JPH01254154A - Magnetic field correcting device - Google Patents

Magnetic field correcting device

Info

Publication number
JPH01254154A
JPH01254154A JP63078123A JP7812388A JPH01254154A JP H01254154 A JPH01254154 A JP H01254154A JP 63078123 A JP63078123 A JP 63078123A JP 7812388 A JP7812388 A JP 7812388A JP H01254154 A JPH01254154 A JP H01254154A
Authority
JP
Japan
Prior art keywords
cylinder
magnetic field
rail
rails
iron piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63078123A
Other languages
Japanese (ja)
Inventor
Tadatoshi Ota
太田 忠利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63078123A priority Critical patent/JPH01254154A/en
Publication of JPH01254154A publication Critical patent/JPH01254154A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To accurately and easily execute magnetic field correction by moving a magnetic substance piece along a rail or a cylindrical body and adjusting the position of the piece. CONSTITUTION:In the inner surface of a cylinder 5 of a nonmagnetic substance, plural linear rails 6 and ring rails 7, which are coaxial with the cylinder 5, are respectively fit in parallel with the central shaft of the cylinder 5. Here, the rails 6 and 7 and cylinder 5 are fixed by welding, etc. This cylinder 5, on which the rails 6 and 7 are arranged, is fit to the normal temperature bore of a superconductive magnet for MRI. a steel piece 1, whose cross section is rectangular, is fit to the rail 6, slided up to a prescribed position and fixed by a tape or adhesive, etc.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、磁気共鳴イメージング装置(MRI装置)の
磁界補正装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a magnetic field correction device for a magnetic resonance imaging apparatus (MRI apparatus).

(従来の技術) MHI装置は、高磁界を用いるほど、画像が良くなるた
め、超電導マグネットが普及されている。
(Prior Art) Superconducting magnets are widely used in MHI devices because the higher the magnetic field used, the better the image quality.

また、マグネット内の診断空間においては、高均一磁界
が要求されるので、高精度な設計がなされるが、実際に
は、マグネットの製造過程における製作寸法誤差や、マ
グネットを設置した場所の周辺にある磁性体の影響など
により、実際の診断空間内の磁界均一度は、悪くなって
しまう、そこで、磁界補正装置が用いられ、その補正装
置の1つに、鉄シムと呼ばれる小さな鉄片がある。この
鉄片1を第11図のように超電導マグネット2の常温ボ
ア3内に張り付けて、診断空間4の磁界を補正する。
In addition, the diagnostic space inside the magnet requires a highly uniform magnetic field, so it is designed with high precision. Due to the influence of certain magnetic substances, the uniformity of the magnetic field in the actual diagnostic space deteriorates, so a magnetic field correction device is used, and one of the correction devices is a small piece of iron called an iron shim. This iron piece 1 is stuck inside the normal temperature bore 3 of the superconducting magnet 2 as shown in FIG. 11 to correct the magnetic field in the diagnostic space 4.

補正にあたっては、所定の磁界均一度になるまで。During correction, until the specified magnetic field uniformity is achieved.

複数個の鉄片1をボア3内の適切な場所に張り付ける。A plurality of iron pieces 1 are pasted at appropriate locations within the bore 3.

(発明が解決しようとする課題) 前述したようにMHI装置では、超電導マグネットを用
いて高磁界にした方が画像が良くなるが、高磁界にする
と、鉄片に働く電磁力が増大し、張り付けが困難になっ
たり、張り付けた鉄片がはずれてしまったりして、磁界
の補正がしにくくなるという問題がある。また、強力な
接着剤で固定してしまうと、補正過程で、はずしたい場
合に、こまってしまうという問題がある。
(Problems to be Solved by the Invention) As mentioned above, in an MHI device, using a superconducting magnet to create a high magnetic field provides a better image, but when using a high magnetic field, the electromagnetic force acting on the iron piece increases, making it difficult to attach the iron piece. There is a problem that it becomes difficult to correct the magnetic field because it becomes difficult or the attached iron piece comes off. Furthermore, if it is fixed with a strong adhesive, there is a problem that it will be difficult to remove it during the correction process.

そこで本発明は、鉄片がはずれないような、また、補正
しやすい構成の磁界補正装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a magnetic field correction device that prevents the iron piece from coming off and has a structure that allows easy correction.

(発明の構成〕 (課題を解決するための手段) 本発明においては、第1図に示すように、マグネット本
体の内側に設けた非磁性体の複数のリングレール7の内
面に、その中心軸と平行に複数の非磁性体の直線レール
6を取りつけ、このレールに磁性体片をとりつける。あ
るいは円筒体5に磁性体片をとりつける。
(Structure of the Invention) (Means for Solving the Problems) In the present invention, as shown in FIG. A plurality of linear rails 6 made of non-magnetic material are attached in parallel with the cylindrical body 5, and magnetic pieces are attached to the rails.Alternatively, magnetic pieces are attached to the cylindrical body 5.

(作 用) このような構造であると、レールあるいは円筒体にそっ
て磁性体片を移動し装置調整をすることができるので、
磁界補正を精密にかつ容易におこなうことができる。
(Function) With this structure, it is possible to adjust the device by moving the magnetic piece along the rail or cylindrical body.
Magnetic field correction can be performed precisely and easily.

(実施例) 本発明の実施例を第1図に示す。非磁性体の円筒5の内
面に、円筒5の中心軸と平行に、断面が第2図のような
形の非磁性体の直線レール、及び円筒5と同軸のリング
レール7を、それぞれ複数個取りつける。ここで、レー
ルと円筒とは溶接等で固定する。このようなレールのつ
いた円筒5を第6図のようにMRI用超用溝電導マグネ
ット2温ボア3に取りつけた構成とする。
(Example) An example of the present invention is shown in FIG. On the inner surface of the non-magnetic cylinder 5, parallel to the central axis of the cylinder 5, a plurality of non-magnetic straight rails having a cross section as shown in FIG. 2 and a ring rail 7 coaxial with the cylinder 5 are provided. Attach. Here, the rail and cylinder are fixed by welding or the like. The cylinder 5 with such a rail is attached to the two-warm bore 3 of a super conductive groove magnet for MRI as shown in FIG.

直線レール6及びリングレール7の断面は、第2図に示
すように、カーテンレールのような形のものとする。こ
のような形のレールに、第3図のように、断面が長方形
の鉄片1または、断面が凸形の鉄片1′をはめこみ、所
定の位置まですべらせて、テープあるいは接着剤等で固
定する。また。
The cross sections of the straight rail 6 and the ring rail 7 are shaped like a curtain rail, as shown in FIG. As shown in Figure 3, fit the iron piece 1 with a rectangular cross section or the iron piece 1' with a convex cross section into the rail of this type, slide it to a specified position, and fix it with tape or adhesive. . Also.

リングレール7の場合は、第4図のように、リングの1
カ所に切欠9を設け、ここから、直方体鉄片1又は凸型
鉄片1′をはめこみ、所定の位置までもっていき、固定
する。また、リングレール7の外周には、突起10をつ
けることにより、第5図にように、リングレール7を円
筒5の内面につけら 、れた直線レール6にはめこむこ
とができる。こうすることにより、リングレール7を軸
方向にすべらせて、リングレール7を任意の位置に置く
ことができる。
In the case of ring rail 7, as shown in Figure 4, one of the rings
Notches 9 are provided at several locations, from which the rectangular parallelepiped iron piece 1 or the convex iron piece 1' is fitted, brought to a predetermined position, and fixed. Further, by attaching a protrusion 10 to the outer periphery of the ring rail 7, the ring rail 7 can be fitted into the linear rail 6 attached to the inner surface of the cylinder 5, as shown in FIG. By doing so, it is possible to slide the ring rail 7 in the axial direction and place the ring rail 7 at an arbitrary position.

このように、数本の直線レールと、数個のリングレール
を取りつけた円筒5をMRI用超用溝電導マグネット2
温ボア3内に第6図のように取りつける。
In this way, the cylinder 5 to which several straight rails and several ring rails are attached is connected to the groove conductive magnet 2 for MRI.
Install it inside the warm bore 3 as shown in Figure 6.

このような構成とすることにより、鉄片がレール内には
めこめられているので、電磁力が働いていても、鉄片が
はずれなくなり、磁界補正が容易にできる。
With this configuration, since the iron piece is fitted into the rail, the iron piece will not come off even if an electromagnetic force is applied, and the magnetic field can be easily corrected.

鉄片の形は、第3図に示すような直方体の鉄片1または
、凸型の鉄片1′とする。また、リングレール7の外周
には、第4図のように突起10を取りつけ、これを第5
図のように円筒内面に取りつけた直線レール6にはめこ
む。このような構成とすれば、リングレール7は軸方向
に移動することができる。
The shape of the iron piece is a rectangular parallelepiped iron piece 1 as shown in FIG. 3 or a convex iron piece 1'. Further, a protrusion 10 is attached to the outer periphery of the ring rail 7 as shown in FIG.
Fit it into the straight rail 6 attached to the inner surface of the cylinder as shown in the figure. With such a configuration, the ring rail 7 can move in the axial direction.

直線レール6に鉄片1はたは1′をはめこむには、直線
レール6の両端からすべらせてはめこむ。また、リング
レール7に鉄片1または1′をはめこむには、リングレ
ール7に設けた切欠9(第4図)から、鉄片1または1
′を入れ、円周方向にすべらせればよい。鉄片をレール
に固定するには、接着テープ等を用いる。
To fit the iron piece 1 or 1' onto the straight rail 6, it is fitted by sliding it from both ends of the straight rail 6. In order to fit the iron piece 1 or 1' into the ring rail 7, insert the iron piece 1 or 1' into the ring rail 7 from the notch 9 (Fig. 4).
’ and slide it in the circumferential direction. Use adhesive tape or the like to secure the iron pieces to the rails.

このようにして、数個、あるいは数十個の鉄シムを用い
て、所定の磁界均一度になるまで、磁界補正をして、鉄
片の位置が決まったら、接着剤等で固定する。
In this way, the magnetic field is corrected using several or dozens of iron shims until a predetermined magnetic field uniformity is achieved, and once the position of the iron piece is determined, it is fixed with adhesive or the like.

このような構成とすることにより、高磁界になり、電磁
力が増大しても鉄片がはずれなくなる効果があり、また
、鉄片をレール内で移動させることができるので、容“
易に鉄片による磁界補正ができる効果がある。
This configuration has the effect of preventing the iron piece from coming off even if the magnetic field is high and the electromagnetic force increases.Also, since the iron piece can be moved within the rail, the capacity is reduced.
This has the effect of easily correcting the magnetic field using the iron piece.

(他の実施例1) 鉄片の固定方法の他の実施例を第7図、第9図に示す、
これは、非磁性体の円筒5に数個のボルト穴11をあけ
たもので、ここに、第8図に示すようなボルトを通す穴
11′をあけた直方体の鉄片1゛をボルト12で固定す
るものである。
(Other Embodiment 1) Another embodiment of the iron piece fixing method is shown in FIGS. 7 and 9.
This is a cylinder 5 made of non-magnetic material with several bolt holes 11 drilled therein, and a rectangular parallelepiped iron piece 1'' with holes 11' for passing bolts as shown in FIG. It is fixed.

このように、ボルト穴11を円筒5に多数あけることに
より、鉄片1′をボルト12で固定できるので、鉄片1
′が電磁力ではずれない効果があり、磁界補正が容易に
できる効果がある。
In this way, by drilling a large number of bolt holes 11 in the cylinder 5, the iron piece 1' can be fixed with the bolts 12.
' has the effect of not being removed by electromagnetic force, and has the effect of making it easy to correct the magnetic field.

(他の実施例2) 第10図では、直線レール6を、MRI用超電感マグネ
ット2の常温ボア3に、直接取りつけたものを示す。
(Other Embodiment 2) FIG. 10 shows a linear rail 6 directly attached to the normal temperature bore 3 of the superelectric magnet 2 for MRI.

このような構成としても、第1図に示す円筒を用いた時
と同様な効果がある。
Even with such a configuration, the same effect as when using the cylinder shown in FIG. 1 can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の磁界補正装置においては高
磁界により電磁力が増大しても鉄シムがはずれない効果
があるとともに、鉄シムを任意の位置に固定できるので
、磁界補正が容易に行なえる効果がある6
As described above, the magnetic field correction device of the present invention has the effect that the iron shims do not come off even if the electromagnetic force increases due to a high magnetic field, and the iron shims can be fixed at any position, making it easy to correct the magnetic field. 6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁界補正装置の実施例を示す斜視図、
第2図は上記実施例に用いるレールの断面図、第3図は
上記実施例に用いる直線レールと、それにはめこむ鉄片
を示す図、第4図は同装置に用いるリングレールを示す
図、第5図は直線レールにリングレールをはめこんだ所
を示す図、第6図は本発明の磁界補正装置をMRI用マ
グネットにはめこむ所の図、第7図は本発明の磁界補正
装置の他の実施例を示す図、第8図は第7図に示す装置
に用いる鉄片の断面を示す図、第9図は第8図に示す鉄
片を第7図に示す装置に取りつけた所を示す図、第10
図は第1図の変形例で直接レールを超電導マグネットに
取りつけた所を示す図、第11図は超電導マグネットの
常温ボア内に鉄シムをはりつけた従来の装置を示す図で
ある。 1.1’、1’・・・鉄シム  2・・・MRI用超電
導マグネット5・・・円筒       6・・・直線
レール7・・・リングレール   10・・・突起11
・・・ボルト穴 代理人 弁理士  則 近 憲 佑 同     第子丸   健 第2図 第3図 O 第4図 第5v!J 第6図 第7図 第8図 第9図
FIG. 1 is a perspective view showing an embodiment of the magnetic field correction device of the present invention;
Figure 2 is a sectional view of the rail used in the above embodiment, Figure 3 is a diagram showing the straight rail used in the above embodiment and the iron piece fitted into it, Figure 4 is a diagram showing the ring rail used in the same device, Figure 5 shows the ring rail fitted into the straight rail, Figure 6 shows the magnetic field correction device of the present invention fitted into an MRI magnet, and Figure 7 shows the magnetic field correction device of the present invention and other parts. FIG. 8 is a cross-sectional view of the iron piece used in the device shown in FIG. 7, and FIG. 9 is a view showing the iron piece shown in FIG. 8 attached to the device shown in FIG. 7. , 10th
This figure shows a modified example of FIG. 1 in which a rail is directly attached to a superconducting magnet, and FIG. 11 shows a conventional device in which an iron shim is attached to the normal temperature bore of a superconducting magnet. 1.1', 1'... Iron shim 2... Superconducting magnet for MRI 5... Cylinder 6... Straight rail 7... Ring rail 10... Protrusion 11
...Bolt Hole Agent Patent Attorney Nori Ken Chika Yudo Ken Daishimaru Figure 2 Figure 3 O Figure 4 Figure 5 V! J Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 円筒状をなすマグネット本体の内側に設けた円筒状ある
いはリングレールと直線レールによって形成したかご状
の支持体に磁性体片をとりつけたことを特徴とする磁界
補正装置。
A magnetic field correction device characterized in that a magnetic piece is attached to a cylindrical or cage-shaped support formed by a ring rail and a straight rail provided inside a cylindrical magnet body.
JP63078123A 1988-04-01 1988-04-01 Magnetic field correcting device Pending JPH01254154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63078123A JPH01254154A (en) 1988-04-01 1988-04-01 Magnetic field correcting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078123A JPH01254154A (en) 1988-04-01 1988-04-01 Magnetic field correcting device

Publications (1)

Publication Number Publication Date
JPH01254154A true JPH01254154A (en) 1989-10-11

Family

ID=13653107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078123A Pending JPH01254154A (en) 1988-04-01 1988-04-01 Magnetic field correcting device

Country Status (1)

Country Link
JP (1) JPH01254154A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250819A (en) * 1991-12-19 1995-10-03 General Electric Co <Ge> Side approach picture forming magnet wherein shim is passively applied
JP2007526058A (en) * 2004-03-05 2007-09-13 シーメンス アクチエンゲゼルシヤフト Magnetic field adjustment device
US7683624B2 (en) 2007-05-25 2010-03-23 Mitsubishi Electric Corporation Magnetic field adjustment device and magnetic field adjustment method for superconducting magnet
WO2011122403A1 (en) * 2010-03-30 2011-10-06 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device
JP2011255027A (en) * 2010-06-10 2011-12-22 Japan Superconductor Technology Inc Superconducting magnet device
JP2013108986A (en) * 2011-11-20 2013-06-06 Krohne Ag Magnetization device for nuclear magnetic flowmeter
WO2014203190A1 (en) * 2013-06-21 2014-12-24 Koninklijke Philips N.V. Shim system for a magnetic resonance hybrid scanner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250819A (en) * 1991-12-19 1995-10-03 General Electric Co <Ge> Side approach picture forming magnet wherein shim is passively applied
JP2007526058A (en) * 2004-03-05 2007-09-13 シーメンス アクチエンゲゼルシヤフト Magnetic field adjustment device
US7683624B2 (en) 2007-05-25 2010-03-23 Mitsubishi Electric Corporation Magnetic field adjustment device and magnetic field adjustment method for superconducting magnet
WO2011122403A1 (en) * 2010-03-30 2011-10-06 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device
JP2011255027A (en) * 2010-06-10 2011-12-22 Japan Superconductor Technology Inc Superconducting magnet device
JP2013108986A (en) * 2011-11-20 2013-06-06 Krohne Ag Magnetization device for nuclear magnetic flowmeter
WO2014203190A1 (en) * 2013-06-21 2014-12-24 Koninklijke Philips N.V. Shim system for a magnetic resonance hybrid scanner
US10661098B2 (en) 2013-06-21 2020-05-26 Koninklijke Philips N.V. Shim system for a magnetic resonance hybrid scanner
US11291860B2 (en) 2013-06-21 2022-04-05 Koninklijke Philips N.V. Shim system for a magnetic resonance hybrid scanner

Similar Documents

Publication Publication Date Title
US5047720A (en) Correction device using magnetic elements for correcting unhomogeneities of the magnetic field in a magnet
US5389909A (en) Open architecture magnetic resonance imaging passively shimmed superconducting magnet assembly
EP1260827B1 (en) Superconductive MRI magnet
US7567083B2 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
US5923235A (en) Shim assembly for a pole face of a magnet
JP6437025B2 (en) Low stray field permanent magnet arrangement for MR devices
JPS6247349A (en) Magnetic resonance imaging apparatus
JPH03185802A (en) Passive shim composite substance for mr magnet
JPH01254154A (en) Magnetic field correcting device
US6812700B2 (en) Correction of local field inhomogeneity in magnetic resonance imaging apparatus
WO2021119109A3 (en) Swaged component magnet assembly for magnetic resonance imaging
US9835702B2 (en) Magnetic resonance imaging apparatus, magnetic field adjustment implement for magnetic resonance imaging apparatus, magnetic resonance imaging method, and method of adjusting magnetic field for magnetic resonance imaging apparatus
US20020079897A1 (en) MRI apparatus
US5594401A (en) Closed superconductive magnet with uniform imaging volume
US5568110A (en) Closed MRI magnet having reduced length
US5568102A (en) Closed superconductive magnet with homogeneous imaging volume
JP3583528B2 (en) Electromagnet for use in magnetic resonance imaging equipment
US6861933B1 (en) Superconductive magnet device
KR100695598B1 (en) Shim assembly for a magnet and method for making
US10126388B2 (en) Gradient coil unit and magnetic resonance imaging apparatus
US5900792A (en) Magnetic field homogeneity correction for superconducting magnet
JP4392941B2 (en) Magnetic resonance imaging system
EP0424600B1 (en) Magnet apparatus for use in a magnetic resonance imaging system
US5742164A (en) Misalignment compensation for MR gradient coil assembly
EP0826978A1 (en) Closed MRI magnet having compact design