JPH01253110A - Electric viscous fluid - Google Patents

Electric viscous fluid

Info

Publication number
JPH01253110A
JPH01253110A JP7973488A JP7973488A JPH01253110A JP H01253110 A JPH01253110 A JP H01253110A JP 7973488 A JP7973488 A JP 7973488A JP 7973488 A JP7973488 A JP 7973488A JP H01253110 A JPH01253110 A JP H01253110A
Authority
JP
Japan
Prior art keywords
fluid
dispersion
organic liquid
electric field
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7973488A
Other languages
Japanese (ja)
Other versions
JP2625488B2 (en
Inventor
Junji Nagahori
永堀 淳司
Takatoshi Akatsuka
孝寿 赤塚
Jiro Toyama
外山 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP63079734A priority Critical patent/JP2625488B2/en
Publication of JPH01253110A publication Critical patent/JPH01253110A/en
Application granted granted Critical
Publication of JP2625488B2 publication Critical patent/JP2625488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To sharply increase the dispersion liquid viscosity fluctuation due to the external electric field and increase the viscosity change for the change of the electric field strength by dispersing dispersion grains surface-processed with an organic liquid having the conductivity of 10<-8>S/cm or above in an electric insulating fluid. CONSTITUTION:The average grain size of dispersion grains is set to 0.1-500mum, preferably 1-100mum, fine crystal cellulose or silica gel or the like is used for the material, for example. These dispersion grains are surface-processed with an organic liquid having the conductivity of 10<-8>S/cm or above, preferably 10<-6>S/cm or above. Alcohol such as methyl formamide and formamide or other propylene carbonate or the like is used for an organic liquid. The powder of the dispersion grains is dispersed in an electric insulating fluid to obtain an electric viscous fluid. Resin oil or fatty oil is used for the electric insulating fluid. The dispersion liquid viscosity fluctuation due to the external electric field is sharply increased, the viscosity change for the change of the electric field can be increased.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電気粘性流体に関し、さらに詳細には、外部
電界により応答してその粘性が変化する電気粘性流体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to electrorheological fluids, and more particularly to electrorheological fluids whose viscosity changes in response to an external electric field.

[従来の技術] 特定の分散媒に固体粒子を混合・分散させた分散液にお
いて、外部電界によってその分散液の粘性が著しく変動
する現象は、いわゆるウィンズロ効果として知られてる
[Prior Art] A phenomenon in which the viscosity of a dispersion liquid in which solid particles are mixed and dispersed in a specific dispersion medium changes significantly due to an external electric field is known as the so-called Winslow effect.

このようなウィンズロ効果を示す流体として、塩化ジフ
ェニル、塩化ベンゼン、セバシン酸ジブチル、シリコー
ンオイルなどの分散媒に、微結晶セルロース、シリ゛カ
ゲル、大豆カゼイン、デンプン、イオン交換樹脂などの
分散質を混合・分散した電気粘性流体が知られている。
Fluids exhibiting this Winslow effect include mixing dispersoids such as microcrystalline cellulose, silica gel, soybean casein, starch, and ion exchange resins with dispersion media such as diphenyl chloride, benzene chloride, dibutyl sebacate, and silicone oil.・Dispersed electrorheological fluids are known.

従来では、水を吸着させたシリカなどの分散質を用いる
ことが、良好な効果を示すものとして提案されてる(特
公昭45−10048号公報および特開昭48−178
06号公報など)。
Conventionally, the use of dispersoids such as silica adsorbed with water has been proposed as having good effects (Japanese Patent Publication No. 45-10048 and Japanese Unexamined Patent Publication No. 48-178).
Publication No. 06, etc.).

[発明が解決しようとする課題] しかしながら、従来の電気流体では、電界強度の変化の
割合に対して粘度変化の割合が少なく、ウィンズロ効果
が顕著に現れず、また、吸着した水分が遊離することに
より、ウィンズロ効果が急速に減少して消滅することが
多く、従って、耐熱性、耐久性に著しく劣り、機械的摩
耗性に弱かった。
[Problems to be Solved by the Invention] However, in conventional electric fluids, the rate of viscosity change is small relative to the rate of change in electric field strength, so the Winslow effect does not appear conspicuously, and adsorbed water tends to be released. As a result, the Winslow effect rapidly decreases and disappears in many cases, resulting in significantly inferior heat resistance and durability, and weak mechanical abrasion.

この発明は、上記の背景に基づきなされたものであり、
その目的とするところは、耐熱性、耐久性および機械的
摩耗性に優れ、顕著なウィズロ効果を示す電気粘性流体
を提供することである。
This invention was made based on the above background,
The aim is to provide an electrorheological fluid that has excellent heat resistance, durability and mechanical abrasion resistance and exhibits a significant withro effect.

[課題を解決するための手段] 本発明者らは上記問題点を解決すべく種々の検討をした
結果、分散質として、導電度が10’S/帥以上である
有機液体を吸着した分散粒子を用いれば、この発明の目
的達成に有効であることを見出し、この発明を完成する
に至った。
[Means for Solving the Problems] As a result of various studies in order to solve the above-mentioned problems, the present inventors have developed dispersion particles that adsorb organic liquids having a conductivity of 10'S/cm or more as dispersoids. The present inventors have found that the use of the above method is effective in achieving the object of the present invention, and have completed the present invention.

すなわち、この発明の電気粘性流体は、導電度が10’
S/am以上である有機液体で表面処理した分散粒子を
、電気絶縁性流体に分散してなることを特徴とするもの
である。
That is, the electrorheological fluid of the present invention has a conductivity of 10'
It is characterized by dispersing dispersed particles whose surface has been treated with an organic liquid having a S/am or more in an electrically insulating fluid.

この発明の好ましい態様において、有機液体として、グ
リセリン、ホルムアミド、ベンジルアルコール、プロピ
レンカーボネート若しくはメチルホルムアミドから選ば
れた少なくとも1種の液体からなるものを使用すること
ができる。
In a preferred embodiment of the present invention, the organic liquid may be at least one liquid selected from glycerin, formamide, benzyl alcohol, propylene carbonate, and methylformamide.

この発明の好ましい態様において、分散粒子としてシリ
カゲルを用いることができる。
In a preferred embodiment of this invention, silica gel can be used as the dispersed particles.

この発明の好ましい態様において、電気絶縁性流体とし
て、シリコンオイル、植物油、フッ素オイル、塩化ジフ
ェニル、鉱油、セバシン酸ジブチル、トルエン、または
ベンゼンから選ばれた少なくとも1種の絶縁性流体があ
る。
In a preferred embodiment of the invention, the electrically insulating fluid is at least one insulating fluid selected from silicone oil, vegetable oil, fluorinated oil, diphenyl chloride, mineral oil, dibutyl sebacate, toluene, or benzene.

以下、この発明を、より詳細に説明する。This invention will be explained in more detail below.

分散粒子 この発明に於いて用いられる分散粒子は、導電度が1O
S/印以上、好ましくは10−65/cm以上、より好
ましくは10’S/cm以上である有機液体で表面処理
されたものである。
Dispersed particles The dispersed particles used in this invention have an electrical conductivity of 1O.
The surface has been treated with an organic liquid having a density of S/cm or more, preferably 10-65/cm or more, more preferably 10'S/cm or more.

具体的に用いるものことができる有機液体として、メチ
ルホルムアミドやホルムアミドなどのアミド類、エチレ
ングリコール、グリセリン、ベンジルアルコールなどの
アルコール、その他プロピレンカーボネート、アセトニ
トリル、アセトアルデヒドなどがあり、また、導電性を
向上させるために、数種類の液体を混合したものがある
Examples of organic liquids that can be specifically used include amides such as methylformamide and formamide, alcohols such as ethylene glycol, glycerin, and benzyl alcohol, and propylene carbonate, acetonitrile, and acetaldehyde. For this purpose, there are mixtures of several types of liquids.

この発明で用いることができる有機液体には、導電性を
向上もしくは調製するために塩類などの添加物を含めて
もよい。
Organic liquids that can be used in this invention may contain additives such as salts to improve or adjust conductivity.

有機液体で表面処理される分散粒子は、例えば、0.1
〜500μm1好ましくは1〜100μmの平均粒径を
持つものであり、その材質として、例えば、微結晶セル
ロース、シリカゲル、大豆カゼイン、デンプン、イオン
交換樹脂などがある。
Dispersed particles whose surface is treated with an organic liquid may be, for example, 0.1
It has an average particle size of ~500 μm, preferably 1 to 100 μm, and its materials include, for example, microcrystalline cellulose, silica gel, soybean casein, starch, and ion exchange resin.

電気粘性流体 この発明の電気粘性流体は、前記に詳説した分散粒子の
粉末を、電気絶縁性流体に分散してなる。
Electrorheological Fluid The electrorheological fluid of the present invention is made by dispersing the dispersed particle powder detailed above in an electrically insulating fluid.

この発明において用いることができる電気絶縁性流体に
は、例えば、樹脂油、脂肪油、パラフィン系炭化水素、
ナフテン系炭化水素、オレフィン系炭化水素、塩素化油
、シリコーンオイル、フッ素オイルなどがあり、好まし
いものとして、シリコンオイル、植物油、フッ素オイル
、塩化ジフェニル、鉱油、セバシン酸ジブチルなどがあ
る。
Electrically insulating fluids that can be used in this invention include, for example, resin oils, fatty oils, paraffinic hydrocarbons,
Examples include naphthenic hydrocarbons, olefinic hydrocarbons, chlorinated oils, silicone oils, fluorine oils, and preferred examples include silicone oils, vegetable oils, fluorine oils, diphenyl chloride, mineral oils, and dibutyl sebacate.

また、上記の絶縁油に加えて、トルエン、ベンゼンなど
の溶剤を用いることができ、更に、比重調整のために上
記の液体を組合せて用いることができる。
Further, in addition to the above-mentioned insulating oil, a solvent such as toluene or benzene can be used, and furthermore, the above-mentioned liquids can be used in combination to adjust the specific gravity.

分散粒子の粉末と、電気絶縁性流体との配合割合は、用
途、種類などに応じて適宜選択することができる。例え
ば、電気絶縁性流体100重量部に対して、分散粒子の
粉末を1〜70重量部、好ましくは、5〜50重量部、
より好ましくは、10〜20重量部にすることができる
The blending ratio of the dispersed particle powder and the electrically insulating fluid can be appropriately selected depending on the application, type, etc. For example, 1 to 70 parts by weight of dispersed particle powder, preferably 5 to 50 parts by weight, per 100 parts by weight of electrically insulating fluid,
More preferably, the amount can be 10 to 20 parts by weight.

分散粒子の粉末の電気絶縁性流体への分散は、種々の方
法で実施することができる。そのような方法として、振
動ミル、ボールミルなどの手段がある。
Dispersion of the powder of dispersed particles into an electrically insulating fluid can be accomplished in a variety of ways. Examples of such methods include vibration mills and ball mills.

この発明において、分散粒子以外に、電気絶縁性流体に
目的に応じて種々の添加物を含めることができる。
In this invention, in addition to the dispersed particles, the electrically insulating fluid can contain various additives depending on the purpose.

[作 用] 上記に述べた技術的構成を有するこの発明では、理論的
に必ずしも明らかではないが、次のように作用するもの
と考えられる。
[Function] This invention having the above-mentioned technical configuration is thought to function as follows, although it is not necessarily theoretically clear.

第1図に示すように、分散粒子に吸着した有機液体の比
電導度と印加電界(I K V / mtsとOKV/
+n+s)の変化による粘度変化との関係を示すグラフ
に示すように、導電性のよい液体を使うほど効果が増す
ことが実験的に本発明者により見出だされている。この
発明において、導電度が10−85 / c+n以上で
ある比較的高い導電性を有する有機液体で表面処理した
分散粒子が、電気絶縁性流体に分散されているので、分
散粒子に導電性が付与され、外部電界によってその分散
液の粘性が著しく変動する現象は、いわゆるウィンズロ
効果を示す。
As shown in Figure 1, the specific conductivity of the organic liquid adsorbed on the dispersed particles and the applied electric field (I K V / mts and OK V /
As shown in the graph showing the relationship between the change in viscosity and the change in viscosity (+n+s), the inventor has experimentally found that the more conductive a liquid is, the more effective it is. In this invention, the dispersed particles are surface-treated with an organic liquid having a relatively high conductivity of 10-85/c+n or more, and are dispersed in an electrically insulating fluid, so that the dispersed particles are imparted with conductivity. The phenomenon in which the viscosity of the dispersion varies significantly due to an external electric field exhibits the so-called Winslow effect.

[発明の効果] この発明により次の効果を得ることができる。[Effect of the invention] The following effects can be obtained by this invention.

請求項1による電気粘性流体では、分散質表面が導電性
の液体で処理されているので、外部電界によってその分
散液の粘性が著しく変動し、従来の水吸着に比べ電界強
度の変化の割合に対して粘度変化の割合が大きい。
In the electrorheological fluid according to claim 1, the surface of the dispersoid is treated with a conductive liquid, so that the viscosity of the dispersion varies significantly due to an external electric field, and the rate of change in electric field strength is significantly reduced compared to conventional water adsorption. In contrast, the rate of viscosity change is large.

吸着水の存在などの条件を必要とせず、導電性、沸点が
共に高い有機液体にすれば、従来の電気流体のように、
吸着した水分が遊離することにより、ウィンズロ効果が
急速に減少して消滅することがなく、耐熱性、耐久性に
著しく優れている。
If conditions such as the presence of adsorbed water are not required, and an organic liquid with high conductivity and boiling point is used, it can be used like a conventional electrical fluid.
Due to the release of adsorbed moisture, the Winslow effect does not rapidly decrease and disappear, resulting in extremely excellent heat resistance and durability.

請求項2による電気粘性流体では、良好な導電性を有す
る有機液体が用いられるので、顕著なウィンズロ効果を
示す。
In the electrorheological fluid according to the second aspect, since an organic liquid having good conductivity is used, a remarkable Winslow effect is exhibited.

請求項3による電気粘性流体では、分散質としてシリカ
ゲルが用いられるので、より良好な耐熱性を有する電気
粘性流体を得ることができる。
In the electrorheological fluid according to the third aspect, since silica gel is used as the dispersoid, an electrorheological fluid having better heat resistance can be obtained.

請求項4による電気粘性流体により、高耐熱性、高耐電
圧性の利点がある。
The electrorheological fluid according to claim 4 has the advantages of high heat resistance and high voltage resistance.

[実施例] この発明を例を示して具体的に説明する。[Example] This invention will be specifically explained by showing an example.

実施例1 シリカゲル(和光純薬製、ワコーゲルLC−5H)90
.0重量部を105℃、12時間以上乾燥して分散粒子
原料として調製した。また、導電性有機液体としてのN
−メチルホルムアミド(和光純薬製、特級)をメチルア
ルコール(和光純薬製、特級)で100倍に希釈し、前
記の乾燥シリカゲルと混合し、55℃でアルコールを除
去し、更に60℃で水分を除去した。得られたシリカゲ
ルの分散粒子をシリコーンオイル(信越シリコーン製、
KF96−10cs)中に分散して粒子ニオイルの重量
比が10:1の分散液を5分間タッチミキサーで撹拌し
て調製した。
Example 1 Silica gel (Wako Pure Chemical Industries, Ltd., Wako Gel LC-5H) 90
.. 0 parts by weight was dried at 105° C. for 12 hours or more to prepare a raw material for dispersed particles. Also, N as a conductive organic liquid
- Methyl formamide (manufactured by Wako Pure Chemical Industries, Ltd., special grade) was diluted 100 times with methyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., special grade), mixed with the above-mentioned dry silica gel, the alcohol was removed at 55°C, and the moisture was further heated at 60°C. was removed. The obtained silica gel dispersed particles were mixed with silicone oil (manufactured by Shin-Etsu Silicone,
KF96-10cs) with a weight ratio of 10:1 to the particle size oil was prepared by stirring with a touch mixer for 5 minutes.

なお、分散粒子に対する有機液体の添加量は、1〜20
重ffi%であり、この例では、最も効果のあったもの
を記載した。
Note that the amount of organic liquid added to the dispersed particles is 1 to 20
In this example, the most effective one is described.

得られたこの発明による電気粘性液体を、第2図に示す
測定装置を用いて、105℃の耐熱試験をした。その結
果を第3図に示す。このグラフより、得られた電気粘性
流体は、顕著なウィンズロ効果を示し、また、高温の条
件で放置された電気粘性流体も特性が劣化することがな
いことが分かる。
The obtained electrorheological liquid according to the present invention was subjected to a heat resistance test at 105° C. using the measuring device shown in FIG. The results are shown in FIG. From this graph, it can be seen that the obtained electrorheological fluid exhibits a remarkable Winslow effect, and the characteristics of the electrorheological fluid do not deteriorate even when left under high temperature conditions.

比較例 有機液体で表面処理せず、水を空気中で吸着させたこと
以外、実施例1と同様に電気粘性液体を調製し、耐熱試
験をした。
Comparative Example An electrorheological liquid was prepared in the same manner as in Example 1, except that the surface was not treated with an organic liquid and water was adsorbed in the air, and a heat resistance test was conducted.

その結果を第4図に示す。この結果から、5時間で劣化
し始めて耐熱性に劣ることが分かる。
The results are shown in FIG. This result shows that it begins to deteriorate after 5 hours and is inferior in heat resistance.

実施例2〜4 第1表に示す有機液体を用いたこと以外、実施例1と同
様に電気粘性液体を調製し、耐熱試験をした。
Examples 2 to 4 Electrorheological liquids were prepared in the same manner as in Example 1, except that the organic liquids shown in Table 1 were used, and a heat resistance test was conducted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、分散粒子に吸着した有機液体の比電導度と印
加電界(IKV/miとOKV/止)の変化による粘度
変化との関係を示すグラフ、第2図は実施例で用いた測
定装置の概略図、第3図は実施例°1で得られた電気粘
性液体の耐熱試験の結果を示すグラフ、第4図は比較例
で得られた電気粘性液体の耐熱試験の結果を示すグラフ
である。 出願人代理人  佐  藤  −雄 1゜−10TO’IO’IO’ 10’ IQ’ 10
’IO’ 10’吸着しな有式液体の比電導度(S  
−ox  )第1図 第2図
Figure 1 is a graph showing the relationship between the specific conductivity of the organic liquid adsorbed on dispersed particles and the viscosity change due to changes in the applied electric field (IKV/mi and OKV/stop), and Figure 2 is the measurement used in the example. A schematic diagram of the apparatus, Fig. 3 is a graph showing the results of the heat resistance test of the electrorheological liquid obtained in Example 1, and Fig. 4 is a graph showing the results of the heat resistance test of the electrorheological liquid obtained in the comparative example. It is. Applicant's representative Sato -Yu1゜-10TO'IO'IO'10'IQ' 10
'IO'10'Specific conductivity (S
-ox) Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] 1.導電度が10^−^8S/cm以上である有機液体
で表面処理した分散粒子を、電気絶縁性流体に分散して
なる電気粘性流体。
1. An electrorheological fluid prepared by dispersing dispersed particles whose surface has been treated with an organic liquid having a conductivity of 10^-^8S/cm or more in an electrically insulating fluid.
2.有機液体が、グリセリン、ホルムアミド、ベンジル
アルコール、プロピレンカーボネート若しくはメチルホ
ルムアミドから選ばれた少なくとの1種の液体からなる
、請求項1記載の電気粘性流体。
2. The electrorheological fluid according to claim 1, wherein the organic liquid comprises at least one liquid selected from glycerin, formamide, benzyl alcohol, propylene carbonate, and methylformamide.
3.分散粒子がシリカゲルである、請求項1または2記
載の電気粘性流体。
3. The electrorheological fluid according to claim 1 or 2, wherein the dispersed particles are silica gel.
4.電気絶縁性流体が、シリコンオイル、植物油、フッ
素オイル、塩化ジフェニル、鉱油、セバシン酸ジブチル
、トルエン、またはベンゼンから選ばれた少なくと1種
の流体である、請求項1、2または3記載の電気粘性流
体。
4. The electrical insulating fluid according to claim 1, 2 or 3, wherein the electrically insulating fluid is at least one fluid selected from silicone oil, vegetable oil, fluorine oil, diphenyl chloride, mineral oil, dibutyl sebacate, toluene, or benzene. viscous fluid.
JP63079734A 1988-03-31 1988-03-31 Electrorheological fluid Expired - Lifetime JP2625488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079734A JP2625488B2 (en) 1988-03-31 1988-03-31 Electrorheological fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079734A JP2625488B2 (en) 1988-03-31 1988-03-31 Electrorheological fluid

Publications (2)

Publication Number Publication Date
JPH01253110A true JPH01253110A (en) 1989-10-09
JP2625488B2 JP2625488B2 (en) 1997-07-02

Family

ID=13698438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079734A Expired - Lifetime JP2625488B2 (en) 1988-03-31 1988-03-31 Electrorheological fluid

Country Status (1)

Country Link
JP (1) JP2625488B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075023A (en) * 1988-12-17 1991-12-24 Bridgestone Corporation Electroviscous fluid
US5122293A (en) * 1991-04-15 1992-06-16 General Motors Corporation Method of activating and deactivating an electrorheological response at constant alternating current
US5252240A (en) * 1991-04-15 1993-10-12 General Motors Corporation Electrorheological fluids including alkyl benzoates
US5252239A (en) * 1991-04-15 1993-10-12 General Motors Corporation ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
US5279754A (en) * 1991-04-15 1994-01-18 General Motors Corporation Electrorheological fluids having polypropylene carbonate adsorbed on the solid phase
US5603861A (en) * 1993-09-28 1997-02-18 Tonen Corporation Electroviscous fluid mixed with esterified silica fine particles and polyhydric alcohol
US5843331A (en) * 1995-11-13 1998-12-01 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids
US6065572A (en) * 1995-11-13 2000-05-23 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216202A (en) * 1985-02-06 1986-09-25 ブリティッシュ・テクノロジー・グループ・リミテッド Electrorheology fluid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216202A (en) * 1985-02-06 1986-09-25 ブリティッシュ・テクノロジー・グループ・リミテッド Electrorheology fluid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075023A (en) * 1988-12-17 1991-12-24 Bridgestone Corporation Electroviscous fluid
US5122293A (en) * 1991-04-15 1992-06-16 General Motors Corporation Method of activating and deactivating an electrorheological response at constant alternating current
US5252240A (en) * 1991-04-15 1993-10-12 General Motors Corporation Electrorheological fluids including alkyl benzoates
US5252239A (en) * 1991-04-15 1993-10-12 General Motors Corporation ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
US5279754A (en) * 1991-04-15 1994-01-18 General Motors Corporation Electrorheological fluids having polypropylene carbonate adsorbed on the solid phase
US5603861A (en) * 1993-09-28 1997-02-18 Tonen Corporation Electroviscous fluid mixed with esterified silica fine particles and polyhydric alcohol
US5843331A (en) * 1995-11-13 1998-12-01 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids
US6065572A (en) * 1995-11-13 2000-05-23 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids

Also Published As

Publication number Publication date
JP2625488B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
Medalia Electrical conduction in carbon black composites
KR940008392B1 (en) Electrobiscous fluids
CA1255091A (en) Electroviscous liquids
Verhelst et al. The role of morphology and structure of carbon blacks in the electrical conductance of vulcanizates
JPH01253110A (en) Electric viscous fluid
JPH02164438A (en) Electroviscous liquid
JPH06185565A (en) Electric rheology device
US5496484A (en) Electroviscous fluids containing semiconducting particles and dielectric particles
Kossi et al. Electro-active elastomer composites based on doped titanium dioxide
Sakurai et al. Suspension of layered particles: an optimum electrorheological fluid for dc applications
JPH0335095A (en) Electroviscous fluid
JPH01236291A (en) Electroviscous fluid
Aoki Rheological characterization of carbon black/varnish suspensions
Hao et al. The conductivity confined temperature dependence of water-free electrorheological fluids
Unal et al. Electrorheological properties of poly (lithium-2-acrylamido-2-methyl propane sulfonic acid) suspensions
JPH04348192A (en) Electro-viscous fluid
Ishino et al. Anhydrous electrorheological fluid using carbonaceous particulate as dispersed phase
JPH07173485A (en) Electroviscouc fluid
EP0424840B1 (en) An electrorheological fluid
JP2523236B2 (en) Filler for DC cable insulation
JP2006281424A (en) Abrasive, polishing tool, polishing device, manufacturing method for abrasive, manufacturing method for polishing tool, and polishing method
US3289017A (en) Shear responsive liquid generator
JPH01278599A (en) Production of electroviscous fluid
JPH03160094A (en) Easily dispersible electroviscous fluid
RU2083619C1 (en) Conducting paint and varnish material