manufacturing magnetic recording media and the media
Jaren et al. Pulsed laser deposition epitaxial growth and magnetic properties of TbCo2 and TbFe2 ultra-thin films
Takei et al. Effect of Sm–Co layer thickness on magnetic properties of crystallized Sm–Co/Cr films
Wang et al. High moment soft amorphous CoFeZrRe thin‐film materials
JP2643227B2 (en) Magnetic thin film
JPH03265104A (en) Soft magnetic alloy film
JPH0727822B2 (en) Fe-Co magnetic multilayer film and magnetic head
JPH0517608B2 (en)
JP2842683B2 (en) Soft magnetic thin film material
JPH0230104A (en) Vertically magnetized film
JPH0513323B2 (en)
Hoshi et al. Magnetic properties of zero magnetostriction Co-Ta-Zr amorphous alloy films deposited by RF sputtering
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
Chen et al. Sputter synthesis of modulated multilayer high‐energy‐product permanent magnet films
Yeh et al. Correlation of structure/micromagnetic character of rf sputtered Co/Cr, CoCr/Cr and CoCrTa/Cr thin films
JPS5966105A (en) Magnetic recording medium
JPS63266626A (en) Magnetic recording medium
JPS62164205A (en) Magnetic recording medium