JPH01252724A - Production of cylindrical blank made of maraging steel - Google Patents

Production of cylindrical blank made of maraging steel

Info

Publication number
JPH01252724A
JPH01252724A JP8096388A JP8096388A JPH01252724A JP H01252724 A JPH01252724 A JP H01252724A JP 8096388 A JP8096388 A JP 8096388A JP 8096388 A JP8096388 A JP 8096388A JP H01252724 A JPH01252724 A JP H01252724A
Authority
JP
Japan
Prior art keywords
grain size
solution treatment
maraging
cold
cylindrical blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8096388A
Other languages
Japanese (ja)
Inventor
Toshihiro Imoto
利広 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8096388A priority Critical patent/JPH01252724A/en
Publication of JPH01252724A publication Critical patent/JPH01252724A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the title cylindrical blank having fine crystal grains and suitable to spinning by hot-extruding a maraging billet, cold-drawing the material at a specified draft, and then applying solution treatment. CONSTITUTION:A maraging billet of Ni-Co-Mo-Ti, etc., is hot-extruded, and then air-cooled to room temp. The number of the crystal grain size is then measured. The measured value is substituted for the G.S in the inequality to obtain the draft (Rd), cold drawing is carried out at the draft, and solution treatment is then applied. The Cold drawing consists of spreading, reduction, and madrel drawing. By this method, the cylindrical blank having <=about No.7.5 crystal grain size and highly suitable to spinning can be obtained. Accordingly, the working yield is enhanced, the product precision is improved, a long- sized cylindrical blank can be produced, and productivity is also ameliorated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スピニング加工等によって円筒製品に仕上げ
られるマルエージング鋼製円筒素材の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a cylindrical maraging steel material that is finished into a cylindrical product by spinning or the like.

〔従来の技術〕[Conventional technology]

この種のマルエージング鋼製円筒素材は、従来より次の
ような方法で製造されている。
This type of maraging steel cylindrical material has conventionally been manufactured by the following method.

(11マルエージング鋼片を熱間押出しにより円筒状と
なし、これに機械的強度を与える目的の溶体化処理を施
す方法。
(11 Maraging A method of hot extruding a steel piece into a cylindrical shape and subjecting it to solution treatment for the purpose of imparting mechanical strength.

(2)マルエージング鋼板を絞り加工、しごき加工で円
筒状となし、これに溶体化処理を施す方法(特公昭57
−17048号)などである。
(2) A method in which a maraging steel plate is made into a cylindrical shape by drawing and ironing, and then subjected to solution treatment (Tokyo Publication No. 57
-17048).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、(1)の方法で円筒素材を製造した場合
には、円筒素材の結晶粒が比較的粗く、スピニング加工
等の冷間加工の際に、ささくれ状の表面欠陥を生じたり
、割れを生じたりするという慮れがある。
However, when a cylindrical material is manufactured using method (1), the crystal grains of the cylindrical material are relatively coarse, and during cold processing such as spinning, hangnail-like surface defects or cracks may occur. There is a consideration that

また、+2)の方法は、上記の虞れを解消するものの、
絞り加工で円筒を形成するために、長尺の円筒素材を作
ることが困難となる。したがって、短尺の円筒素材しか
作ることができず、短尺の円筒素材1個からは僅かな本
数の製品しか加工できないため、作業能率が著しく低下
する。
In addition, although method +2) eliminates the above concern,
Since the cylinder is formed by drawing, it is difficult to make a long cylindrical material. Therefore, only short cylindrical materials can be made, and only a small number of products can be processed from one short cylindrical material, resulting in a significant decrease in work efficiency.

(課題を解決するための手段〕 このような実情に鑑み、本発明者らは熱間押出しで円筒
を形成する方法であって、しかも溶体化処理後の結晶粒
が細かく、スピニング加工等の冷間加工性に優れたマル
エージング鋼製円筒素材の製造方法を開発すべく鋭意研
究を重ねてきた。
(Means for Solving the Problems) In view of the above circumstances, the present inventors proposed a method of forming a cylinder by hot extrusion, which has fine crystal grains after solution treatment, and is suitable for cold processing such as spinning. We have been conducting intensive research to develop a manufacturing method for maraging steel cylindrical materials with excellent workability.

その結果、熱間押出し後の円筒素材に冷間抽伸加工とこ
れに続く容体化処理を行い、溶体化処理後の円筒素材の
断面全体の結晶粒を細粒化するのに必要とされる前記冷
間抽伸加工における加工度は、例えば、JIS−3US
304鋼の場合10%程度以上とされているのに対し、
マルエージング鋼の場合の前記加工度は極めて小さいこ
とを見出した。
As a result, the cylindrical material after hot extrusion is subjected to cold drawing processing followed by compaction treatment, and the above-mentioned amount is required to refine the crystal grains in the entire cross section of the cylindrical material after solution treatment. The working degree in cold drawing processing is, for example, JIS-3US
In contrast to 304 steel, which is said to be about 10% or more,
It has been found that the degree of workability in the case of maraging steel is extremely small.

この事実に基づき、さらに冷間抽伸加工の加工度と熱間
押出しのままの円筒素材の結晶粒度との関係について実
験、研究を重ねた結果、第1図に示すように曲線Aより
上の領域において、溶体化処理後の結晶粒が粒度N17
.5以上の細粒(○印で示す)となり、良好なスピニン
グ加工性を示すことが判明した。
Based on this fact, as a result of repeated experiments and research on the relationship between the working degree of cold drawing and the crystal grain size of the cylindrical material as hot extruded, we found that the area above curve A is as shown in Figure 1. , the crystal grains after solution treatment have a grain size of N17.
.. It was found that the particles were fine grains of 5 or more (indicated by a circle) and exhibited good spinning processability.

すなわち本発明は、マルエージング鋼片を熱間押出しし
、その後下記関係式を満たす加工度(Rd)で冷間抽伸
加工を行った後、溶体化処理することを特徴とするマル
エージング鋼製円筒素材の製造方法を要旨とする。
That is, the present invention provides a cylinder made of maraging steel, characterized in that a maraging steel slab is hot extruded, then subjected to cold drawing at a working degree (Rd) that satisfies the following relational expression, and then subjected to solution treatment. The gist is the manufacturing method of the material.

Rd(%)≧7.0−G−S ただし、Rd≧O C・S:熱間押出しままの冷間 加工素材の結晶粒度 11h (JTS−G0551による)本発明法におい
て、上記関係式は第1図に示す前記曲線Aを式化したも
のである。
Rd (%)≧7.0-G-S However, Rd≧O C・S: Grain size of cold-worked material as hot extruded 11h (according to JTS-G0551) In the method of the present invention, the above relational expression is This is a formula of the curve A shown in FIG.

なお、本発明における結晶粒とは、マルエージング鋼等
のマルテンサイト系ステンレス鋼を変態点以上に加熱し
た時に変態して生じるオーステナイト結晶粒が、その後
の冷却によるマルテンサイト組織への変態後も残る網目
状の所謂旧オーステナイト結晶粒のことを言い、この結
晶粒の大きさをJIS−G0551によって測定した粒
度番号を単に結晶粒度隘と言う。
In addition, the crystal grains in the present invention are austenite crystal grains that are generated by transformation when martensitic stainless steel such as maraging steel is heated above the transformation point, and remain even after the transformation to a martensitic structure due to subsequent cooling. It refers to mesh-like so-called prior austenite crystal grains, and the grain size number obtained by measuring the size of this crystal grain according to JIS-G0551 is simply called the crystal grain size.

したがって、熱間押出し後の円筒素材の結晶粒度−を測
定し、これを上記関係式の(C;−3)に代入して得ら
れる加工度(Rd)で冷間抽伸加工を行えば、円筒素材
の結晶粒は溶体化処理後に必ず結晶粒度陳7.5以上の
細粒となり、良好なスピニング加工性を示すのである。
Therefore, by measuring the crystal grain size of the cylindrical material after hot extrusion and performing cold drawing at the workability (Rd) obtained by substituting this into (C; -3) in the above relational expression, the cylindrical material The crystal grains of the material always become fine grains with a crystal grain size of 7.5 or more after solution treatment, and exhibit good spinning processability.

ここで、冷間抽伸加工とは、第2図(イ)に示す中拡げ
加工、(ロ)に示す掻落し加工、(ハ)に示す芯金抽伸
加工の3種の加工法をいう、冷間抽伸加工における加工
度(Rd )とは、中拡げ加工の場合では下記式■によ
り決定される数値をいい、掻落とし加工では下記式■に
より決定される数値をいい、芯金抽伸加工では下記式〇
により決定される数値をいう。
Here, the cold drawing process refers to three types of processing methods: the middle expansion process shown in Figure 2 (a), the scraping process shown in (b), and the core metal drawing process shown in (c). The working degree (Rd) in intermediate drawing processing refers to the value determined by the following formula (■) in the case of medium expansion processing, the value determined by the following formula (■) in the scraping process, and the value determined by the following formula (■) in the case of core drawing processing. Refers to the numerical value determined by formula 〇.

IDI ただし、IDI n中拡げ前内径、 +D2 :中拡げ後内径 OD l−002 IDI ただし、ODl:掻落し前外径、 OD2:掻落し後外径 ただし、ODI:抽伸前外径、OD2:抽伸後外径T、
:抽伸前肉厚、 T8:抽伸後肉厚また、本発明法にお
いて、マルエージング鋼片には、N1−Co−Mo−T
l系マルエージング鋼片を使用するのがよい、この種の
マルエージング鋼片は高強度であるため、僅かな加工度
で素材の断面全体に歪みを与えることができ、この断面
全体の結晶粒を細粒化することができるからである。
IDI However, IDI n Inner diameter before expansion, +D2: Inner diameter after intermediate expansion OD l-002 IDI However, ODl: Outer diameter before scraping, OD2: Outer diameter after scraping However, ODI: Outer diameter before drawing, OD2: Outer diameter Posterior outer diameter T,
: Thickness before drawing, T8: Thickness after drawing In addition, in the method of the present invention, the maraging steel billet has N1-Co-Mo-T.
It is better to use l-type maraging steel slabs.This type of maraging steel slab has high strength, so it is possible to apply strain to the entire cross section of the material with a small degree of processing, and the crystal grains of this entire cross section can be strained. This is because it is possible to make the grains finer.

マルエージング鋼JH;!1000℃〜1200℃の温
度範囲に加熱して押出し加工を行う、加熱温度が100
0℃以下では、押出し工具が摩耗をきたし、これによっ
て押出し後の円筒素材に筋疵を生じる虞れがあるからで
あり、1200℃以上では、押出し後の円筒素材に横切
れ疵を生じる虞れがあるからである。
Maraging steel JH;! Extrusion processing is performed by heating to a temperature range of 1000°C to 1200°C, the heating temperature is 100°C.
If the temperature is below 0°C, the extrusion tool will wear out, which may cause streaks in the extruded cylindrical material, and if it is above 1200°C, there is a risk of cross-cutting defects in the extruded cylindrical material. Because there is.

熱間押出しにより円筒状に形成された素材は常温となる
まで空冷放置しておく。
The material formed into a cylindrical shape by hot extrusion is left to cool in the air until it reaches room temperature.

上記の空冷後、上記関係式に代入する円筒素材の結晶粒
度隘(G−3)を求めるのであるが、この求め方には実
測による方法と熱間押出し時の鋼片加熱温度から予測す
る方法とがある。鋼片加熱温度から予測する方法は、鋼
片加熱温度と押出し後の円筒素材の結晶粒度隘との、第
3図に示すような相関関係すなわち鋼片加熱温度が高く
なると、それにつれてほぼ一定の割合で押出し後の円筒
素材の結晶粒度階が低くなる即ち粗くなるという関係に
基づき、この関係を記録または式化しておいて鋼片加熱
温度から押出し後の円筒素材の結晶粒度阻を予測する方
法である。
After the air cooling described above, the grain size (G-3) of the cylindrical material is determined, which is substituted into the above relational expression.There are two methods for determining this: one is by actual measurement, and the other is to predict it from the heating temperature of the steel billet during hot extrusion. There is. The method of prediction based on the heating temperature of the steel billet is based on the correlation between the heating temperature of the steel billet and the grain size of the cylindrical material after extrusion, as shown in Figure 3. Based on the relationship that the grain size of the cylindrical material after extrusion becomes lower in proportion, that is, it becomes coarser, this relationship is recorded or formulated and the method of predicting the grain size of the cylindrical material after extrusion from the billet heating temperature. It is.

冷間抽伸加工後に行う溶体化処理は、鋼中のM。Solution treatment performed after cold drawing reduces M in steel.

を固溶化し、偏析を低減する効果と、結晶粒の細粒化効
果とを得るために行う、すなわち、冷間抽伸加工によっ
て歪みを受けた結晶粒は、この溶体化処理によって細粒
化されるのである。なお、冷間抽伸加工を全く行わなか
った場合でも、溶体化処理を行なうことにより、若干の
細粒化が行われる。したがって、例えば熱間押出しのま
まの結晶粒が結晶粒度陽7のものは、冷間抽伸加工を全
く行わなくても、溶体化処理後に結晶粒度N17.5程
度にまで細粒化されるのである。
In other words, the crystal grains that have been distorted by cold drawing are refined by this solution treatment. It is. Note that even if no cold drawing is performed at all, some grain refinement is achieved by performing solution treatment. Therefore, for example, if the hot-extruded crystal grains have a grain size of +7, they will be refined to a grain size of about N17.5 after solution treatment without any cold drawing. .

溶体化処理は、820℃〜900℃の温度で1〜2時間
保持することにより行うのがよい、820℃以下では、
Moの偏析低減効果が十分に得られないからであり、9
00℃以上では細粒化した結晶粒が再び粒成長して粗大
化するからである。
Solution treatment is preferably carried out by holding at a temperature of 820°C to 900°C for 1 to 2 hours.
This is because the Mo segregation reduction effect cannot be sufficiently obtained, and 9
This is because at temperatures above 00° C., the refined crystal grains grow again and become coarse.

また、保持時間が1時間未満では、Mo偏析の低減が十
分ではなく、2時間を超えるとやはり粒成長か生じるか
らである。
Further, if the holding time is less than 1 hour, the reduction of Mo segregation is not sufficient, and if it exceeds 2 hours, grain growth still occurs.

〔実施例〕〔Example〕

次に、実施例について記載する。 Next, examples will be described.

本発明法にしたがって、マルエージング鋼製円筒素材を
製造した。
A maraging steel cylindrical material was manufactured according to the method of the present invention.

すなわち、第1表に示す成分のマルエージング鋼片(外
径320鶴×内径130tl×長さ800M)を、供試
鋼材として多数個準備し、これらを1000〜1200
℃の温度範囲で種々異なる温度に加熱した後、ユジーヌ
・セジェルネ法による熱間押出しで外径136mmx肉
jE 8 mの円筒素材に成形した。これらの円筒素材
を常温まで空冷放置した後、それぞれの結晶粒度隘を実
測により求めた。求めた結晶粒度磁を上記関係式のG−
5に代入してそれぞれ冷間抽伸加工時の加工度(Rd)
を算出し、この加工度(Rd)に基づいて各円筒素材に
芯金抽伸加工を行った0次いで芯金抽伸加工後の各円筒
素材に850℃X1hrの溶体化処理を施した。
That is, a large number of maraging steel pieces (outer diameter 320 x inner diameter 130 tl x length 800 m) having the components shown in Table 1 were prepared as test steel materials, and these were
After heating to various temperatures in the temperature range of °C, the material was formed into a cylindrical material with an outer diameter of 136 mm and a wall thickness of 8 m by hot extrusion using the Eugene-Ségernet method. After allowing these cylindrical materials to air-cool to room temperature, the crystal grain size of each material was determined by actual measurement. The obtained crystal grain size magnetism is expressed as G− in the above relational expression.
5 to obtain the working degree (Rd) during cold drawing processing, respectively.
was calculated, and based on this workability (Rd), each cylindrical material was subjected to core drawing. Next, each cylindrical material after the core drawing was subjected to solution treatment at 850° C. for 1 hr.

これらの円筒素材を常温まで空冷した後、それぞれの結
晶粒度階を実測により求めた。
After air-cooling these cylindrical materials to room temperature, the respective grain size levels were determined by actual measurements.

その後、これらの円筒素材をスピニング加工に供し、そ
れぞれの加工性を評価した。
Thereafter, these cylindrical materials were subjected to spinning processing, and the workability of each material was evaluated.

結果を第2表及び第3表に示す。The results are shown in Tables 2 and 3.

第  1  表 第  2  表 本印は条件外のもの 第  3  表 第2表に見るように、熱間押出し後の結晶粒度嵐が2で
あった供試素材a、b、cのうち、上記関係式で算出し
た加工度5%以上で冷間抽伸加工を行ったす、cは、い
ずれも溶体化処理後の結晶粒度−が7.5以上となり、
その後のスピニング加工において優れた加工性を備えて
いることが確認できた。5%以下の加工度で冷間抽伸加
工を行ったaは、溶体化処理後の結晶粒度−が6.5と
なり、スピニング加工性が不良であった。
Table 1 Table 2 Marks in Table 2 indicate those outside the conditions Table 3 As shown in Table 2, among test materials a, b, and c whose grain size storm after hot extrusion was 2, the above relationship was met. When cold drawing is performed at a working degree of 5% or more calculated by the formula, c is a grain size -7.5 or more after solution treatment,
It was confirmed that it had excellent workability in subsequent spinning processing. Sample a, which was subjected to cold drawing at a working degree of 5% or less, had a grain size of -6.5 after solution treatment, and its spinning workability was poor.

同様に、熱間押出し後の結晶粒度隘が4であった供試素
材d、e、r、また熱間押出し後の結晶粒度−が6であ
った供試素材g、h、Iについても式■で算出した加工
度以上で冷間抽伸加工を行ったe、f−?)h、iは溶
体化処理後の結晶粒度隘が7.5以上となり、優れたス
ピニング加工性を備えていることが確認できた。しかし
式■で算出した加工度以下で冷間抽伸加工を行ったdや
gは、いずれも溶体化処理後の結晶粒度丸がそれぞれ6
゜2と6.5となり、スピニング加工性が不良であった
Similarly, for sample materials d, e, r whose grain size after hot extrusion was 4, and sample materials g, h, and I whose crystal grain size after hot extrusion was 6, the formula e, f-? where cold drawing was performed at a working degree higher than that calculated in ■? ) It was confirmed that h and i had a crystal grain size of 7.5 or more after solution treatment, and had excellent spinning workability. However, for d and g, which were subjected to cold drawing at a working degree lower than that calculated by formula (■), the grain size circle after solution treatment was 6, respectively.
2 and 6.5, and the spinning workability was poor.

〔発明の効果〕〔Effect of the invention〕

以上に説明したとおり、本発明の方法によれば、結晶粒
が結晶粒度嵐7.5以上の細粒で、スピニング加工性に
優れたマルエージング鋼製の円筒素材を得ることができ
る。したがって、加工歩留が高く、製品精度も向上する
。また、長尺の円筒素材を製造することができるから、
作業能率がよく、生産性も向上する。
As explained above, according to the method of the present invention, it is possible to obtain a cylindrical material made of maraging steel that has fine crystal grains with a grain size of 7.5 or more and has excellent spinning workability. Therefore, processing yield is high and product precision is also improved. In addition, since it is possible to manufacture long cylindrical materials,
Improves work efficiency and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷間抽伸加工における加工度と押出しままの冷
間加工素材の結晶粒度磁との関係を示すグラフ図、第2
図は冷間抽伸加工の種類を説明する図で1.(イ)は中
拡げ加工の断面図、(ロ)は掻落し加工の断面図、(ハ
)は芯金抽伸加工の断面図、第3図は鋼片加熱温度と押
出しままの素材の結晶粒度阻との関係を示すグラフ図で
ある。 第  2  図 (イ) (ハ) マルエージングW4製円崎素材 第  1  図
Figure 1 is a graph showing the relationship between the working degree in cold drawing and the grain size of the as-extruded cold-processed material.
The figure is a diagram explaining the types of cold drawing processing.1. (A) is a cross-sectional view of the middle expansion process, (B) is a cross-sectional view of the scraping process, (C) is a cross-sectional view of the core metal drawing process, and Figure 3 is the heating temperature of the steel billet and the grain size of the as-extruded material. It is a graph diagram showing the relationship with inhibition. Figure 2 (A) (C) Maraging W4 Enzaki material Figure 1

Claims (1)

【特許請求の範囲】 1、マルエージング鋼片を熱間押出しし、その後下記関
係式を満たす加工度(Rd)で冷間抽伸加工を行った後
、溶体化処理することを特徴とするマルエージング鋼製
円筒素材の製造方法。 Rd≧7.0−G・S ただし、Rd≧0 G・S:熱間押出しままの冷間加工素材の結晶粒度 No.(JIS−G0551による)
[Claims] 1. Maraging characterized by hot extruding a maraging steel billet, then cold drawing at a working degree (Rd) that satisfies the following relational expression, and then solution treatment. Manufacturing method for steel cylindrical material. Rd≧7.0-G・S However, Rd≧0 G・S: Grain size No. of cold processed material as hot extruded. (according to JIS-G0551)
JP8096388A 1988-03-31 1988-03-31 Production of cylindrical blank made of maraging steel Pending JPH01252724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8096388A JPH01252724A (en) 1988-03-31 1988-03-31 Production of cylindrical blank made of maraging steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8096388A JPH01252724A (en) 1988-03-31 1988-03-31 Production of cylindrical blank made of maraging steel

Publications (1)

Publication Number Publication Date
JPH01252724A true JPH01252724A (en) 1989-10-09

Family

ID=13733169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8096388A Pending JPH01252724A (en) 1988-03-31 1988-03-31 Production of cylindrical blank made of maraging steel

Country Status (1)

Country Link
JP (1) JPH01252724A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329220A (en) * 1976-08-31 1978-03-18 Sumitomo Metal Ind Ltd Production of rough tube made of super high tensile steel having very excellent ductility and toughness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329220A (en) * 1976-08-31 1978-03-18 Sumitomo Metal Ind Ltd Production of rough tube made of super high tensile steel having very excellent ductility and toughness

Similar Documents

Publication Publication Date Title
CN1564875A (en) Method of forming molded articles of amorphous alloy with high elastic limit
CN105886860A (en) Method For Producing 7000-Series Aluminum Alloy Member Excellent In Stress Corrosion Cracking Resistance
CN108472703B (en) Method for producing rods from titanium alloys
CN102994918A (en) Production method of 5754-H32 aluminum alloy plate strip
JP4340754B2 (en) Steel having high strength and excellent cold forgeability, and excellent molded parts such as screws and bolts or shafts having excellent strength, and methods for producing the same.
JPH04107214A (en) Inline softening treatment for air-hardening seamless steel tube
CN111014333A (en) Processing method of medical Ti6Al4V titanium alloy plate
CN104099517B (en) A kind of manufacture method of 225MPa ranks low-yield building aseismicity steel
RU2123065C1 (en) Process of manufacture of tubular articles from zirconium alloys ( versions )
JPH01252724A (en) Production of cylindrical blank made of maraging steel
JPS6233009B2 (en)
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
RU2060098C1 (en) Continuous-cast beam billet and process of manufacture of beam profile
US2767835A (en) Process of extruding steel
CN106399884B (en) The new method for processing of high-performance magnesium-alloy section bar
RU2650651C1 (en) Method of austenitic anticorrosion steel section hot rolled plates production
CN117600772A (en) Manufacturing method and application of core rod for warm-rolled titanium alloy tube
JPS6159381B2 (en)
JP2009228137A (en) Steel of high strength and superior in cold heading characteristic and fastening parts such as screw and bolt or formed article such as shaft superior in strength
US2384351A (en) Method of forming extended lengths of metal wire
KR20050024735A (en) A method for increasing the ductility of magnesium alloy through texture control
JPS6345356A (en) Manufacture of alpha+beta type titanium alloy plate
RU2175994C2 (en) Method of making bars and strips from commercial titanium
JPS5933664B2 (en) Processing method of amorphous alloy
SU839626A1 (en) Method of producing elongated articles from nickel-based steels and alloys