JPH01252625A - Polyphenol glycidyl ether and its composition - Google Patents

Polyphenol glycidyl ether and its composition

Info

Publication number
JPH01252625A
JPH01252625A JP63315751A JP31575188A JPH01252625A JP H01252625 A JPH01252625 A JP H01252625A JP 63315751 A JP63315751 A JP 63315751A JP 31575188 A JP31575188 A JP 31575188A JP H01252625 A JPH01252625 A JP H01252625A
Authority
JP
Japan
Prior art keywords
glycidyl ether
hydroxybenzaldehyde
methyl
epoxy resin
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63315751A
Other languages
Japanese (ja)
Other versions
JPH07121979B2 (en
Inventor
Noriaki Saito
憲明 斉藤
Shuichi Kanekawa
金川 修一
Hide Sakamoto
秀 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63315751A priority Critical patent/JPH07121979B2/en
Publication of JPH01252625A publication Critical patent/JPH01252625A/en
Priority claimed from SG112894A external-priority patent/SG112894G/en
Publication of JPH07121979B2 publication Critical patent/JPH07121979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To obtain a glycidyl ether which can give an epoxy resin composition having good heat resistance and low hygroscopicity, by condensing a di(lower alkyl)phenol with a hydroxybenzaldehyde. CONSTITUTION:A di(1-6C alkyl)phenol and its derivative (e.g., 3-methyl-6-t- butylphenol) and a hydroxybenzaldehyde (e.g., p-hydroxybenzaldehyde) are subjected to a well-known reaction for preparing novolac to produce a glycidyl ether of a condensate. An epoxy resin composition which has good heat resistance and low hygroscopicity and can withstand the use at a temperature higher than conventional one as a material for sealing electronic components or laminates can be produced from the above glycidyl ether and a curing agent.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電子部品の封止用及び積層板材料として有用
なエポキシ樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an epoxy resin composition useful for sealing electronic components and as a laminate material.

〈従来の技術〉 近年、LSI、IC,)ランジスタ等半導体の封止には
、経済的に有利なエポキシ樹脂組成物のトランスファー
モールドが行なわれている。
<Prior Art> In recent years, economically advantageous transfer molding of epoxy resin compositions has been used to seal semiconductors such as LSIs, ICs, and transistors.

特に最近では、LSIの表面実装が行なわれており、半
田浴中に直接浸漬される場合が増えてきている。
Particularly recently, surface mounting of LSIs has been carried out, and the number of cases in which LSIs are directly immersed in a solder bath is increasing.

その際、封止材は、200℃以上の高温にさらされるた
め、封止材中に吸湿していた水分が膨張し、クラックが
入る。
At that time, the sealing material is exposed to high temperatures of 200° C. or higher, so the moisture absorbed in the sealing material expands and cracks occur.

このため、エポキシ樹脂封止材には、こうした高温に耐
えつるだけの耐熱性と、低吸湿性が要求され、現状では
0−タレゾールノボラックのグリシジルエーテルが主流
である。
For this reason, epoxy resin encapsulants are required to have heat resistance sufficient to withstand such high temperatures and low moisture absorption, and at present, glycidyl ether of 0-talesol novolak is the mainstream.

この他、耐熱性のエポキシ樹脂として、例えば特公昭5
7−13571号公報にはトリス(ヒドロキシフェニル
)メタンのグリシジルエーテル及ヒ、そのアルキル置換
体の記載が有り、特開昭57−141−419号公報に
は、フェノール、アルキルモノ置換フェノール、ハロゲ
ン置換フェノールのごときフェノール類と芳香族アルデ
ヒドとを縮合してなる多価フェノールを周知汎用の方法
でグリシジルエーテル化することが開示されている。
In addition, as a heat-resistant epoxy resin, for example,
No. 7-13571 describes glycidyl ethers of tris(hydroxyphenyl)methane and their alkyl-substituted products, and JP-A-57-141-419 describes phenol, alkyl monosubstituted phenols, and halogen-substituted products. It is disclosed that a polyhydric phenol obtained by condensing a phenol such as phenol with an aromatic aldehyde is converted into glycidyl ether by a well-known general method.

〈発明が解決しようとする課題) 0−クレゾールノボラックのグリシジルエーテルを主と
する封止材は、耐熱性と低吸湿性の点で一応バランスが
取れているが、共に充分ではない。
(Problems to be Solved by the Invention) Encapsulants mainly composed of glycidyl ether of 0-cresol novolak have a good balance in terms of heat resistance and low moisture absorption, but both are not sufficient.

また、特に吸湿性を改良する目的で、炭素数の多いアル
キルフェノールノボラックのグリシジルエーテルを用い
ると、吸湿性は改良される反面、ガラス転移温度や硬化
性が低下する。
Further, when a glycidyl ether of an alkylphenol novolac having a large number of carbon atoms is used especially for the purpose of improving hygroscopicity, the hygroscopicity is improved, but the glass transition temperature and curability are lowered.

トリス(ヒドロキシフェニル)メタンのグリシジルエー
テル及び、そのアルキル置換体ではアルキル置換基が無
いか、または炭素数の小さいものだと吸湿性が高く、ま
たアルキル置換基の数が多く、しかも炭素数が多いもの
だと耐熱性が低下する。
Glycidyl ether of tris(hydroxyphenyl)methane and its alkyl substituted products have high hygroscopicity if they have no alkyl substituent or have a small number of carbon atoms, and also have a large number of alkyl substituents and a large number of carbon atoms. Heat resistance will decrease.

く課題を解決するだめの手段〉 本発明は、炭素数1〜6のアルキル基を二個有するジア
ルキルフェノールおよびその誘導体とヒドロキシベンズ
アルデヒド類の縮合物のグリシジルエーテル、及び該グ
リシジルエーテルと硬化剤とからなるエポキシ樹脂組成
物である。
Means for Solving the Problems The present invention provides a glycidyl ether of a condensate of a dialkylphenol having two alkyl groups having 1 to 6 carbon atoms, a derivative thereof, and a hydroxybenzaldehyde, and a glycidyl ether containing the glycidyl ether and a curing agent. This is an epoxy resin composition.

本発明のジアルキルフェノール類のアルキル基としては
、01〜C6のアルキル基である。
The alkyl group of the dialkylphenol of the present invention is an alkyl group of 01 to C6.

フェノールの芳tiに繋がっているアルキル置換基につ
いては、アルキル置換基の数が少ない程又その合計の炭
素数が少ない程吸湿性が大きくなり、逆に該置換基の数
が多い程又その合計の炭素数の多い程架橋密度が低く、
ガラス転移温度が低下し耐熱性が低下する。
Regarding alkyl substituents connected to aromatic atoms of phenol, the smaller the number of alkyl substituents or the smaller the total carbon number, the greater the hygroscopicity; conversely, the larger the number of substituents or the total number of carbon atoms. The higher the number of carbon atoms, the lower the crosslinking density.
Glass transition temperature decreases and heat resistance decreases.

これらのことから、アルキル基は1つよりも2つのほう
が物性のバランスが取り易く、なかで為2つのアルキル
基の内、一方がメチル基で他方がC2〜C6アルキル基
の組合せが特に優れている。
For these reasons, it is easier to balance the physical properties with two alkyl groups than with one, and among these, the combination of two alkyl groups, one of which is a methyl group and the other a C2-C6 alkyl group, is particularly good. There is.

このCa、〜C6アルキル基を具体的に例示すると、n
−プロピル基、イソプロピル基、n−ブチル基、5eC
−ブチル基、t−ブチル基、アミル基、イソアミル基、
t−アミル基、ヘキシル基等であるが、好ましくは、イ
ソプロピル基、t−ブチル基、ヘキシル基である。
Specific examples of this Ca, ~C6 alkyl group include n
-Propyl group, isopropyl group, n-butyl group, 5eC
-butyl group, t-butyl group, amyl group, isoamyl group,
Examples include t-amyl group and hexyl group, and preferably isopropyl group, t-butyl group, and hexyl group.

メチル−03〜C,アルキルフェノール類を具体的に例
示すると、メチル−n−プロピルフェノール、メチル−
イソプロピルフェノール、メチル−n−ブチルフェノー
ル、メチル−5ec−ブチルフェノール、メチル−t−
ブチルフェノール、メチル−アミルフェノール、メチル
−イソアミルフェノール、メチル−ヘキシルフェノール
等から選ばれる1種または2種以上である。
Specific examples of methyl-03-C, alkylphenols include methyl-n-propylphenol, methyl-n-propylphenol,
Isopropylphenol, methyl-n-butylphenol, methyl-5ec-butylphenol, methyl-t-
One or more types selected from butylphenol, methyl-amylphenol, methyl-isoamylphenol, methyl-hexylphenol, and the like.

なかでもターシャリ−ブチル基が物性のバランス上好ま
しい。
Among these, a tertiary-butyl group is preferred in view of the balance of physical properties.

本発明のジアルキルフェノールの誘導体はその芳香環に
さらにハロゲンが置換したものも含む。
The dialkylphenol derivatives of the present invention also include those in which the aromatic ring is further substituted with halogen.

本発明のジアルキルフェノールに、他のフェノール類を
本発明の効果を損なわない程度混合して用いてもよい。
The dialkylphenol of the present invention may be mixed with other phenols to the extent that the effects of the present invention are not impaired.

他のフェノール類としては、例えばフェノール、クレゾ
ール、レゾルシン、カテコール、ハイドロキノン、ビス
フェノールA1ビスフエノールF等である。
Examples of other phenols include phenol, cresol, resorcinol, catechol, hydroquinone, bisphenol A1 and bisphenol F.

ヒドロキンベンズアルデヒド類としては、ヒドロキシベ
ンズアルデヒド、メチルヒドロキシベンズアルデヒド、
ジメチルヒドロキシベンズアルデヒド、メトキシヒドロ
キシベンズアルデヒド、クロルヒドロキシベンズアルデ
ヒド、ブロモベンズアルデヒドなどがあり、なかでもヒ
ドロキシベンズアルデヒドが、とくにp−ヒドロキシベ
ンズアルデヒドが好ましい。
Hydroquine benzaldehydes include hydroxybenzaldehyde, methylhydroxybenzaldehyde,
Examples include dimethylhydroxybenzaldehyde, methoxyhydroxybenzaldehyde, chlorohydroxybenzaldehyde, and bromobenzaldehyde, among which hydroxybenzaldehyde is preferred, and p-hydroxybenzaldehyde is particularly preferred.

本発明のジアルキルフェノールとヒドロキシベンズアル
デヒド類との縮合物は、周知の7ボラツクを合成する反
応を適用し、塩酸、硫酸等の無機酸、酢酸、p−)ルエ
ンスルフォン酸、チオグリコール酸等の有機酸、ルイス
酸等の酸性触媒下、ヒドロキシベンズアルデヒド類トジ
アルキルフェノールを30〜180℃の温度で縮合させ
、水洗、未反応フェノール類の留去等、後処理する周知
の方法により得られる。
The condensate of dialkylphenol and hydroxybenzaldehydes of the present invention can be prepared by applying a well-known reaction for synthesizing 7-boracs, using inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as acetic acid, p-)luenesulfonic acid, and thioglycolic acid. It is obtained by a well-known method of condensing hydroxybenzaldehydes and dialkylphenols at a temperature of 30 to 180° C. under an acidic catalyst such as an acid or a Lewis acid, followed by post-treatment such as washing with water and distilling off unreacted phenols.

なおヒドロキシベンズアルデヒド類のほか別のアルデヒ
ド類を本発明の効果を損なわない程度に混合して用いて
もよい。
In addition to hydroxybenzaldehydes, other aldehydes may be mixed and used to the extent that the effects of the present invention are not impaired.

該アルデヒド類としては、ホルムアルデヒド、アセトア
ルデヒド、クロトンアルデヒド、アクロレイン、グリオ
キザール、ベンズアルデヒド等である。
Examples of the aldehydes include formaldehyde, acetaldehyde, crotonaldehyde, acrolein, glyoxal, and benzaldehyde.

該縮合物は、本発明のグリシジルエーテルの硬化物の耐
熱性の面からはオリゴマーのほうがのぞましい。
The condensate is preferably an oligomer from the viewpoint of heat resistance of the cured product of the glycidyl ether of the present invention.

オリゴマーとするには、ヒドロキシベンズアルデヒド類
の比率を高くし、反応温度を高めとし、触媒を多めにす
れば良い。
In order to form an oligomer, the ratio of hydroxybenzaldehydes may be increased, the reaction temperature may be increased, and the amount of catalyst may be increased.

なおジアルキルフェノールは、オリゴマー化のし易さと
人手し易さから、3位と6位に置換したものが望ましい
Note that the dialkylphenol preferably has one substituted at the 3rd and 6th positions from the viewpoint of ease of oligomerization and manual handling.

この様にして得られる縮合物は、下記一般式%式% 式中R1、R2、R3、R4、R8,R6、は炭素数1
〜6のアルキル基を表し、 R1、R1,R1、R10
、は炭素数1〜4のアルキル基、アルコキシル基を表す
The condensate obtained in this way has the following general formula % formula % where R1, R2, R3, R4, R8, R6 have 1 carbon number.
~6 alkyl group, R1, R1, R1, R10
, represents an alkyl group or an alkoxyl group having 1 to 4 carbon atoms.

Xは、塩素原子又は臭素原子である。X is a chlorine atom or a bromine atom.

a、b、cSdSeは0または1である。a, b, cSdSe are 0 or 1.

nは、平均θ〜5、好ましくは0.5〜5の数である。n is a number on average θ~5, preferably 0.5~5.

また、本発明のグリシジルエーテルは、フェノール類を
グリシジルエーテル化する周知の方法(こよって得るこ
とができる。
Further, the glycidyl ether of the present invention can be obtained by a well-known method of converting phenols into glycidyl ether.

つまり、該縮合物とエピクロルヒドリンとを、苛性ソー
ダ等のアルカリ金属水酸化物の存在下で反応させる方法
である。
That is, this is a method in which the condensate and epichlorohydrin are reacted in the presence of an alkali metal hydroxide such as caustic soda.

特に、高純度のものを得るには、該反応系に非プロトン
極性溶媒を存在させ、反応終了後未反応物、副生物など
を周知の方法で除去し、得られた粗グリシジルエーテル
をさらに有機溶媒中でアルカリ性物質で処理する方法が
ある。
In particular, in order to obtain a highly pure glycidyl ether, an aprotic polar solvent is present in the reaction system, and after the reaction is complete, unreacted substances, by-products, etc. are removed by a well-known method, and the resulting crude glycidyl ether is further There is a method of treating with an alkaline substance in a solvent.

本発明で使用する硬化剤としては、フェノールノボラッ
ク、クレゾールノボラック、ポリビニルフェノール等の
多価フェノール類、ジアミノジフェニルメタン、ジアミ
ノジフェニルスルホン等のアミン系硬化剤、無水ピロメ
リット酸、無水トリメリット酸、ベンゾフェノンテトラ
カルボン酸二無水物等の、酸無水物硬化剤等が例示され
る。
The curing agents used in the present invention include polyhydric phenols such as phenol novolak, cresol novolak, and polyvinylphenol, amine curing agents such as diaminodiphenylmethane and diaminodiphenylsulfone, pyromellitic anhydride, trimellitic anhydride, and benzophenone tetra Examples include acid anhydride curing agents such as carboxylic dianhydride.

これらの硬化剤の使用量は、エポキシ基に対して0.7
〜1.2当量である。
The amount of these curing agents used is 0.7 to epoxy group.
~1.2 equivalents.

エポキシ基に対して、0.7当量に満たない場合、ある
いは1.2当量を超える場合、いずれも硬化が不完全で
あり、低吸湿性とならない。
If the amount is less than 0.7 equivalents or more than 1.2 equivalents with respect to the epoxy group, curing will be incomplete and low hygroscopicity will not be achieved.

また、使途により組成物中に、充填剤、硬化促進剤、難
燃剤、離型剤、表面処理剤等の公知の添加剤を添加する
ことができる。
In addition, known additives such as fillers, hardening accelerators, flame retardants, mold release agents, and surface treatment agents may be added to the composition depending on the intended use.

充填剤としては、シリカ、アルミナ、タルク、クレー、
ガラス繊維等を、硬化促進剤としては、イミダゾール頚
、第三級アミン類、リン系化合物等を、難燃剤としては
、ブロム化エポキシ樹脂や三酸化アンチモン等を挙げる
ことができる。
Fillers include silica, alumina, talc, clay,
Examples of curing accelerators include imidazole necks, tertiary amines, phosphorus compounds, etc., and examples of flame retardants include brominated epoxy resins and antimony trioxide.

また、離型剤としては、ワックス類、ステアリン酸亜鉛
等の高級脂肪酸の金属塩類を、さらに表面処理剤として
は、シランカップリング剤等を挙げることができる。
Further, examples of the mold release agent include waxes and metal salts of higher fatty acids such as zinc stearate, and examples of the surface treatment agent include a silane coupling agent.

用途として封止材の場合、低応力化するには、各種エラ
ストマーを添加しても良い。
When used as a sealing material, various elastomers may be added to reduce stress.

具体的には、ポリブタジェンゴム、ブタジェン−アクリ
ロニトリル共重合体、シリコンゴム等が挙げられる。
Specific examples include polybutadiene rubber, butadiene-acrylonitrile copolymer, silicone rubber, and the like.

本発明による樹脂組成物を用いて、半導体等、′電子部
品を樹脂封止するには、トランスファーモールド、コン
プレッションモールド、インジェクションモールド等の
従来から公知の成形法により硬化成形すればよい。
In order to seal an electronic component such as a semiconductor with a resin using the resin composition of the present invention, it may be hardened and molded by a conventionally known molding method such as transfer molding, compression molding, or injection molding.

また、本発明による樹脂組成物を、積層板用には、樹脂
組成物をメチルエチルケトンやトルエン、エチレンジク
リコールモノメチルエーテル等の溶剤を用いて均一に溶
解し、これをガラス繊維や有機繊維に含浸させ、加熱乾
燥し、プリプレグとし、これをプレス成形すればよい。
In addition, in order to use the resin composition according to the present invention for a laminate, the resin composition is uniformly dissolved using a solvent such as methyl ethyl ketone, toluene, or ethylene diglycol monomethyl ether, and glass fibers or organic fibers are impregnated with the resin composition. , heat and dry to form a prepreg, which may then be press-molded.

〈発明の効果〉 電子部品の封止用及び積層板材料として、従来のものよ
り高温での使用条件に耐えられる耐熱性、低吸湿性を有
するエポキシ樹脂組成物が提供できる。
<Effects of the Invention> It is possible to provide an epoxy resin composition that can withstand use conditions at higher temperatures than conventional compositions and has heat resistance and low moisture absorption for use in sealing electronic components and as a laminate material.

この組成物は、上記特性のほか加工性も良く生成した製
品の信頼性も高めることができる。
In addition to the above-mentioned properties, this composition has good processability and can also improve the reliability of the produced product.

〈実施例〉 以下、実施例でもって、本発明を説明する。<Example> The present invention will be explained below with reference to Examples.

鋼中、エポキシ当量とは、エポキシ基1個当りのエポキ
シ樹脂の分子量で定義される。
In steel, epoxy equivalent is defined as the molecular weight of epoxy resin per epoxy group.

また加水分解性塩素とは、エポキシ樹脂をジオキサンに
溶解し、水酸化カリウムのアルコール溶液を加え、還流
させながら30分間加熱したときに脱離する塩素イオン
を、硝酸銀溶液で逆滴定で定量し、該化合物中の塩素原
子の重量百分率で表わしたものである。
Hydrolyzable chlorine is obtained by dissolving epoxy resin in dioxane, adding an alcoholic solution of potassium hydroxide, and heating it under reflux for 30 minutes.The chlorine ions released are determined by back titration with a silver nitrate solution. It is expressed as a weight percentage of chlorine atoms in the compound.

平均分子量及び平均繰り返し単位数は、ゲルパーミェー
ションクロマトグラフ(日本分光工業■製、TRl0T
ARSR−!I )で測定し算出した。
The average molecular weight and average number of repeating units were measured using a gel permeation chromatograph (manufactured by JASCO Corporation, TRl0T).
ARSR-! I) was measured and calculated.

硬化成形物の評価は、以下の通りである。Evaluation of the cured molded product is as follows.

・ガラス転移温度  熱機械的分析装置(第二精工舎■
製TMA10型)を用いて測定した。
・Glass transition temperature thermomechanical analyzer (Daini Seikosha ■
The measurement was carried out using a TMA Model 10 (manufactured by TMA Co., Ltd.).

・曲げ強度、曲げ弾性率 JIS−K−6911に従い
、インストロン万能材料試験機(型式lN5TRON工
122型)で測定した。
- Bending strength and flexural modulus Measured using an Instron universal material testing machine (Model 1N5TRON 122) in accordance with JIS-K-6911.

・煮沸吸水率  高圧蒸気環境試験器(手出製作所製P
C−305S)を用い、121℃、2気圧の条件で重量
変化を測定した。
・Boiling water absorption rate High pressure steam environment tester (manufactured by Tade Seisakusho P
C-305S), the weight change was measured under the conditions of 121° C. and 2 atm.

参考例1〜6、比較参考例1〜6 温度計、攪拌器、コンデンサーを付けた反応器中に、表
1に記載のフェノール類と、p−ヒドロキシベンズアル
デヒド122g及びp−トルエンスルホン酸(−Jc塩
) 3.8 gヲ95〜105℃で攪拌下、還流しつつ
6時間反応させた。
Reference Examples 1 to 6, Comparative Reference Examples 1 to 6 In a reactor equipped with a thermometer, a stirrer, and a condenser, the phenols listed in Table 1, 122 g of p-hydroxybenzaldehyde, and p-toluenesulfonic acid (-Jc Salt) 3.8 g was reacted at 95 to 105°C for 6 hours while stirring and refluxing.

続いて、10%苛性ソーダ水溶液で中和した後、2回水
洗し、蒸留して未反応モノマーを除去し、縮合物を得た
Subsequently, the mixture was neutralized with a 10% aqueous sodium hydroxide solution, washed twice with water, and distilled to remove unreacted monomers to obtain a condensate.

この縮合物の平均分子量、平均繰り返し単位数を測定し
た。
The average molecular weight and average number of repeating units of this condensate were measured.

続いて、フェノール性水酸基1モル相当量の縮合物を、
温度計、攪拌器、滴下ロート、分離管付コンデンサーの
付いた反応容器に仕込み、エピクロルヒドリン462.
6g、ジメチルスルホキシド231.3gに溶解した。
Subsequently, a condensate in an amount equivalent to 1 mole of phenolic hydroxyl group,
Charge a reaction vessel equipped with a thermometer, a stirrer, a dropping funnel, and a condenser with a separation tube, and add 462.
6 g, dissolved in 231.3 g of dimethyl sulfoxide.

反応系内を45Torrに保ちながら、40%NaOH
水溶液100gを5時間で連続的に滴下した。    
  この間、温度は約45℃に保ちながら、共沸するエ
ピクロルヒドリンと水を冷却液化し、有機層を反応系内
に戻しながら反応させた。   反応終了後は、未反応
エピクロルヒドリンを減圧蒸留により除去し、副生塩と
ジメチルスルホキシドを含むのグリシジルエーテルを、
メチルイソブチルケトンに溶解し、副生塩とジメチルス
ルホキシドを水洗により除去した。
While maintaining the inside of the reaction system at 45 Torr, add 40% NaOH.
100 g of the aqueous solution was continuously added dropwise over 5 hours.
During this time, while maintaining the temperature at about 45° C., the azeotropic epichlorohydrin and water were cooled and liquefied, and the organic layer was reacted while being returned to the reaction system. After the reaction is complete, unreacted epichlorohydrin is removed by vacuum distillation, and the glycidyl ether containing by-product salt and dimethyl sulfoxide is
It was dissolved in methyl isobutyl ketone, and by-product salts and dimethyl sulfoxide were removed by washing with water.

さらに、減圧蒸留によりメチルイソブチルケトンを除去
した。このようにして得られた、グリシジルエーテルの
エポキシ当量を測定した。
Furthermore, methyl isobutyl ketone was removed by vacuum distillation. The epoxy equivalent of the glycidyl ether thus obtained was measured.

結果を表1に示す。The results are shown in Table 1.

表1 参考例 7 3−メチル−6−t−ブチルフェノール328g1こか
えて、 3−メチル−6−t−ブチルフェノール246
g5 m−クレゾール54g をもちいた以外は、参考
例1と同様にしてグリシジルエーテルを得た。
Table 1 Reference example 7 3-methyl-6-t-butylphenol 328g1 Instead, 3-methyl-6-t-butylphenol 246
Glycidyl ether was obtained in the same manner as in Reference Example 1 except that 54 g of m-cresol was used.

縮合物の平均分子量は、985gであり、繰り返し単位
は、2.2であった。
The average molecular weight of the condensate was 985 g, and the number of repeating units was 2.2.

グリシジルエーテルのエポキシ当量は210であった。The epoxy equivalent weight of the glycidyl ether was 210.

参考例 8 参考例1と同様な装置に、3−メチド6−tブチルフェ
ノール2 4 6  g、  o−クレゾール 54g
 と p−) ルエンスルホン酸く一水塩)3.8gを
仕込み、95〜105℃で攪拌下、36%ホルマリン1
6.7gを1時間かけて滴下した後、1時間保温した。
Reference Example 8 In a device similar to Reference Example 1, 246 g of 3-methide 6-t-butylphenol and 54 g of o-cresol were added.
and p-) 3.8 g of luenesulfonic acid monohydrate) and 36% formalin 1 with stirring at 95 to 105°C.
After dropping 6.7 g over 1 hour, the mixture was kept warm for 1 hour.

続いてp−ヒドロキシベンズアルデヒド97.6 gを
加えて5時間反応させた。   その後、参考例1と同
様の後処理を行い、縮合物を得た。
Subsequently, 97.6 g of p-hydroxybenzaldehyde was added and reacted for 5 hours. Thereafter, the same post-treatment as in Reference Example 1 was performed to obtain a condensate.

平均分子量は970であり、繰り返し単位は2.2であ
った。
The average molecular weight was 970, and the repeating unit was 2.2.

続いて、参考例1と同様にして、そのグリシジルエーテ
ルを得た。エポキシ当量は209であった。
Subsequently, the glycidyl ether was obtained in the same manner as in Reference Example 1. The epoxy equivalent weight was 209.

実施例1〜8及び比較例1〜7 各種グリシジルエーテル、硬化剤として軟化点95℃の
フェノールノボラック、硬化促進剤としてトリフェニル
ホスフィンを表2に示した量(g)で配合し、ロールで
加熱混練した後、175℃で5分間プレス成形を行なっ
た。
Examples 1 to 8 and Comparative Examples 1 to 7 Various glycidyl ethers, phenol novolak with a softening point of 95°C as a curing agent, and triphenylphosphine as a curing accelerator were blended in the amounts (g) shown in Table 2, and heated with a roll. After kneading, press molding was performed at 175° C. for 5 minutes.

さらに、180℃オープン中で5時間ポストキュアーを
行ない硬化成形物を得た。
Further, post-curing was performed in an open environment at 180° C. for 5 hours to obtain a cured molded product.

この硬化成形物のガラス転移温度、煮沸吸水率、曲げ強
度、曲げ弾性率を測定した。
The glass transition temperature, boiling water absorption, bending strength, and bending elastic modulus of this cured molded product were measured.

その結果を表2に示す。The results are shown in Table 2.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素数1〜6のアルキル基を二個有するジアルキ
ルフェノールおよびその誘導体とヒドロキシベンズアル
デヒド類との縮合物のグリシジルエーテル。
(1) Glycidyl ether of a condensate of dialkylphenol having two alkyl groups having 1 to 6 carbon atoms and a derivative thereof and hydroxybenzaldehyde.
(2)請求項(1)に記載のグリシジルエーテルと硬化
剤とからなるエポキシ樹脂組成物。
(2) An epoxy resin composition comprising the glycidyl ether according to claim (1) and a curing agent.
JP63315751A 1987-12-16 1988-12-13 Glycidyl ethers of polyhydric phenols and compositions thereof Expired - Lifetime JPH07121979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315751A JPH07121979B2 (en) 1987-12-16 1988-12-13 Glycidyl ethers of polyhydric phenols and compositions thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP31928987 1987-12-16
JP62-319289 1987-12-16
JP63315751A JPH07121979B2 (en) 1987-12-16 1988-12-13 Glycidyl ethers of polyhydric phenols and compositions thereof
SG112894A SG112894G (en) 1987-12-16 1994-08-13 Glycidyl ethers of phenolic compounds and process for producing the same

Publications (2)

Publication Number Publication Date
JPH01252625A true JPH01252625A (en) 1989-10-09
JPH07121979B2 JPH07121979B2 (en) 1995-12-25

Family

ID=27339491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315751A Expired - Lifetime JPH07121979B2 (en) 1987-12-16 1988-12-13 Glycidyl ethers of polyhydric phenols and compositions thereof

Country Status (1)

Country Link
JP (1) JPH07121979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022265096A1 (en) * 2021-06-18 2022-12-22 日本化薬株式会社 Epoxy resin, curable resin composition, and cured object therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567132B2 (en) * 2000-01-06 2010-10-20 長春人造樹脂廠股▲分▼有限公司 Epoxy resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326462A (en) * 1986-07-16 1988-02-04 Sumitomo Heavy Ind Ltd Support mechanism for pulley of grinding stone driving motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326462A (en) * 1986-07-16 1988-02-04 Sumitomo Heavy Ind Ltd Support mechanism for pulley of grinding stone driving motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022265096A1 (en) * 2021-06-18 2022-12-22 日本化薬株式会社 Epoxy resin, curable resin composition, and cured object therefrom
CN117043215A (en) * 2021-06-18 2023-11-10 日本化药株式会社 Epoxy resin, curable resin composition, and cured product of curable resin composition

Also Published As

Publication number Publication date
JPH07121979B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
JP5228328B2 (en) Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same
EP0536748B1 (en) Polyhydric phenol and epoxy resin obtained using the same
JP5012003B2 (en) Low melt viscosity phenol novolac resin, its production method and its use
JP5476762B2 (en) Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof
JPH03139519A (en) Curing agent for epoxy resin
JPH01252625A (en) Polyphenol glycidyl ether and its composition
KR100225165B1 (en) Polyhydric phenol and epoxy resin and epoxy resin composition derived therefrom
TW201313769A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JPH02173023A (en) Curing agent for epoxy resin
JP4184109B2 (en) Curing agent for epoxy resin and epoxy resin composition
JP2993026B2 (en) Glycidyl ether of polyhydric phenol and composition thereof
JPH0388818A (en) Hardener for epoxy resin
JP2572293B2 (en) Epoxy resin curing agent and curable epoxy resin composition
JP7068857B2 (en) Manufacturing method of polyvalent hydroxy resin, manufacturing method of thermosetting resin composition, manufacturing method of encapsulant, manufacturing method of laminated board, polyvalent hydroxy resin and thermosetting resin composition
JP2004244526A5 (en)
JP2010260802A (en) Dihydroxynaphthalene polymer, method of producing the same, and use therefor
JPH07173235A (en) Allylnapththol cocondensate and epoxy resin composition
JP2981759B2 (en) Epoxy compound and epoxy resin composition
JPH0455422A (en) Epoxy resin composition for semiconductor sealing
JPH04270720A (en) Epoxy resin, its production and cured product
JP4086630B2 (en) Polyhydric phenol compound, epoxy resin composition and cured product thereof
JP3084822B2 (en) Epoxy resin composition
JPH07173234A (en) Allylnaphthol cocondensate and epoxy resin composition
JP3084848B2 (en) Epoxy resin and composition thereof
JPH04198314A (en) Polyhydric phenolic compound and epoxy resin hardener

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

EXPY Cancellation because of completion of term