JPH01259148A - Manufacture of al-cu-li-zr super plastic plate having less anisotropy - Google Patents

Manufacture of al-cu-li-zr super plastic plate having less anisotropy

Info

Publication number
JPH01259148A
JPH01259148A JP8740288A JP8740288A JPH01259148A JP H01259148 A JPH01259148 A JP H01259148A JP 8740288 A JP8740288 A JP 8740288A JP 8740288 A JP8740288 A JP 8740288A JP H01259148 A JPH01259148 A JP H01259148A
Authority
JP
Japan
Prior art keywords
rolling
temperature
hours
formula
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8740288A
Other languages
Japanese (ja)
Other versions
JPH07116568B2 (en
Inventor
Hideo Yoshida
英雄 吉田
Hiroki Tanaka
宏樹 田中
Makoto Tsuchida
信 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP63087402A priority Critical patent/JPH07116568B2/en
Publication of JPH01259148A publication Critical patent/JPH01259148A/en
Publication of JPH07116568B2 publication Critical patent/JPH07116568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture an Al alloy plate having less anisotropy and capable of super plastic deformation by subjecting an Al alloy ingot contg. specific amounts of Cu, Li, Zr and Ti to homogenizing treatment, to solution heat treatment if required and thereafter to rolling under specific conditions. CONSTITUTION:The ingot of an Al alloy contg., by weight, 2.0-3.0% Cu, 1.0-3.0% Li, 0.05-0.2% Zr and 0.01-0.10% Ti is retained under heating to 450-540 deg.C for 1-50h, is subjected to homogenizing treatment, is subjected to solution heat treatment at >=460 deg.C if required, is thereafter cooled to 300-450 deg.C, is retained to the temp. for 1-50h, is subjected to depositing treatment, is successively cooled to 300-450 deg.C and is rolled. At this time, the rolling is executed in such a manner that the equivalent strain rate expressed by Formula I is regulated to <=10s<-1>. The super plastic Al alloy plate having less anisotropy and capable of super plastic deformation can be manufactured in the range of strain rate of extremely high deformation rate at a high temp.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超塑性変形が可能であるAl−Li系合金板を
製造する方法に関し、さらに詳しくは薗温で斐形速度か
極めて問いひずみ速度範囲で、異方性が少なく超塑性変
形が可能なAl−Cu−Li−Zr系超塑性アルミニウ
ム合金板を、圧延で製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an Al-Li alloy plate that is capable of superplastic deformation, and more specifically, the present invention relates to a method for manufacturing an Al-Li alloy plate that is capable of superplastic deformation, and more specifically, it is applied to The present invention relates to a method of manufacturing an Al-Cu-Li-Zr based superplastic aluminum alloy plate with little anisotropy and capable of superplastic deformation by rolling.

[従来の技術] 航空機用アルミニウム合金板は、機体の軽量化のために
、A I −Cu −M g系の2024合金板やAl
−Zn−Mg−Cu系の7075合金板から密度の低い
Al−Li系合金板に移行しつつある。
[Prior art] Aluminum alloy plates for aircraft are made of AI-Cu-Mg-based 2024 alloy plates and Al
There is a shift from -Zn-Mg-Cu based 7075 alloy plates to lower density Al-Li based alloy plates.

また、成形加工技術の面も、従来のロールフォーミング
やプレス成形(板金加工)したものを組立て接合などを
行う方法から一体化加工か可能な超塑性成形か取り入れ
られている。
Furthermore, in terms of forming technology, superplastic forming, which allows for integrated processing, has been introduced, instead of the conventional methods of assembling and joining products that have been roll-formed or press-formed (sheet metal processing).

超塑性成形法は、複雑な形状の製品を一度で成形するこ
とかできるため、部品の接合部が少なく、軽量化が可能
となり、また、組立て工数も少なく、製造コストの低減
をもたらす方法である。
The superplastic molding method allows products with complex shapes to be molded in one go, so there are fewer joints between parts, making it lighter, and it also reduces assembly man-hours, reducing manufacturing costs. .

このため超塑性変形か可能なAl−Li系合金材料か要
求されている。
For this reason, an Al-Li alloy material that is capable of superplastic deformation is required.

従来、Al−Li系合金としては、Al−Li−Cu−
Mg−Zr系の8090合金とAl−Cu−Li−Zr
系の2090合金が、国際的に登録されている。このう
ちAl−Li−Cu−M g−Z r系合金の超塑性変
形を得るために、均質化処理温度、熱間加工温度、中間
焼鈍温度および冷間加工度を規制する方法が提案されて
いる。(特開昭62−170462) しかし、A I−Cu−L i−Z r系合金の超塑性
変形か得られる材料かなく、このような材料の開発か強
く要望されていた。
Conventionally, Al-Li-Cu-
Mg-Zr based 8090 alloy and Al-Cu-Li-Zr
The 2090 alloy of the series is internationally registered. Among these, methods have been proposed to regulate the homogenization temperature, hot working temperature, intermediate annealing temperature, and degree of cold working in order to obtain superplastic deformation of Al-Li-Cu-Mg-Zr alloys. There is. (Japanese Unexamined Patent Publication No. 62-170462) However, there is no material that can obtain superplastic deformation of an AI-Cu-Li-Zr alloy, and there has been a strong demand for the development of such a material.

[発明か解決しようとする課題] 前述したように超塑性H料を製造するためには、種々の
加工か施されるか、このときの冷間圧延の加工度が高い
と、圧延方向によって伸びが異なり、超塑性変形加工し
たとき圧延方向に対して直角方向の伸びが低いという欠
点がある。
[Problem to be solved by the invention] As mentioned above, in order to produce a superplastic H material, various types of processing are performed. However, when subjected to superplastic deformation processing, the elongation in the direction perpendicular to the rolling direction is low.

また、冷間加工度を高くする必要のある場合1.5mm
以上の厚板の超塑性旧材が製造できなかった。本発明は
、変形速度が極めて高い範囲で超塑性的変形が得られ、
しかも圧延方向による伸びの異方性が少なく、また1、
5mm以上の厚さの板をA I−Cu−L i−Z r
系合金材料で制御した圧延で製造する方法を提(31、
するものである。
In addition, if it is necessary to increase the degree of cold working, 1.5 mm
It was not possible to manufacture superplastic old material of thicker plates. The present invention provides superplastic deformation in an extremely high deformation rate range,
Moreover, there is little anisotropy in elongation depending on the rolling direction, and 1.
A plate with a thickness of 5 mm or more is A I-Cu-L i-Z r
We propose a manufacturing method using controlled rolling of alloy materials (31,
It is something to do.

[課題を解決するための手段] 本発明による異方性の少ない超塑性アルミニウム合金板
の製造方法は、前記「1的を達成するため、下記のとお
りに構成される。
[Means for Solving the Problems] The method for manufacturing a superplastic aluminum alloy plate with low anisotropy according to the present invention is configured as follows in order to achieve the above-mentioned "Objective 1."

(1) Cu  2.0〜3.0%、Li  1.0〜
3.0%、Z r O,05〜0.20%、T i O
,01〜0.10%を含有し、残部Alおよび不可避不
純物からなるアルミニウム合金を、通常の鋳造法で溶解
、鋳造後、450〜540℃の温度において1〜50時
間の均質化処理を行い、その後300〜450℃の温度
で圧延し、該圧延時に下式で示す相当ひずみ速度が10
s−1以上となるように調整し、圧延することを特徴と
する異方性の少ないAl−Cu−゛Li−Zr系超塑性
板の製造方法。
(1) Cu 2.0~3.0%, Li 1.0~
3.0%, ZrO, 05-0.20%, TiO
, 01 to 0.10%, with the remainder being Al and unavoidable impurities, is melted and cast using a normal casting method, and then homogenized at a temperature of 450 to 540°C for 1 to 50 hours, After that, it is rolled at a temperature of 300 to 450°C, and at the time of rolling, the equivalent strain rate shown by the formula below is 10
A method for producing an Al-Cu-Li-Zr based superplastic plate with little anisotropy, the method comprising adjusting and rolling the plate so that it is s-1 or more.

たたし、VR=ロール周速度(m/s)R゛−偏平後の
ロール半径(m) ho−圧延前の板厚(m) r −圧下率 (2) Cu  2.、O−3,0%、Li  1.0
〜3.0%、Z r O,05−0,20%、T10.
旧−0,10%を含有し、残部A1および不可避不純物
からなるアルミニウム合金を、通常の鋳造法で溶解し、
鋳造後、450〜540°Cの温度において1〜50時
間の均質化処理と300〜450℃で1〜50時間の析
出処理を行い、その後300〜450℃の温度で圧延し
、該圧延時に前記式で示す相当ひずみ速度が10s−1
以上となるように調整し、圧延することを特徴とする異
方性の少ないAl−Cu−Li−Zr系超塑性板の製造
方法。
However, VR = roll circumferential speed (m/s) R' - roll radius after flattening (m) ho - plate thickness before rolling (m) r - rolling reduction (2) Cu 2. , O-3.0%, Li 1.0
~3.0%, ZrO, 05-0, 20%, T10.
An aluminum alloy containing 0.10% of aluminum and the remainder A1 and unavoidable impurities is melted using a normal casting method,
After casting, a homogenization treatment for 1 to 50 hours at a temperature of 450 to 540°C and a precipitation treatment for 1 to 50 hours at a temperature of 300 to 450°C are performed, and then rolling is performed at a temperature of 300 to 450°C, and during the rolling, the The equivalent strain rate shown by the formula is 10s-1
A method for producing an Al-Cu-Li-Zr-based superplastic plate with little anisotropy, which comprises adjusting and rolling the plate as described above.

(3) Cu  2.0〜3.0%、Li  L、(1
−3,0%、Z r 0.05−0.20%、T i 
0.01〜0.10%を含有し、残部Alおよび不可避
不純物からなるアルミニウム合金を、通常の鋳造法で溶
解し、鋳造後、450〜540℃の温度において1〜5
0時間保持後、300〜450°Cの温度まで冷却し、
該温度範囲で]〜50時間の析出処理後300〜450
°Cの温度範囲で冷却し、該温度範囲で圧延し、該圧延
時に前記式で示した相当ひずみ速度が10s−1以上と
なるように調整し、圧延することを特徴とする異方性の
少ないAl−Cu−Li−Zr系超塑性板の製造方法。
(3) Cu 2.0-3.0%, Li L, (1
-3,0%, Z r 0.05-0.20%, T i
An aluminum alloy containing 0.01 to 0.10% and the balance consisting of Al and unavoidable impurities is melted by a normal casting method, and after casting, it is heated to 1 to 5% at a temperature of 450 to 540°C.
After holding for 0 hours, cool to a temperature of 300 to 450 °C,
[in this temperature range] ~ 300 ~ 450 after precipitation treatment for 50 hours
An anisotropic method characterized by cooling in a temperature range of °C, rolling in the temperature range, adjusting the equivalent strain rate shown by the above formula at the time of rolling to be 10 s-1 or more, and rolling. A method for producing a small amount of Al-Cu-Li-Zr based superplastic plate.

(4) Cu  2.0〜3.0%、Li  1.0〜
3.0%、−つ − Z r 0.05〜0.20%、T i 0.01〜0
.10%を含有し、残部A1および不可避不純物からな
るアルミニウム合金を、通常の鋳造法で溶解し、鋳造後
、450〜540°Cて1〜50時間の均質化処理を行
い、その後再度460°C以上に加熱し、溶体化処理し
た後、300〜450℃の温度で圧延し、該圧延時に前
記式で示す相当ひずみ速度かtos−’以ドとなるよう
に調整して圧延し、その圧延の途中で300〜450℃
で1〜50時間の析出処理し、その後さらに300〜4
50℃で前記式で示した相当ひずみ速度か1.s−1以
上となるように調整することを特徴とする異方性の少な
いA I−Cu−L i−Z r系超塑性板の製造方法
(4) Cu 2.0~3.0%, Li 1.0~
3.0%, -Z r 0.05-0.20%, T i 0.01-0
.. An aluminum alloy containing 10% and the remainder A1 and unavoidable impurities is melted by a normal casting method, and after casting, it is homogenized at 450-540°C for 1-50 hours, and then again at 460°C. After heating to the above temperature and solution treatment, rolling is performed at a temperature of 300 to 450°C, and at the time of rolling, the equivalent strain rate shown in the above formula is adjusted to be less than or equal to tos-'. 300-450℃ in the middle
precipitation treatment for 1 to 50 hours, and then an additional 300 to 4 hours.
Is the equivalent strain rate shown in the above formula at 50°C?1. A method for producing an A I-Cu-L i-Z r-based superplastic plate with low anisotropy, the method comprising adjusting the anisotropy so that it is s-1 or more.

[作 用] Al−Li系超塑性祠材料、従来の7475合金系超塑
性材料と異なり、動的再結晶により微細再結晶粒を形成
させ超塑性変形する性質をもつために、高温まで安定な
下部組織を有する材料か1ワられるのである。
[Function] Unlike the conventional 7475 alloy-based superplastic material, the Al-Li based superplastic material has the property of forming fine recrystallized grains through dynamic recrystallization and superplastic deformation, so it is stable up to high temperatures. A material having an underlying structure is used.

本発明はAl−Cu−Li−Zr系の熱間加工性を向上
させて圧延し、超塑性材料を得るための製造方法に関す
るものであり、以下成分を限定した理由について述べる
The present invention relates to a manufacturing method for improving the hot workability of an Al-Cu-Li-Zr-based material and rolling it to obtain a superplastic material.The reasons for limiting the components will be described below.

Cu、超塑性成形後の合金相の強度向上効果がある。こ
の効果は2.0%より少ないと得られず、3.0%より
多いと、Cuの効果の密度か高いために航空機なとの軽
量化に寄+7することかできない。これらのためCuを
2.0〜3.0%とした。
Cu has the effect of improving the strength of the alloy phase after superplastic forming. This effect cannot be obtained if it is less than 2.0%, and if it is more than 3.0%, the density of the effect of Cu is so high that it can only contribute to the weight reduction of aircraft. For these reasons, Cu was set at 2.0 to 3.0%.

Ll;同じく合金相の強度向上と軽量化に効果かある。Ll: Similarly, it is effective in improving the strength and reducing the weight of the alloy phase.

この効果は 10%より少ないと得られず、3.0%よ
り多いと鋳造時にその偏析が激しく、均質化熱処理によ
っても容易に固溶しないため、熱間加工が困難である。
This effect cannot be obtained if the content is less than 10%, and if it is more than 3.0%, it segregates violently during casting and does not dissolve easily even in homogenization heat treatment, making hot working difficult.

Zr;合金相の再結晶を抑制する効果がある。Zr: has the effect of suppressing recrystallization of the alloy phase.

0.05%より少ないと最終焼鈍で再結晶か容易となり
、下部組織を安定化させることが困難となる。このため
超塑性成形が得られに<0゜また、0,20%を越える
と通常の鋳進法ては巨大化合物を晶出しゃすくなり、こ
れにより素材に圧延欠陥が生ずる。
If it is less than 0.05%, recrystallization becomes easy during final annealing, making it difficult to stabilize the underlying structure. For this reason, superplastic forming cannot be obtained. Furthermore, if the amount exceeds 0.20%, giant compounds tend to crystallize in the ordinary casting process, which causes rolling defects in the material.

Ti:累月合金に鋳造組織の微細化を与える効果がある
。この効果は0旧%より少ないと得られず、0.10%
より多いと巨大化合物が晶出しやすくなる。
Ti: Has the effect of making the casting structure finer in the alloy. This effect cannot be obtained if it is less than 0%, 0.10%
When the amount is higher, giant compounds tend to crystallize.

次に製造条件について述べる。Next, the manufacturing conditions will be described.

均質化処理。Homogenization process.

均質化処理はCu、Liなとの溶質原子の粒界偏析を少
なくし、成分を均一化する効果かある。450℃未満て
はその効果か少なく、540°Cを越えるとZrなとの
再結晶抑制元素か安定相として)11出し、それらの元
素のもつ効果か少なくなる。また、1時間未満では成分
均一化の効果か少なく、50時間を越えるとその効果が
飽和するため、経済的な点で意味かない。420℃程度
で一旦ステップ加熱すると良い。
The homogenization treatment has the effect of reducing grain boundary segregation of solute atoms such as Cu and Li and making the components uniform. If the temperature is lower than 450°C, the effect will be less, and if the temperature exceeds 540°C, the effect of these elements will be reduced as recrystallization inhibiting elements such as Zr or stable phases). Further, if the time is less than 1 hour, the effect of homogenizing the components will be small, and if it exceeds 50 hours, the effect will be saturated, so it is not economically meaningful. It is best to perform step heating once at about 420°C.

圧延温度。Rolling temperature.

圧延温度が300〜450°Cであるのはこの温度域が
このAl−Cu−Li系合金の第2相(T+<A12L
iCu>、T2<A16 Li 3 Cu>相)の析出
温度テアリ、この温度範囲で圧延すると安定な下部組織
が形成される。
The reason why the rolling temperature is 300 to 450°C is because this temperature range is the second phase of this Al-Cu-Li alloy (T+<A12L).
iCu>, T2<A16 Li 3 Cu> phase), and rolling in this temperature range forms a stable substructure.

析出処理; 300〜450℃の1〜50時間の析出処理を300〜
450℃での温度での圧延の前あるいは圧延の途中に行
うと、第2相か均一に析出し、この第2相近傍で多重ず
ベリか生じて、安定な下部組織か形成されやすい。また
、粒内に均一に析出するために粒内変形か容易になり、
熱間圧延割れを生じることか少ない。この熱間圧延割れ
は主に粒界割れて、鋳塊均質化熱処理後、粒界析出した
析出物を再固溶させた後、圧延しても圧延割れは防止で
きる。この圧延後さらに300〜450°Cで1〜50
時間の析出処理をする。析出処理後再度熱間圧延をする
Precipitation treatment: 300~450℃ precipitation treatment for 1~50 hours
If rolling is carried out before or during rolling at a temperature of 450° C., the second phase will precipitate uniformly, and multiple burrs will occur in the vicinity of this second phase, resulting in the formation of a stable substructure. In addition, because it precipitates uniformly within the grain, intragranular deformation becomes easy.
Fewer hot rolling cracks occur. These hot rolling cracks are mainly caused by intergranular cracking, and rolling cracks can be prevented even if the ingot is homogenized and the precipitates that have precipitated at the grain boundaries are redissolved in solid solution before rolling. After this rolling, it is further heated at 300 to 450°C for 1 to 50°C.
Time precipitation process. After the precipitation treatment, hot rolling is performed again.

圧延ひずみ速度。Rolling strain rate.

上記圧延において安定な下部組織を形成するためには、
温間加工時の加工のひずみ速度か重要で、圧延速度が早
いとひずみ速度が大きくなり、転位が集積して圧延割れ
か生じ易くなる。また、ひずみ速度か遅いと析出物か凝
集化し過ぎて、転位の回復か早くなり、安定な下部組織
か形成されにくい。また、生産性が悪いなどの問題があ
る。適正な圧延速度は相当ひずみ速度に換算して、10
s−1以上かよい。なお、下限はO,Is”程度とする
In order to form a stable substructure during the above rolling,
The strain rate during warm working is important; the faster the rolling speed, the higher the strain rate, which tends to accumulate dislocations and cause rolling cracks. Furthermore, if the strain rate is slow, precipitates will aggregate too much, dislocations will recover quickly, and a stable substructure will be difficult to form. Additionally, there are problems such as poor productivity. The appropriate rolling speed is equivalent to 10
It is better than s-1. Note that the lower limit is approximately O, Is''.

[実施例] Al−2,8%Cu −2,3%L i−0,+1%Z
r−0゜04%Ti合金をアルゴンガス雰囲気中で溶解
鋳造した。鋳塊の均質化熱処理後、圧延温度と圧延の相
当ひずみ速度を変化して製造した。
[Example] Al-2,8%Cu-2,3%Li-0,+1%Z
An r-0°04% Ti alloy was melted and cast in an argon gas atmosphere. After homogenizing the ingot, it was manufactured by varying the rolling temperature and rolling equivalent strain rate.

析出温度は圧延前あるいは圧延中に入れた。製造した板
の製造条件と伸びの関係を第1表に示す。圧延は1〜3
パス毎に圧延開始温度に再加熱し圧延した。
The precipitation temperature was set before or during rolling. Table 1 shows the relationship between the manufacturing conditions and elongation of the manufactured plates. Rolling is 1-3
Each pass was reheated to the rolling start temperature and rolled.

表中の5・1ζ価は異方性が圧延方向の圧延直角方向に
対する比が2以内を○とし、超塑性については圧延方向
300%以上を○とした。
In the 5.1ζ value in the table, the anisotropy is rated ○ if the ratio of the rolling direction to the direction perpendicular to the rolling direction is within 2, and the superplasticity is rated ○ if the ratio is 300% or more in the rolling direction.

[発明の効果コ 本発明の製造方法によれば、以下のような効果か得られ
る。
[Effects of the Invention] According to the manufacturing method of the present invention, the following effects can be obtained.

(1)本発明の方法により製造されたAl−Cu−Li
−Zr合金板は、非再結晶組織を有しているので、この
組織状態から変形速度を従来の超塑性アルミニウム合金
板(例えば7475合金など)よりも1桁大きくして、
超塑性変形をさせることができる。
(1) Al-Cu-Li produced by the method of the present invention
- Since the Zr alloy plate has a non-recrystallized structure, this structure allows the deformation rate to be increased by one order of magnitude compared to conventional superplastic aluminum alloy plates (such as 7475 alloy).
Can undergo superplastic deformation.

(2)本発明によれば制御圧延あるいは更に、急速加熱
による最終焼鈍を行うことで、鋳造時の組織をこわすと
ともに、鋳造時の粒界不純物を粒界から除去することが
できる。これによって、合金祠の超塑性特性を向上させ
ることかでき、航空機や車輌および自動車などの複雑な
形状の部品を容品に製造することかできる。
(2) According to the present invention, by performing controlled rolling or further final annealing by rapid heating, the structure at the time of casting can be destroyed and grain boundary impurities at the time of casting can be removed from the grain boundaries. As a result, the superplastic properties of the alloy grit can be improved, and complex-shaped parts for aircraft, vehicles, automobiles, etc. can be manufactured with ease.

Claims (4)

【特許請求の範囲】[Claims] (1)Cu2.0〜3.0%、Li1.0〜3.0%、
Zr0.05〜0.20%、Ti0.01〜0.10%
を含有し、残部Alおよび不可避不純物からなるアルミ
ニウム合金を、通常の鋳造法で溶解、鋳造後、450〜
540℃の温度において1〜50時間の均質化処理を行
い、その後300〜450℃の温度で圧延し、該圧延時
に下式で示す相当ひずみ速度が10s^−^1以上とな
るように調整し、圧延することを特徴とする異方性の少
ない Al−Cu−Li−Zr系超塑性板の製造方法。 式▲数式、化学式、表等があります▼ ただし、V_R=ロール周速度(m/s) R′=偏平後のロール半径(m) h_0=圧延前の板厚(m) r=圧下率
(1) Cu2.0-3.0%, Li1.0-3.0%,
Zr0.05-0.20%, Ti0.01-0.10%
After melting and casting an aluminum alloy containing aluminum with the remainder being Al and unavoidable impurities, it has a melting temperature of 450~
Homogenization treatment is performed at a temperature of 540°C for 1 to 50 hours, and then rolled at a temperature of 300 to 450°C, and during rolling, the equivalent strain rate shown by the following formula is adjusted to be 10 s^-^1 or more. A method for producing an Al-Cu-Li-Zr based superplastic plate with little anisotropy, the method comprising rolling. Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, V_R = Roll circumferential speed (m/s) R' = Roll radius after flattening (m) h_0 = Plate thickness before rolling (m) r = Reduction rate
(2)Cu2.0〜3.0%、Li1.0〜3.0%、
Zr0.05〜0.20%、Ti0.01〜0.10%
を含有し、残部Alおよび不可避不純物からなるアルミ
ニウム合金を、通常の鋳造法で溶解し、鋳造後、450
〜540℃の温度において1〜50時間の均質化処理と
300〜450℃で1時間〜50時間の析出処理を行い
、その後300〜450℃の温度で圧延し、該圧延時に
下式に示す相当ひずみ速度が10s^−^1以下となる
ように調整し、圧延することを特徴とする異方性の少な
いAl−Cu−Li−Zr系超塑性板の製造方法。 式▲数式、化学式、表等があります▼ ただし、V_R=ロール周速度(m/s) R′=偏平後のロール半径(m) h_0=圧延前の板厚(m) r=圧下率
(2) Cu2.0-3.0%, Li1.0-3.0%,
Zr0.05-0.20%, Ti0.01-0.10%
An aluminum alloy containing aluminum with the remainder being Al and unavoidable impurities is melted by a normal casting method, and after casting, the aluminum alloy is
Homogenization treatment for 1 to 50 hours at a temperature of ~540°C and precipitation treatment for 1 to 50 hours at 300 to 450°C, followed by rolling at a temperature of 300 to 450°C, and at the time of rolling, the equivalent shown in the following formula A method for producing an Al-Cu-Li-Zr based superplastic plate with little anisotropy, which comprises adjusting the strain rate to 10s^-^1 or less and rolling it. Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, V_R = Roll circumferential speed (m/s) R' = Roll radius after flattening (m) h_0 = Plate thickness before rolling (m) r = Reduction rate
(3)Cu2.0〜3.0%、Li1.0〜3.0%、
Zr0.05〜0.20%、Ti0.01〜0.10%
を含有し、残部Alおよび不可避不純物からなるアルミ
ニウム合金を、通常の鋳造法で溶解し、鋳造後、450
〜540℃の温度において1〜50時間保持後、300
〜450℃の温度まで冷却し、該温度範囲で1〜50時
間の析出処理後、300〜450℃の温度範囲まで冷却
し、該温度範囲で圧延し、該圧延時に下式で示した相当
ひずみ速度が10s^−^1以下となるように調整し、
圧延することを特徴とする異方性の少ないAl−Cu−
Li−Zr系超塑性板の製造方法。 式▲数式、化学式、表等があります▼ ただし、V_R−ロール周速度(m/s) R′=偏平後のロール半径(m) h_0−圧延前の板厚(m) r=圧下率
(3) Cu2.0-3.0%, Li1.0-3.0%,
Zr0.05-0.20%, Ti0.01-0.10%
An aluminum alloy containing aluminum with the remainder being Al and unavoidable impurities is melted by a normal casting method, and after casting, the aluminum alloy is
After holding for 1 to 50 hours at a temperature of ~540 °C, 300 °C
After cooling to a temperature of ~450°C and precipitation treatment for 1 to 50 hours in this temperature range, cooling to a temperature range of 300 to 450°C and rolling in this temperature range, and at the time of rolling, the equivalent strain expressed by the following formula Adjust the speed to below 10s^-^1,
Al-Cu- with low anisotropy characterized by rolling
A method for producing a Li-Zr superplastic plate. Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, V_R - Roll circumferential speed (m/s) R' = Roll radius after flattening (m) h_0 - Plate thickness before rolling (m) r = Reduction rate
(4)Cu2.0〜3.0%、Li10〜3.0%、Z
r0.5〜0.20%、Ti0.01〜0.10%を含
有し、残部Alおよび不可避不純物からなるアルミニウ
ム合金を、通常の鋳造法で溶解し、鋳造後、450〜5
40℃で1〜50時間の均質化処理を行い、その後再度
460℃以上に加熱し、溶体化処理した後、300〜4
50℃の温度で圧延し、該圧延時に下式で示す相当ひず
み速度が10s^−^1以下となるように調整して圧延
し、その圧延の途中で300〜450℃で1〜50時間
の析出処理し、その後さらに300〜450℃で下式で
示した相当ひずみ速度が10s^−^1以下となるよう
に調整することを特徴とする異方性の少ないAl−Cu
−Li−Zr系超塑性板の製造方法。 式▲数式、化学式、表等があります▼ ただし、V_R=ロール周速度(m/s) R′=偏平後のロール半径(m) h_0=圧延前の板厚(m) r=圧下率
(4) Cu2.0-3.0%, Li10-3.0%, Z
An aluminum alloy containing 0.5 to 0.20% r, 0.01 to 0.10% Ti, and the balance consisting of Al and unavoidable impurities is melted by a normal casting method, and after casting, it is 450 to 5
After homogenizing at 40°C for 1 to 50 hours, heating again to 460°C or higher and solution treatment,
Rolling is carried out at a temperature of 50°C, and during rolling, the equivalent strain rate shown by the formula below is adjusted to be 10s^-^1 or less. Al-Cu with low anisotropy characterized by being subjected to precipitation treatment and then further adjusted at 300 to 450°C so that the equivalent strain rate expressed by the following formula is 10 s^-^1 or less
- A method for producing a Li-Zr superplastic plate. Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, V_R = Roll circumferential speed (m/s) R' = Roll radius after flattening (m) h_0 = Plate thickness before rolling (m) r = Reduction rate
JP63087402A 1988-04-11 1988-04-11 Method for producing A1-Cu-Li-Zr superplastic plate with little anisotropy Expired - Lifetime JPH07116568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087402A JPH07116568B2 (en) 1988-04-11 1988-04-11 Method for producing A1-Cu-Li-Zr superplastic plate with little anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087402A JPH07116568B2 (en) 1988-04-11 1988-04-11 Method for producing A1-Cu-Li-Zr superplastic plate with little anisotropy

Publications (2)

Publication Number Publication Date
JPH01259148A true JPH01259148A (en) 1989-10-16
JPH07116568B2 JPH07116568B2 (en) 1995-12-13

Family

ID=13913881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087402A Expired - Lifetime JPH07116568B2 (en) 1988-04-11 1988-04-11 Method for producing A1-Cu-Li-Zr superplastic plate with little anisotropy

Country Status (1)

Country Link
JP (1) JPH07116568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498846A (en) * 2014-12-26 2015-04-08 西安交通大学 Method for preparing semi-solid metal blank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156269A (en) * 1984-07-20 1986-03-20 Kobe Steel Ltd Manufacture of super plastic al-li alloy
JPS627836A (en) * 1985-07-04 1987-01-14 Showa Alum Corp Manufacture of aluminum alloy having fine-grained structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156269A (en) * 1984-07-20 1986-03-20 Kobe Steel Ltd Manufacture of super plastic al-li alloy
JPS627836A (en) * 1985-07-04 1987-01-14 Showa Alum Corp Manufacture of aluminum alloy having fine-grained structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498846A (en) * 2014-12-26 2015-04-08 西安交通大学 Method for preparing semi-solid metal blank

Also Published As

Publication number Publication date
JPH07116568B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
US4618382A (en) Superplastic aluminium alloy sheets
JPH05501588A (en) Method for producing plate or strip material with improved cold rolling properties
CN113474479B (en) Method for producing sheet or strip from aluminium alloy and sheet, strip or shaped part produced therefrom
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPH01259147A (en) Manufacture of al-cu-li-zr super plastic plate
JPH01259148A (en) Manufacture of al-cu-li-zr super plastic plate having less anisotropy
JPH0672295B2 (en) Method for producing aluminum alloy material having fine crystal grains
JPH01259149A (en) Manufacture of al-li-cu-mg-type superplastic sheet reduced in anisotropy
JPH02104642A (en) Production of aluminum alloy sheet for superplastic working
JPS60238460A (en) Manufacture of superplastic aluminum alloy
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH01259150A (en) Manufacture of high-strength al-cu-li-mg-zr superplastic sheet
JPS6157384B2 (en)
JPS61253354A (en) Manufacture of alpha+beta type titanium alloy sheet
JPS6157383B2 (en)
JPH02259049A (en) Manufacture of al-li-cu-mg series superplastic sheet having less anisotropy
JPS6318042A (en) Manufacture of superplastic aluminum alloy
JPS63259016A (en) Manufacture of aluminum-alloy material having fine crystalline grain
JPS6157386B2 (en)
JPS6286150A (en) Manufacture of superplastic aluminum alloy
JPH04154945A (en) Manufacture of beta type titanium alloy strip
JPH02259051A (en) Manufacture of al-li-mg series superplastic sheet having less anisotropy