JPH01260360A - Packing agent for reverse phase chromatography - Google Patents

Packing agent for reverse phase chromatography

Info

Publication number
JPH01260360A
JPH01260360A JP63088155A JP8815588A JPH01260360A JP H01260360 A JPH01260360 A JP H01260360A JP 63088155 A JP63088155 A JP 63088155A JP 8815588 A JP8815588 A JP 8815588A JP H01260360 A JPH01260360 A JP H01260360A
Authority
JP
Japan
Prior art keywords
copolymer
group
phase chromatography
reverse phase
packing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63088155A
Other languages
Japanese (ja)
Inventor
Chuichi Hirayama
平山 忠一
Hirotaka Ihara
博隆 伊原
Shoji Nagaoka
昭二 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP63088155A priority Critical patent/JPH01260360A/en
Publication of JPH01260360A publication Critical patent/JPH01260360A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high polymer packing agent for reverse phase chromatography stable against acid and alkali as well without causing any abnormal iron adsorption, by preparing a packing agent using a vinyl ether based copolymer having no ionic group. CONSTITUTION:A packing agent for reverse phase chromatography is prepared by a copolymer obtained by suspended polymerization of 40-90mol.% of a vinyl based compound given by CH2=CH-OR (wherein R represents hydrocarbon group with C1-24) and 10-60mol.% of a compound given by CH2= CH-(X)-[VH=CH2]m (m represent integer of 1-3, X oxygen atom, aromatic hydrocarbon group or the like) as crosslinking agent. The grain size of the copolymer can be adjusted by varying a stirring speed during the polymerization and particles of the copolymer produced are washed by a hot water to make a product after the cleaning of an unreacted product or a by product by aceton or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は逆相クロマトグラフィー用充填剤に関し、詳し
くはビニルエーテル系共重合体からなる逆相クロマトグ
ラフィー用高分子充填剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a packing material for reversed phase chromatography, and more particularly to a polymer packing material for reversed phase chromatography comprising a vinyl ether copolymer.

〔従来の技術〕[Conventional technology]

液体クロマトグラフィーにおいて、試料の疎水性の度合
による保持の強弱に基づいて分離する逆相クロマトグラ
フィーが行われている。
In liquid chromatography, reversed phase chromatography is used to separate samples based on the strength of retention depending on the degree of hydrophobicity of the sample.

一般に、逆相クロマトグラフィーに用いられる充填剤は
、高速かつ高い分離効率を達成させるために、従来より
非極性化したシリカゲル系充填剤が広く利用されてきた
。しかしながら、シリカゲルはもともとアルカリに対し
て加水分解を受けやすく、またシランカップラーなどの
表面処理により非極性化された゛ものは酸による加水分
解を受けやすい欠点があり、逆相クロマトグラフィーに
おける適用pH範囲は3〜8に限られていた。
In general, non-polarized silica gel-based packing materials have been widely used as packing materials for reversed-phase chromatography in order to achieve high speed and high separation efficiency. However, silica gel is inherently susceptible to hydrolysis by alkalis, and silica gels made non-polarized by surface treatments such as silane couplers have the disadvantage of being susceptible to hydrolysis by acids, so the applicable pH range for reversed-phase chromatography is limited. It was limited to 3-8.

また、シリカゲルの非極性化は主にシリカゲル表面のシ
ラ/−ル基の反応性を利用し【行なわれるが、シラノー
ル基をすべて反応させることは難しくて未反応のシラノ
ール基が残存する。この残存シラノール基は逆相クロマ
トグラフィーにとって不都合なイオン吸着やテーリング
現象の原因となっている。
Furthermore, non-polarization of silica gel is carried out mainly by utilizing the reactivity of the silanol groups on the surface of the silica gel, but it is difficult to react all of the silanol groups, and unreacted silanol groups remain. These residual silanol groups cause ion adsorption and tailing phenomena, which are disadvantageous for reversed phase chromatography.

これらの欠点を改善するために、従来より有機ポリマー
充填剤の開発が試みられてきたが、満足な結果は得られ
【いない。たとえば、スチレン−ジビニルベンゼン共重
合体やその誘導体では、疎水性が高すぎるために強い吸
着を生じ、また理論段数の低下を防ぐことはできなかっ
た。また、ポリビニルアルコールやポリアクリルアミド
ゲルの部分アルキル化も行なわれているが1反応条件が
難しくて部分アルキル化度も低く、その調節も困難であ
った。
In order to improve these drawbacks, attempts have been made to develop organic polymer fillers, but no satisfactory results have been obtained. For example, styrene-divinylbenzene copolymer and its derivatives have too high hydrophobicity, resulting in strong adsorption, and it has not been possible to prevent a decrease in the number of theoretical plates. Furthermore, partial alkylation of polyvinyl alcohol or polyacrylamide gel has been carried out, but the reaction conditions are difficult and the degree of partial alkylation is low, making it difficult to control.

〔発明が解決しよ5とする課題〕 本発明は、上記の欠点を解決するためのもので、化学的
、物理的にも安定で、異常なイオン吸着を起こさない逆
相りpマドグラフィー用充填剤を提供することを目的と
する。
[Problems to be solved by the invention] The present invention is intended to solve the above-mentioned drawbacks, and is aimed at solving the above-mentioned drawbacks. The purpose is to provide fillers.

〔課題を解決するための手段〕 本発明は、〔I〕式で示される化合物40〜9−用充填
剤である。
[Means for Solving the Problems] The present invention is a filler for compounds 40 to 9- represented by the formula [I].

CH2=CH−(IR(1) CH2=CH−(X)−(CH=CH2)、、   (
El )ここで、Rは炭素数1〜24の炭化水素基、m
は1〜3の整数、Xは酸素原子、芳香族炭化水素基、多
価アルコールの残基または下記(1)式で尽 鼻される基である。
CH2=CH-(IR(1) CH2=CH-(X)-(CH=CH2), (
El) Here, R is a hydrocarbon group having 1 to 24 carbon atoms, m
is an integer of 1 to 3, and X is an oxygen atom, an aromatic hydrocarbon group, a residue of a polyhydric alcohol, or a group represented by the following formula (1).

0(CHz)、0           (* )〔I
〕式中aはX〜22の整数を示す。
0 (CHz), 0 (*) [I
] In the formula, a represents an integer from X to 22.

本発明で用いる共重合体は〔I〕式で示されるビニル系
の化合物と架橋剤として(II)式で示される化合物と
を懸濁重合して得られる共重合体である。
The copolymer used in the present invention is a copolymer obtained by suspension polymerization of a vinyl compound represented by formula [I] and a compound represented by formula (II) as a crosslinking agent.

(1)式において、Rで示される炭素数1ない(−24
の炭化水素基としては、メチル基、エチル基、アリル基
、プロピル基、イソプルピル基、ブチル基、インブチル
基、ターシャリブチル基、アミル基、イソアミル基、ヘ
キシル基、ヘプチル基、2−、−x−チルヘキシル基、
オクチル基、/ニル基、デシル基、ウンデシル基、ドデ
シル基、トリデシル基、テトラデシル基、ヘキサデシル
基、インヘキサデシル基、オクタデシル基、インオクタ
デシル基、オレイル基、オクチルドデシル基、ベヘニル
基、デシルテトラデシル基、ベンジル基、クレジル基、
ブチルフェニル基、ジブチルフェニル基、オクチルフェ
ニル基、ノニルフェニル基、ドテシルフェニル基、ジオ
クチルフェニル基、ジノニルフェニル嬶、スチレン化フ
ェニル基等があげられろ。
In formula (1), the number of carbon atoms represented by R is 1 (-24
Hydrocarbon groups include methyl group, ethyl group, allyl group, propyl group, isopropyl group, butyl group, inbutyl group, tert-butyl group, amyl group, isoamyl group, hexyl group, heptyl group, 2-, -x -tylhexyl group,
Octyl group, /nyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, hexadecyl group, inhexadecyl group, octadecyl group, inoctadecyl group, oleyl group, octyldodecyl group, behenyl group, decyltetradecyl group group, benzyl group, cresyl group,
Examples include butylphenyl group, dibutylphenyl group, octylphenyl group, nonylphenyl group, dotecylphenyl group, dioctylphenyl group, dinonylphenyl group, styrenated phenyl group, and the like.

(II)式で示される化合物の代表的な例としては、ジ
ビニルエーテル、ジビニルベンゼン、ジビニルトルエン
、ジビニルエーテル、トリビニルベンゼン、ジビニルメ
タン、ジビニルメタン、グリセリルトリビニルエーテル
、ペンタエリスリトールテトラビニルエーテル等が挙げ
られる。
Representative examples of the compound represented by formula (II) include divinyl ether, divinylbenzene, divinyltoluene, divinyl ether, trivinylbenzene, divinylmethane, divinylmethane, glyceryl trivinyl ether, pentaerythritol tetravinyl ether, etc. .

〔■〕式においてXが(1)式で示される基の場合にa
が22以下に限定される理由は、23以上になると合成
が困難となるためである。
[■] In the formula, when X is a group represented by the formula (1), a
The reason why is limited to 22 or less is that when it is 23 or more, synthesis becomes difficult.

共重合体における(1)式及びCH’J式化合物の比率
が限定されるのは、(n)式化合物が10グラフイー用
充填剤として好ましくなく、また60モルチ″を越える
と共重合反応が困難で均一の共重合体粒子が得られない
からである。
The reason why the ratio of the formula (1) and CH'J compounds in the copolymer is limited is that the compound of the formula (n) is not preferred as a filler for 10 graphite, and if it exceeds 60 molar ratio, the copolymerization reaction is difficult. This is because uniform copolymer particles cannot be obtained.

共重合方法は、水溶液中においてカルボキシメチルセル
ツース、ポリビニアルコール等を分散安定剤として用い
、懸濁重合を行なう。重合開始剤としてはベンゾイルペ
ルオキシド、ブチルペルオキシド、クミルペルオキシド
等の有機過酸化物、アゾビスイソブチq二)リル等のア
ゾ化合物などを用いることができる。
In the copolymerization method, suspension polymerization is carried out in an aqueous solution using carboxymethyl cellulose, polyvinyl alcohol, or the like as a dispersion stabilizer. As the polymerization initiator, organic peroxides such as benzoyl peroxide, butyl peroxide, and cumyl peroxide, and azo compounds such as azobisisobutyq-di)lyl can be used.

重合に当た;ては、希釈剤として脂肪族アルコールのn
−ブタノール、n−ペンタノール、n−ヘキサノール、
n−へ(タノール、n−才クタノール、n−ノナノール
、n−デカノール、インプロパツール、インブタノール
など、芳香族炭化水素のベンゼン、トルエン、キシレン
ナト、ケトンの3−ペンタノン、2−ペンタノン、2−
ヘキサノン、2−へブタノンなどを加えても良い。
During polymerization, an aliphatic alcohol is used as a diluent.
-butanol, n-pentanol, n-hexanol,
n-(tanol, n-old ethanol, n-nonanol, n-decanol, impropatol, imbutanol, etc., aromatic hydrocarbons benzene, toluene, xylenato, ketones 3-pentanone, 2-pentanone, 2-
Hexanone, 2-hebutanone, etc. may be added.

また場合によっては、〔I〕式および(El)式化合物
等のモノマーがともに溶解しない濃度の。
In some cases, the concentration is such that monomers such as compounds of formula [I] and formula (El) are not dissolved together.

たとえば15〜40重量係の無機塩を加えてもよい。こ
の無機塩としては、硫酸ナトリウム、硫酸カリウム、塩
化ナトリウム、塩化カリウム、リン醗ナトリウム、リン
酸カリウムなどが挙げられる。
For example, 15 to 40 parts by weight of an inorganic salt may be added. Examples of the inorganic salt include sodium sulfate, potassium sulfate, sodium chloride, potassium chloride, sodium phosphate, and potassium phosphate.

重合は一般に温度30−100’Cで1〜30時間程度
行なう。
Polymerization is generally carried out at a temperature of 30-100'C for about 1-30 hours.

重合の際K(n)式化合物が架橋剤となって粒状の共■
合体が生成するが、重合時のかき混ぜ速度を変えること
により共重合体の粒度な調節することができる。生成し
た共重合体の粒子はア七l。
During polymerization, the K(n) formula compound acts as a crosslinking agent, forming particulate co-organic
Although coalescence is produced, the particle size of the copolymer can be controlled by changing the stirring speed during polymerization. The particles of the copolymer produced are A7L.

ン等により未反応または11生成物等を洗浄後、さらに
温水で洗浄して製品とされる。
After washing unreacted products or products of No. 11 with water, etc., the product is further washed with warm water to obtain a product.

物の極性が七ツマ−の選択および反応組成比によって容
易に制御でき、またイオン性基を持たないので異常なイ
オン吸着をまったく起こさな(・。さらに、酸およびア
ルカリに対して安定であるので、pHが1〜14の広い
範囲で使用でき、実鹸用分析、工業用精製等に広く利用
できる。
The polarity of the substance can be easily controlled by the selection of the 7-mer and the reaction composition ratio, and since it does not have ionic groups, it does not cause any abnormal ion adsorption (・Furthermore, it is stable against acids and alkalis, so It can be used in a wide range of pH from 1 to 14, and can be widely used for analysis of actual soaps, industrial purification, etc.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1(共重合体の製造) 還流冷却器つきの三つロセパラズルフラスコに、1.5
%(W/W%)のポリビニルアルコール本合成化学工業
(掬、ゴーセノールGH−20)の水浴液50011/
をとり、攪拌しながら重合開始剤として過酸化ベンゾイ
ル0.67’を溶解したn−オクタデシルビニルエーテ
ル3.87’(20モル%)。
Example 1 (Production of copolymer) In a three-row parasol flask equipped with a reflux condenser, 1.5
% (W/W%) of polyvinyl alcohol Honsei Kagaku Kogyo (Kiku, Gohsenol GH-20) water bath liquid 50011/
and n-octadecyl vinyl ether 3.87' (20 mol %) in which 0.67' benzoyl peroxide was dissolved as a polymerization initiator while stirring.

n−ブチルビニルエーテル3. 7 7 ( 5 0モ
ル係)、およびジビニルベンゼン′L57’(30モル
%)を加え、粒子の大きさを攪拌速度で調節しながら、
75’C,3600rpmで24時間懸濁重合を行なっ
た。得られた共重合体粒子は、7セトンでソックスレー
抽出器にかけて6時間抽出したのち、約50°Cの温水
で十分に洗浄して直径約15μmの共重合体粒子9.5
1を得た。
n-butyl vinyl ether3. 77 (50 mol%) and divinylbenzene 'L57' (30 mol%), and while adjusting the particle size by stirring speed,
Suspension polymerization was carried out at 75'C and 3600 rpm for 24 hours. The obtained copolymer particles were extracted with 7 setson using a Soxhlet extractor for 6 hours, and then thoroughly washed with warm water at about 50°C to obtain copolymer particles with a diameter of about 15 μm.
I got 1.

以下衣1に示す条件により、同様の方法を用いて共重合
体温2〜/1613を合成した。なお、合成の際に希釈
剤および無機塩を使用したものくついては表1に記載し
た。
A copolymer with a temperature of 2 to 1613 was synthesized using the same method under the conditions shown in Cloth 1 below. Note that Table 1 lists the cases in which diluents and inorganic salts were used during the synthesis.

表1の共重合体A1〜/に9については、いづれも強度
が大きくて均一状態の共重合体が得られたが、比較の共
重合体410と/I611については強度が低く、A1
2と/VL13については球形の共重合体が得られず、
液体りpマドグラフィー用充填剤としては不適当であっ
た。
For copolymers A1 to /I9 in Table 1, copolymers with high strength and a uniform state were obtained, but comparative copolymers 410 and /I611 had low strength and A1
For 2 and /VL13, spherical copolymers were not obtained,
It was unsuitable as a filler for liquid pomaography.

また共重合体應1〜腐9は各種の溶媒に不溶で、膨潤す
ることもなかった。
Further, copolymers 1 to 9 were insoluble in various solvents and did not swell.

実施例2(脂肪族炭化水素類の溶出特性)金属カラム(
15ctu x O,4tx ) K共重合体高1およ
び鷹2をそれぞれ充填して脂肪族炭化水素類の保持容量
(溶出容t/カラム容−1X100)を調べ、公知のオ
クタデシル化シリカゲル(ODS )を充填した場合と
比較した結果を図IK示す。なお、脂肪族炭化水素とし
てはn−へキサン、n−オクタン、n−ツカ??よびn
−デカンを用い、溶離液としてはアセトニトリル−水(
8/2(V/V))を用いた。 ・ 図1から共重合体高1と魔2はODSと類似した保持挙
動を示して見・ることかわかる。また、ODSが共重合
体高1と應2の中間の保持挙動を示すことから、本発明
品の極性は2種類のビニルエーテルの組合せにより調整
することができ、市販のODSと同様な極性をもつ共重
合体も得ることが可能である。
Example 2 (Elution characteristics of aliphatic hydrocarbons) Metal column (
15ctu x O, 4tx) K copolymer High 1 and Taka 2 were respectively packed to check the retention capacity of aliphatic hydrocarbons (elution volume t/column volume - 1X100), and the well-known octadecylated silica gel (ODS) was packed. Figure IK shows the results compared to the case where In addition, examples of aliphatic hydrocarbons include n-hexane, n-octane, and n-tuka? ? and n
-Decane was used, and the eluent was acetonitrile-water (
8/2 (V/V)) was used. - From Figure 1, it can be seen that copolymers High 1 and High 2 exhibit retention behavior similar to ODS. Furthermore, since ODS exhibits a retention behavior intermediate between copolymer height 1 and copolymer height 2, the polarity of the product of the present invention can be adjusted by a combination of two types of vinyl ethers, and a copolymer with a polarity similar to that of commercially available ODS can be adjusted. It is also possible to obtain polymers.

実施例3(芳香族炭化水素類の溶出特性)実施例2と同
様にし【共重合体/161およびODSの芳香族炭化水
X類の保持容量を調べた結果な図2に示す。ここで、芳
香族炭化水素としては、ベンゼン、n−7’チルベンゼ
ン、n−ヘキシルベンゼン、n−ヘプチルベンゼン、n
−オクチルベンゼンおよびn−デシルベンゼンを用い、
溶離液としてアセトニトリルー水(8/ 2 (V/V
) )を用いた。
Example 3 (Elution characteristics of aromatic hydrocarbons) The retention capacity of aromatic hydrocarbons X of copolymer/161 and ODS was investigated in the same manner as in Example 2. The results are shown in FIG. Here, as aromatic hydrocarbons, benzene, n-7' thylbenzene, n-hexylbenzene, n-heptylbenzene, n-
- using octylbenzene and n-decylbenzene,
Acetonitrile-water (8/2 (V/V
) ) was used.

図2より共重合体/161はODSと同様な保持挙動を
示すことがわかる。
It can be seen from FIG. 2 that copolymer/161 exhibits retention behavior similar to ODS.

実施例4(安息香酸エステル類の溶出特性)実施例2と
同様にして調べた安息香酸エステル類(メチル、エチル
、ブチルおよびヘキシルエステル)の保持容量を図3に
示す。溶離液としてはアセトニトリル−水(8/ 2 
(v/V))を用いた。
Example 4 (Elution characteristics of benzoic acid esters) The retention capacity of benzoic acid esters (methyl, ethyl, butyl and hexyl esters) investigated in the same manner as in Example 2 is shown in FIG. The eluent was acetonitrile-water (8/2
(v/V)) was used.

図3から共重合体/161はODSと同様な保持挙動を
示すことがわかる。
It can be seen from FIG. 3 that copolymer/161 exhibits retention behavior similar to ODS.

実施例5(塩基性物質の溶出特性) 共重合体高1とODSにおける塩基性物質〔ピリジン、
キノリンおよびベンジルアミン、溶離液アセトニトリル
−水(8/2 (V/V)) )の保持容量を表2に示
す。
Example 5 (Elution characteristics of basic substances) Basic substances [pyridine,
The retention capacities of quinoline and benzylamine, eluent acetonitrile-water (8/2 (V/V)) are shown in Table 2.

表2から明らかなように、ODSでは異常なイオン吸着
を起こす原因となる残存シラノール基が存在するために
、ピリジンとキノリンはかなり多く保持され、溶出ピー
クにもプーリング現象が見られ、またベンジルアミンは
吸着されてしまりで溶出されなかった。これに対して、
共重合体層1は塩基性物質とイオン的な相互作用をする
官能基を持たないためにODSのような異常な現象は起
こさなかった。
As is clear from Table 2, in ODS, due to the presence of residual silanol groups that cause abnormal ion adsorption, a considerable amount of pyridine and quinoline is retained, a pooling phenomenon is also observed in the elution peak, and benzylamine was adsorbed and was not eluted. On the contrary,
Since the copolymer layer 1 does not have a functional group that interacts ionicly with a basic substance, an abnormal phenomenon such as ODS did not occur.

実施例6(耐酸性および耐アルカリ性試験)共重合体層
1の共重合体の耐酸性および耐アルカリ性試験の結果を
表3に示した。この試験方法は、0.lN−NaOHお
よび0.IN−HCノ水溶液に共重合体を浸し、元素分
析により炭素原子の含有率の変化を調べたものである。
Example 6 (Acid resistance and alkali resistance test) The results of the acid resistance and alkali resistance test of the copolymer of copolymer layer 1 are shown in Table 3. This test method is 0. 1N-NaOH and 0. The copolymer was immersed in an aqueous solution of IN-HC, and changes in the carbon atom content were investigated by elemental analysis.

共重合体/161は、50日後においてもほとんど炭素
原子の含有率に変化は見られず、耐酸性および耐アルカ
リ性に優れていることが分かる。また、共重合体42〜
A9についても同様に炭素原子の含有率に変化は見られ
なかった。
Copolymer/161 shows almost no change in the carbon atom content even after 50 days, indicating that it has excellent acid resistance and alkali resistance. In addition, copolymer 42-
Similarly, no change was observed in the carbon atom content of A9.

表    3 帳)Table 3 book)

【図面の簡単な説明】[Brief explanation of the drawing]

芳香族炭化水素類の溶出特性を示した図、図3は安、!
、奎酸エステル類の溶出特性を示した図である。 特許出厘人  日本油脂株式会社 炭化水素類の炭素数 図     1 図     2
Figure 3 shows the elution characteristics of aromatic hydrocarbons.
, is a diagram showing the elution characteristics of chilic acid esters. Patent agent Nippon Oil & Fats Co., Ltd. Carbon number diagram of hydrocarbons 1 Figure 2

Claims (1)

【特許請求の範囲】 1、〔 I 〕式で示される化合物40〜90モル%およ
び〔 I 〕式で示される化合物10〜60モル%の共重
合体からなる逆相クロマトグラフィー用充填剤。 CH_2=CH−OR〔 I 〕 CH_2=CH−(X)−〔CH=CH_2〕_m〔I
I〕ここで、Rは炭素数1〜24の炭化水素基、mは1
〜3の整数、Xは酸素原子、芳香族炭化水素基、多価ア
ルコールの残基または下記〔III〕式で示される基であ
る。 O(CH_2)_aO〔III〕 〔III〕式中aは2〜22の整数を示す。
[Scope of Claims] 1. A packing material for reverse phase chromatography comprising a copolymer of 40 to 90 mol% of a compound represented by formula [I] and 10 to 60 mol% of a compound represented by formula [I]. CH_2=CH-OR [I] CH_2=CH-(X)-[CH=CH_2]_m[I
I] Here, R is a hydrocarbon group having 1 to 24 carbon atoms, m is 1
The integer of ~3, X is an oxygen atom, an aromatic hydrocarbon group, a residue of a polyhydric alcohol, or a group represented by the following formula [III]. O(CH_2)_aO [III] [III] In the formula, a represents an integer of 2 to 22.
JP63088155A 1988-04-12 1988-04-12 Packing agent for reverse phase chromatography Pending JPH01260360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63088155A JPH01260360A (en) 1988-04-12 1988-04-12 Packing agent for reverse phase chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63088155A JPH01260360A (en) 1988-04-12 1988-04-12 Packing agent for reverse phase chromatography

Publications (1)

Publication Number Publication Date
JPH01260360A true JPH01260360A (en) 1989-10-17

Family

ID=13935035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63088155A Pending JPH01260360A (en) 1988-04-12 1988-04-12 Packing agent for reverse phase chromatography

Country Status (1)

Country Link
JP (1) JPH01260360A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531651A (en) * 2002-05-30 2005-10-20 アメルシャム・バイオサイエンシーズ・アクチボラグ Macroporous crosslinked polymer particles
WO2015084120A1 (en) * 2013-12-06 2015-06-11 주식회사 엘지화학 Monomer and block copolymer
US10081698B2 (en) 2013-12-06 2018-09-25 Lg Chem, Ltd. Block copolymer
US10087276B2 (en) 2013-12-06 2018-10-02 Lg Chem, Ltd. Block copolymer
US10150832B2 (en) 2013-12-06 2018-12-11 Lg Chem, Ltd. Block copolymer
US10184021B2 (en) 2013-12-06 2019-01-22 Lg Chem, Ltd. Block copolymer
US10196475B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10196474B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10202480B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10202481B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10227436B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10227437B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10239980B2 (en) 2013-12-06 2019-03-26 Lg Chem, Ltd. Block copolymer
US10240035B2 (en) 2014-09-30 2019-03-26 Lg Chem, Ltd. Block copolymer
US10253130B2 (en) 2013-12-06 2019-04-09 Lg Chem, Ltd. Block copolymer
US10281820B2 (en) 2014-09-30 2019-05-07 Lg Chem, Ltd. Block copolymer
US10287429B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Block copolymer
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10295908B2 (en) 2014-09-30 2019-05-21 Lg Chem, Ltd. Block copolymer
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10377894B2 (en) 2014-09-30 2019-08-13 Lg Chem, Ltd. Block copolymer
US10633533B2 (en) 2014-09-30 2020-04-28 Lg Chem, Ltd. Block copolymer
US10703897B2 (en) 2014-09-30 2020-07-07 Lg Chem, Ltd. Block copolymer

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531651A (en) * 2002-05-30 2005-10-20 アメルシャム・バイオサイエンシーズ・アクチボラグ Macroporous crosslinked polymer particles
US10227436B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10081698B2 (en) 2013-12-06 2018-09-25 Lg Chem, Ltd. Block copolymer
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10239980B2 (en) 2013-12-06 2019-03-26 Lg Chem, Ltd. Block copolymer
US10150832B2 (en) 2013-12-06 2018-12-11 Lg Chem, Ltd. Block copolymer
US10160822B2 (en) 2013-12-06 2018-12-25 Lg Chem, Ltd. Monomer and block copolymer
US10184021B2 (en) 2013-12-06 2019-01-22 Lg Chem, Ltd. Block copolymer
US10196475B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10196474B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10202480B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10202481B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
WO2015084120A1 (en) * 2013-12-06 2015-06-11 주식회사 엘지화학 Monomer and block copolymer
US10227437B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
CN105980342A (en) * 2013-12-06 2016-09-28 株式会社Lg化学 Monomer and block copolymer
US10087276B2 (en) 2013-12-06 2018-10-02 Lg Chem, Ltd. Block copolymer
US10253130B2 (en) 2013-12-06 2019-04-09 Lg Chem, Ltd. Block copolymer
US10240035B2 (en) 2014-09-30 2019-03-26 Lg Chem, Ltd. Block copolymer
US10281820B2 (en) 2014-09-30 2019-05-07 Lg Chem, Ltd. Block copolymer
US10287429B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Block copolymer
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10295908B2 (en) 2014-09-30 2019-05-21 Lg Chem, Ltd. Block copolymer
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10377894B2 (en) 2014-09-30 2019-08-13 Lg Chem, Ltd. Block copolymer
US10633533B2 (en) 2014-09-30 2020-04-28 Lg Chem, Ltd. Block copolymer
US10703897B2 (en) 2014-09-30 2020-07-07 Lg Chem, Ltd. Block copolymer

Similar Documents

Publication Publication Date Title
JPH01260360A (en) Packing agent for reverse phase chromatography
JP5475284B2 (en) Hydrophilic cross-linked polymer
Constantin et al. Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres
AU721216B2 (en) Bifunctional crown ether-based cation-exchange stationary phase for liquid chromatography
US4732887A (en) Composite porous material, process for production and separation of metallic element
CA2687930C (en) Graft copolymers for cation exchange chromatography
JP2013532829A (en) Grafting method to improve chromatographic mediation performance
IE51155B1 (en) Hydrophilic copolymers containing n-(tris(hydroxymethyl)methyl)acrylamide,processes for their preparation,aqueous gels of the copolymers and their use as ion exchangers
AU2005231226A1 (en) A method of preparing a separation matrix
JP5280604B2 (en) Post-modification of porous support
JP5474881B2 (en) Method for making and using improved chromatographic media
JPH0649139A (en) Cross-linked spherical copolymer bead and its production
JP2005510593A5 (en)
US4576973A (en) Copolymer, process for its preparation and its use as a sorbent
US3839385A (en) Organo-silicon modified silica gel particles
KR101333577B1 (en) Process for making improved chromatography media and method of use
WO2018155241A1 (en) Filler for size exclusion chromatography and method for manufacturing same
KR100332859B1 (en) High density, large surface area adsorbent
Ye et al. Surface modification of regenerated cellulose membrane based on thiolactone chemistry–a novel platform for mixed mode membrane adsorbers
Bibi et al. Synthesis and sorption performance of highly specific imprinted particles for the direct recovery of carminic acid
Bo et al. Preparation and evaluation of surface-grafted block copolymers and random copolymers via surface-initiated atom transfer radical polymerization for hydrophilic/ion-exchange stationary phases
Chang et al. Preparation of High‐capacity, Monodisperse Polymeric Weak Cation Exchange Packings Using Surface‐initiated Atom Transfer Radical Polymerization and Its Chromatographic Properties
JP2743072B2 (en) Packing material for liquid chromatography
JPH0549337B2 (en)
Pączkowski et al. Studies on Preparation, Characterization and Application of Porous Functionalized Glycidyl Methacrylate-Based Microspheres. Materials 2021, 14, 1438