JPH01256049A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH01256049A
JPH01256049A JP8274188A JP8274188A JPH01256049A JP H01256049 A JPH01256049 A JP H01256049A JP 8274188 A JP8274188 A JP 8274188A JP 8274188 A JP8274188 A JP 8274188A JP H01256049 A JPH01256049 A JP H01256049A
Authority
JP
Japan
Prior art keywords
film
magnetic
ion implantation
magneto
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8274188A
Other languages
Japanese (ja)
Inventor
Keiji Shono
敬二 庄野
Hiroshi Kano
博司 鹿野
Sumio Kuroda
純夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8274188A priority Critical patent/JPH01256049A/en
Publication of JPH01256049A publication Critical patent/JPH01256049A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To increase the coercive force of a magnetic garnet film by forming an amorphous film consisting of a constituting material, then subjecting the film to ion implantation and further to a heat treatment to crystallize the film. CONSTITUTION:The amorphous film consisting of the material for constituting the bismuth-substd. magnetic garnet film is formed and is then subjected to the ion implantation and further to the heat treatment, by which the film is crystallized at the time of forming the above-mentioned garnet film by a sputtering method on a transparent substrate. Namely, the amorphous film is first subjected to the ion implantation and is heat-treated in case of the film to be crystallized by the heat treatment. The coercive force of the recording film consisting of the magnetic garnet is thereby increased and the magneto- optical disk is produced at a good yield.

Description

【発明の詳細な説明】 〔概要〕 磁性ガーネットを記録膜とする光磁気記録媒体の製造方
法に関し、 磁性ガーネット膜の保磁力を増加させることを目的とし
、 透明基板上にスパッタ法によりビスマス置換磁性ガーネ
ット膜を形成するに当たり、該構成材料からなる非晶質
膜を形成した後、イオン注入を行い、更に熱処理を施し
て結晶化させる工程で光磁気記録媒体を構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a magneto-optical recording medium using magnetic garnet as a recording film, the purpose is to increase the coercive force of the magnetic garnet film by depositing bismuth-substituted magnetism on a transparent substrate by sputtering. In forming the garnet film, a magneto-optical recording medium is constructed through steps of forming an amorphous film made of the constituent material, performing ion implantation, and further performing a heat treatment to crystallize it.

〔産業上の利用分野〕[Industrial application field]

本発明は磁性ガーネット膜を記録媒体とする光磁気記録
媒体の製造方法に関する。
The present invention relates to a method of manufacturing a magneto-optical recording medium using a magnetic garnet film as a recording medium.

光磁気ディスクはレーザ光を用いて高密度の情報記録を
行うメモリであり、書き換え可能なメモリ (Eras
able Memorいとして開発が進められている。
A magneto-optical disk is a memory that records high-density information using laser light, and is a rewritable memory (Eras
Development is progressing as an ``able memory''.

こ\で光磁気ディスクは記録膜を垂直磁化している磁性
膜で形成し、外部より磁化方向と反対方向に垂直磁界を
加えなからレーザ光を照射すると、照射された磁性膜の
温度上昇により保磁力が減少して磁化反転が起こるのを
利用して情報の記録と消去とを行うメモリである。
In a magneto-optical disk, the recording film is made of a perpendicularly magnetized magnetic film, and when a laser beam is irradiated without applying a perpendicular magnetic field from the outside in the direction opposite to the magnetization direction, the temperature of the irradiated magnetic film rises. This is a memory that records and erases information by utilizing magnetization reversal that occurs as coercive force decreases.

そして、情報の再生は磁性膜にレーザ光を照射した場合
に反射光或いは透過光の偏光面が回転するが、この回転
方向が磁性膜の磁化方向により異なるのを利用して行わ
れている。
Information is reproduced by utilizing the fact that when a magnetic film is irradiated with a laser beam, the plane of polarization of reflected or transmitted light is rotated, and the direction of this rotation differs depending on the magnetization direction of the magnetic film.

こ\で、記録膜を構成する記録媒体としては一般に基板
面に垂直に磁化している希土類−遷移金属からなる薄膜
が使用されているが、磁性ガーネット膜も垂直磁化膜で
あり、また金属酸化物より構成されていることから保存
安定性および耐久性に優れており、記録媒体として期待
されている。
In this case, a thin film made of a rare earth-transition metal magnetized perpendicularly to the substrate surface is generally used as the recording medium constituting the recording film, but the magnetic garnet film is also a perpendicularly magnetized film, and metal oxide Because it is made of solid wood, it has excellent storage stability and durability, and is expected to be used as a recording medium.

〔従来の技術〕[Conventional technology]

磁性ガーネットを記録媒体として使用する光磁気ディス
クは透明な非磁性ガーネットすなわちガドリニウム・ガ
リウム・ガーネット(Gd3GasO+z略してGGG
)基板あるいは耐熱性ガラス基板上に磁性ガーネット膜
をスパッタして作られている。
Magneto-optical disks that use magnetic garnet as a recording medium are transparent non-magnetic garnets, or gadolinium gallium garnets (Gd3GasO+zabbreviated as GGG).
) or a heat-resistant glass substrate by sputtering a magnetic garnet film.

こ\で、磁性ガーネットとじてはビスマス(Bi)置換
ガーネットが使用されているが、この理由は旧置換によ
り大きなファラデー回転角が得られるからであり、また
記録媒体の形成に液相エピタキシャル法を用いず、スパ
ッタ法を用いる理由は数1000eと高い保磁力を示す
記録媒体は液相エピタキシャル法では得られないことに
よる。
In this case, bismuth (Bi) substituted garnet is used as the magnetic garnet because a large Faraday rotation angle can be obtained by old substitution, and liquid phase epitaxial method is used to form the recording medium. The reason why the sputtering method is used instead of using the liquid phase epitaxial method is that a recording medium exhibiting a high coercive force of several thousand e cannot be obtained by the liquid phase epitaxial method.

また、スパッタ法によるBi置換ガーネット記録媒体の
作成にはターゲットとしてこの焼結体が使用されている
Further, this sintered body is used as a target for producing a Bi-substituted garnet recording medium by sputtering.

さて、GGG単結晶基板あるいは耐熱性ガラス基板(以
下略して透明基板)の上にBi置換ガーネットからなる
記録膜(以下略して磁性膜)を形成するには次の二つの
方法がある。
Now, there are the following two methods for forming a recording film (hereinafter referred to as a magnetic film) made of Bi-substituted garnet on a GGG single crystal substrate or a heat-resistant glass substrate (hereinafter referred to as a transparent substrate).

■ 透明基板を500℃以上の温度に加熱しながらスパ
ッタして結晶化した磁性膜を形成する。
(2) A crystallized magnetic film is formed by sputtering while heating a transparent substrate to a temperature of 500° C. or higher.

■ 透明基板上にスパッタして非晶質膜を形成した後、
500℃以上の温度で加熱して結晶化させる。
■ After forming an amorphous film by sputtering on a transparent substrate,
Crystallize by heating at a temperature of 500°C or higher.

こ\で、後者の方法で形成した磁性膜は角形比は1の値
を示すため情報の記録はできるもの\、保磁力が小さい
ので光磁気ディスクの磁性膜として使用することはでき
ない。
A magnetic film formed by the latter method has a squareness ratio of 1, so information can be recorded thereon, but its coercive force is small, so it cannot be used as a magnetic film for a magneto-optical disk.

発明者等は保磁力が高く且つ平坦な磁性膜の形成法とし
て■の方法で磁性膜を形成した後に更にイオン注入を行
って結晶にダメージを与えた後、先の透明基板の加熱温
度よりも高い温度(例えば550℃)で熱処理を行って
ダメージを修復すれば更に保磁力を増大できることを見
出し、これについて出願を行っている。(出願臼 昭和
62年11月4日) 然し、■の方法を取る場合、透明基板の直径が小さな場
合は処理が容易であるが光磁気ディスクの直径が5イン
チ以上と増大する場合、真空中で基板を500℃以上の
高温で均一に加熱しながらスパッタを行うことは容易で
はなく、この改善が要望されていた。
In order to form a flat magnetic film with a high coercive force, the inventors formed a magnetic film using method (2), then further ion implantation to damage the crystal, and then lowered the heating temperature to a temperature higher than the heating temperature of the transparent substrate. We have found that the coercive force can be further increased by performing heat treatment at a high temperature (for example, 550° C.) to repair the damage, and have filed an application regarding this. (Application filed November 4, 1986) However, when using method ①, processing is easy if the diameter of the transparent substrate is small, but if the diameter of the magneto-optical disk increases to 5 inches or more, it is difficult to process it in a vacuum. It is not easy to perform sputtering while uniformly heating a substrate at a high temperature of 500° C. or higher, and there has been a desire for an improvement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上記したようにBi置換ガーネットはファラデー回転
角が大きく、光磁気ディスクの記録媒体に適している。
As described above, Bi-substituted garnet has a large Faraday rotation angle and is suitable for recording media of magneto-optical disks.

そして、基板を加熱しながらスパッタして結晶膜を作り
、その後にイオン注入を行ってダメージを与え、これを
熱処理して修復する処理を行うと記録媒体として使用が
可能な大きさの保磁力とすることができる。
Then, a crystalline film is formed by sputtering while heating the substrate, and then ion implantation is performed to cause damage, and this is repaired by heat treatment, which produces a coercive force large enough to be used as a recording medium. can do.

然し、この処理工程を収率よく行うことは容易ではなく
、この改善が課題である。
However, it is not easy to perform this treatment step with good yield, and improvement is a challenge.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は透明基板上にスパッタ法によりビスマス置
換磁性ガーネット膜を形成するに当たり、この構成材料
からなる非晶質膜を形成した後、イオン注入を行い、更
に熱処理を施して結晶化させる光磁気記録媒体の製造方
法をとることにより解決することができる。
The above problem arises when forming a bismuth-substituted magnetic garnet film on a transparent substrate by sputtering.After forming an amorphous film made of this constituent material, ion implantation is performed, and then heat treatment is performed to crystallize the magneto-optical film. This problem can be solved by using a method of manufacturing a recording medium.

〔作用〕[Effect]

発明者等はスパッタ法により形成したガーネット膜の保
磁力は結晶粒界と密接な関係があると推定した。
The inventors estimated that the coercive force of the garnet film formed by sputtering is closely related to the grain boundaries.

すなわち、磁界の印加により磁界と異なる方向に向いて
いた磁性膜の磁化はその方向に揃うが、光磁気ディスク
の記録層を構成するような磁化膜は角形比が1で且つ保
磁力が大きいことが必要条件である。
In other words, when a magnetic field is applied, the magnetization of a magnetic film that was oriented in a direction different from the magnetic field is aligned in that direction, but the magnetized film that makes up the recording layer of a magneto-optical disk has a squareness ratio of 1 and a large coercive force. is a necessary condition.

さて、基板を磁性膜の結晶化温度以上に加熱した状態で
スパッタすると磁性膜は結晶化し、各結晶粒子は単数或
いは複数の分域(ドメイン)より構成され、磁界の印加
によりドメイン毎に磁界の方向に配向するが、この場合
に保磁力の大小は粒界を形成する磁壁の性質により左右
されている。
Now, if the substrate is sputtered while being heated to a temperature higher than the crystallization temperature of the magnetic film, the magnetic film will crystallize, and each crystal grain will be composed of one or more domains, and by applying a magnetic field, the magnetic field will change for each domain. In this case, the magnitude of the coercive force depends on the properties of the domain walls forming the grain boundaries.

そのため、結晶化している磁性膜にイオン注入を行って
後、再加熱して修復した磁性膜の保磁力がイオン注入前
よりも増大する理由は注入したイオン或いは注入により
生じた欠陥が結晶粒界に集合した結果、これが磁界印加
の際の磁壁の移動を妨げることにあると推定した。
Therefore, the reason why the coercive force of a magnetic film repaired by ion implantation after ion implantation into a crystallized magnetic film is greater than before the ion implantation is that the implanted ions or defects caused by the implantation are caused by crystal grain boundaries. As a result, it was assumed that this is because it hinders the movement of the domain wall when a magnetic field is applied.

この推定よりすると、注入イオンを結晶粒界に集めるに
は非晶質膜にイオン注入を行い、その後に結晶化するこ
とによっても達成できる。
Based on this estimation, it is possible to collect implanted ions at grain boundaries by implanting ions into an amorphous film and then crystallizing the film.

その理由は非晶質膜が結晶化される場合には構成原子は
ランダムな状態から規則的な配列をとるが、その過程に
おいて、不純物である注入イオンが結晶粒界に析出され
易いからである。
The reason for this is that when an amorphous film is crystallized, its constituent atoms change from a random state to a regular arrangement, but in the process, implanted ions, which are impurities, tend to precipitate at grain boundaries. .

一方、非晶質膜を熱処理により結晶化し、この後にイオ
ン注入し、更に熱処理により結晶回復を行う方法も考え
られるが、この場合には注入イオンが結晶粒界に集まる
度合は上記の場合に較べて小さい。
On the other hand, it is also possible to crystallize an amorphous film by heat treatment, then implant ions, and recover the crystals by further heat treatment, but in this case, the degree to which the implanted ions gather at grain boundaries is lower than in the above case. It's small.

その理由はイオン注入により結晶は破壊されるが、その
際の原子配列はイオン注入された非晶質膜に較べると遥
かに秩序がある。
The reason for this is that although the crystal is destroyed by ion implantation, the atomic arrangement at that time is much more ordered than in an amorphous film into which ions are implanted.

従って、これを再結晶化させるに必要な熱エネルギーは
完全な非晶質状態から結晶化する場合に較べると小さい
Therefore, the thermal energy required to recrystallize it is smaller than that required for crystallization from a completely amorphous state.

その結果、注入イオンは結晶粒界に完全に押し出されず
、結晶格子内に残留するものも存在すると考えられる。
As a result, it is thought that the implanted ions are not completely pushed out to the grain boundaries, and some remain within the crystal lattice.

そして、格子内に存在する注入イオンの保磁力に与える
効果は結晶粒界にある注入イオンに較べて小さい。
The effect of implanted ions existing within the lattice on the coercive force is smaller than that of implanted ions located at grain boundaries.

勿論、より高い熱処理温度により格子内の注入イオンを
結晶粒界に押し出すことも可能であるが、この場合には
再結晶による結晶粒の成長などを伴い、表面に荒れが生
じ易い。
Of course, it is also possible to push the implanted ions in the lattice to the grain boundaries by using a higher heat treatment temperature, but in this case, crystal grains grow due to recrystallization and the surface is likely to become rough.

以上のことから、熱処理により結晶化させる膜について
は、非晶質膜に先ずイオン注入を行い、これを熱処理す
るのが保磁力の増加のためには有効である。
From the above, for a film to be crystallized by heat treatment, it is effective to first implant ions into an amorphous film and then heat treat it to increase the coercive force.

このような処理法によると、処理が簡単なために保磁力
の大きな磁性膜を収率よく作ることができる。
According to such a processing method, a magnetic film with a large coercive force can be produced with high yield because the processing is simple.

〔実施例〕〔Example〕

高周波2極スパツタ法によりGGG基板上にBi、。 Bi on GGG substrate by high frequency bipolar sputtering method.

sY+、sGa Fe40+zの組成をもつ磁性膜を0
.25μmの厚さに形成した。
A magnetic film with a composition of sY+, sGa Fe40+z is
.. It was formed to have a thickness of 25 μm.

こ\で、基板温度は350℃とし、ガス雰囲気はアルゴ
ン(Ar)−10%酸素(0□)とした。
Here, the substrate temperature was 350° C., and the gas atmosphere was argon (Ar)-10% oxygen (0□).

この基板温度でできる磁性膜は非晶質である。The magnetic film formed at this substrate temperature is amorphous.

この磁性膜に加速エネルギー100 KeV、  ドー
ズ量5 XIO”1ons/ cm2でネオン(Ne 
” )を注入した。
Neon (Ne) was applied to this magnetic film at an acceleration energy of 100 KeV and a dose of 5 XIO”1ons/cm2.
”) was injected.

その後、大気中で680℃の温度で熱処理して結晶化し
た。
Thereafter, it was heat-treated at a temperature of 680° C. in the air to crystallize it.

第1図はこのようにして得られた磁性膜のファラデール
ープで横軸には保磁力(Hc )を、また縦軸にはファ
ラデー回転角(θ)を示している。
FIG. 1 shows the Faraday loop of the magnetic film thus obtained, with the horizontal axis showing the coercive force (Hc) and the vertical axis showing the Faraday rotation angle (θ).

また、第2図はイオン注入を行わず、同一条件の熱処理
で結晶化させた磁性膜のファラデーループであり、イオ
ン注入処理によりHcは2300eより4500eに増
加した。
Further, FIG. 2 shows a Faraday loop of a magnetic film crystallized by heat treatment under the same conditions without ion implantation, and Hc increased from 2300e to 4500e due to the ion implantation treatment.

なお、第1図に示すイオン注入を行った磁性H々は第2
図に示す非処理膜はど磁化反転は鋭敏ではないが、角形
比は1である。
Note that the ion-implanted magnetic H shown in FIG.
The untreated film shown in the figure does not have sharp demagnetization reversal, but has a squareness ratio of 1.

次に、第3図は結晶化している磁性膜に先と同一の条件
でイオン注入を行い、その後に600℃で熱処理してダ
メージを修復したもの\ファラデーループであって、保
磁力は殆ど変わらないにも拘らずループの傾きは増して
おり、飽和しにく\なっただけであった。
Next, Figure 3 shows a faraday loop in which ions were implanted into the crystallized magnetic film under the same conditions as before, and then heat-treated at 600°C to repair the damage.The coercive force is almost unchanged. Despite this, the slope of the loop increased, and it just became harder to saturate.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により磁性ガーネットよりなる記録膜の保
磁力を増大することができ、これにより収率のよい光磁
気ディスクの製造が可能となる。
By carrying out the present invention, it is possible to increase the coercive force of a recording film made of magnetic garnet, thereby making it possible to manufacture magneto-optical disks with good yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は結晶前にイオン注入を行った磁性膜のファラデ
ーループ、 第2図はイオン注入を行わずに結晶化させた磁性膜のフ
ァラデーループ、 第3図は結晶後にイオン注入を行った磁性膜のファラデ
ーループ、 である。 ゝQC’:にI。 \+鳩 イ、オン外し六E¥−rrわず1こ糸す晶イにじF二石
筐″r午〃臭め77ラデゝ1シブ第2m
Figure 1 shows the Faraday loop of a magnetic film with ion implantation before crystallization. Figure 2 shows the Faraday loop of a magnetic film crystallized without ion implantation. Figure 3 shows the Faraday loop of a magnetic film with ion implantation after crystallization. The Faraday loop of the membrane is .ゝQC': にI. \+ Dove, turn on and remove 6 E¥-rr, one thread, Aki, Niji F, two stone cabinets'r, odor, 77 rad, 1st part, 2nd m

Claims (1)

【特許請求の範囲】[Claims] 透明基板上にスパッタ法によりビスマス置換磁性ガーネ
ット膜を形成するに当たり、該構成材料からなる非晶質
膜を形成した後、イオン注入を行い、更に熱処理を施し
て結晶化させることを特徴とする光磁気記録媒体の製造
方法。
In forming a bismuth-substituted magnetic garnet film on a transparent substrate by sputtering, an amorphous film made of the constituent material is formed, followed by ion implantation and further heat treatment to crystallize the film. A method for manufacturing a magnetic recording medium.
JP8274188A 1988-04-04 1988-04-04 Production of magneto-optical recording medium Pending JPH01256049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8274188A JPH01256049A (en) 1988-04-04 1988-04-04 Production of magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8274188A JPH01256049A (en) 1988-04-04 1988-04-04 Production of magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH01256049A true JPH01256049A (en) 1989-10-12

Family

ID=13782841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8274188A Pending JPH01256049A (en) 1988-04-04 1988-04-04 Production of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH01256049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961396A (en) * 1990-12-05 1999-10-05 Taylor Made Golf Company, Inc. Golf club shaft
JP2019192750A (en) * 2018-04-24 2019-10-31 株式会社アルバック Formation method of magnetic film and thermoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961396A (en) * 1990-12-05 1999-10-05 Taylor Made Golf Company, Inc. Golf club shaft
JP2019192750A (en) * 2018-04-24 2019-10-31 株式会社アルバック Formation method of magnetic film and thermoelectric element

Similar Documents

Publication Publication Date Title
JPS5916358B2 (en) Manufacturing method of magnetic layer
JPH0533461B2 (en)
JPH01256049A (en) Production of magneto-optical recording medium
JPS60185237A (en) Photothermomagnetic recording medium
JPS609855A (en) Magnetic alloy
JPH0721544A (en) Magnetic recording medium and its production
US4343038A (en) Magnetic bubble domain structure
JPS61182652A (en) Production of photomagnetic recording medium
JPS60187954A (en) Magnetic recording medium consisting of thin magnetic film
JPH01119940A (en) Magneto-optical recording medium
JPH1092027A (en) Optical recording medium, its manufacture as well as recording method for optical recording medium
JPS59129956A (en) Production of optomagnetic recording medium
JPS6391849A (en) Magneto-optical recording medium
JPH04111302A (en) Artificial lattice film
JPH03273540A (en) Magnetic recording medium and magnetic recording device and spin glass magnetic material
JPH01256050A (en) Production of magneto-optical recording medium
JPS62192047A (en) Production of photomagnetic recording medium
JPH0457637B2 (en)
JPH0558251B2 (en)
JPS5892227A (en) Gettering for crystal defect
JP2000298825A (en) Magnetic recording medium and its manufacture
JPH06168491A (en) Magneto-optical recording medium
JP2595656B2 (en) Method for manufacturing perpendicular magnetic recording film
JPS60182032A (en) Photothermomagnetic recording medium
JPS63228443A (en) Production of magneto-optical recording material