JPH01251010A - Optical axis adjusting device - Google Patents

Optical axis adjusting device

Info

Publication number
JPH01251010A
JPH01251010A JP7883688A JP7883688A JPH01251010A JP H01251010 A JPH01251010 A JP H01251010A JP 7883688 A JP7883688 A JP 7883688A JP 7883688 A JP7883688 A JP 7883688A JP H01251010 A JPH01251010 A JP H01251010A
Authority
JP
Japan
Prior art keywords
optical axis
light
mirror
optical
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7883688A
Other languages
Japanese (ja)
Inventor
Toshiichi Tsugawa
都川 歳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7883688A priority Critical patent/JPH01251010A/en
Publication of JPH01251010A publication Critical patent/JPH01251010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To apply the title device to a laser oscillator which is converted to a series multistage string, etc., to efficiently execute light amplification and to obtain stable output light by executing an optical axis adjustment by rotating and moving a mirror in accordance with a detecting position of a light beam which is detected by a light position detector. CONSTITUTION:A rotatable and movable mirror 13 is provided on the path of first light from a first laser oscillator 11, and half mirrors 17, 18 are arranged in series on a common optical axis to optical axes of reflected light 15 from said mirror 13 and second light 16 from a second laser oscillator 14. In such a state, the mirror 13 is rotated and moved in accordance with an image forming position by a light position detector 19 of reflected light beams from these half mirrors 17, 18. Accordingly, the optical axis adjustment can be executed with high accuracy and quickly without person's help, and also, the optical axis adjustment can be executed with high reproducibility. In such a way, said device is applied to a laser oscillator which is converted to a series multistage string, light amplification is executed efficiently and stable output light can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、レーザ発振器を直列多段列伍して大出力レー
ザ光を得る大出力レーザ発生装置、各種の光測定装置お
よび光ビームを用いたn1量機器等に利用する光軸調整
装置に係わり、特に光軸を自在に調整可能な光軸調整装
置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a high-output laser generator that generates high-output laser light by arranging laser oscillators in multiple stages in series, various optical measurement devices, and The present invention relates to an optical axis adjustment device used in an n1 quantity device using a light beam, and particularly to an optical axis adjustment device that can freely adjust the optical axis.

(従来の技術) 一般に、複数のレーザ発振器を直列・多段列伍して前段
のレーザ発振器からのレーザ光を順次後段のレーザ発振
器で増幅しながら所望のレーザ出力を得る場合、レーザ
光の光軸上に多数のミラー等の光学部品を配置すると共
にこれら光学部品を用いて角度ずれと平行ずれを含む2
つの光軸ずれを調整しながら前後のレーザ発振器の光軸
を一致させることにより、レーザ光の増幅効率を上げて
いる。
(Prior art) Generally, when a desired laser output is obtained by arranging multiple laser oscillators in series or in multiple stages and sequentially amplifying the laser light from the previous stage laser oscillator with the subsequent stage laser oscillator, the optical axis of the laser light A large number of optical components such as mirrors are placed on the top, and these optical components are used to create two
The amplification efficiency of laser light is increased by aligning the optical axes of the front and rear laser oscillators while adjusting the misalignment of the two optical axes.

ところで、従来1以上のような光学系の光軸調整方法は
、専ら熟練作業者の勘に頼る主観的な判断によるところ
が多いので、ビーム品質(光軸の一致精度)の均一性に
欠け、かつ、調整作業に多大の労力と時間を要する問題
がある。また、調整後、温度や振動などの要因によって
光軸ずれを生じるが、その都度手作業で再調整する必要
があるので非常に厄介なものである。
By the way, the conventional method of adjusting the optical axis of an optical system as described above relies solely on subjective judgment based on the intuition of a skilled operator, and therefore lacks uniformity in beam quality (accuracy of alignment of optical axes) and , there is a problem that adjustment work requires a great deal of effort and time. Further, after adjustment, the optical axis may shift due to factors such as temperature or vibration, which is very troublesome as it requires manual readjustment each time.

(発明が解決しようとする課題) 従って、以上述べたように角度ずれと平行ずれを含む光
軸ずれの調整は、人間による手作業で行っているので光
軸調整に多大の労力と時間が必要であり、また光軸の調
整には熟練を必要とすることから光軸の一致精度の均一
性に欠け、さらに光軸ずれの調整作業を迅速に行えず即
応性の点で問題がある。
(Problem to be Solved by the Invention) Therefore, as described above, the adjustment of optical axis deviations, including angular deviations and parallel deviations, is done manually by humans, which requires a great deal of effort and time. Moreover, since adjustment of the optical axis requires skill, there is a lack of uniformity in the accuracy of alignment of the optical axes, and furthermore, there is a problem in terms of quick response because adjustment work for optical axis deviation cannot be performed quickly.

本発明は以上のような不具合を改善するためになされた
もので、人出を介さずに光軸調整を高精度、かつ、迅速
に行え、しかも再現性よく光軸調整を行うことにより、
例えば直列多段列伍したレーザ発振器等に適用して効率
よく光増幅して安定な出力光を得る光軸調整装置を提供
することを目的とする。
The present invention has been made in order to improve the above-mentioned problems, and by making it possible to perform optical axis adjustment with high precision and quickly without involving people, and by performing optical axis adjustment with good reproducibility,
It is an object of the present invention to provide an optical axis adjustment device that can be applied to, for example, a laser oscillator arranged in multiple stages in series to efficiently amplify light and obtain stable output light.

[発明の構成] (課題を解決するための手段) 本発明による光軸調整装置は上記目的を達成するために
、第1の光の光軸と第2の光の光軸との二次元的な光軸
ずれを調整する光軸調整装置において、第1の光の光路
上に設けられた少なくとも1個の回転、移動可能なミラ
ーと、このミラーで反射された第1の光と前記第2の光
軸との共通光軸上に所定の角度で直列に配置された複数
のハーフミラ−と、これらハーフミラ−がらの反射光を
受けて各々の光の位置を検出する光位置検出器とを備え
、この光位置検出器で検出された光の検出位置に応じて
前記ミラーを回転、移動させて光軸調整を行うものであ
る。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the optical axis adjusting device according to the present invention has two-dimensional alignment between the optical axis of the first light and the optical axis of the second light. In an optical axis adjustment device for adjusting an optical axis misalignment, at least one rotatable and movable mirror provided on the optical path of the first light, the first light reflected by this mirror and the second light A plurality of half mirrors arranged in series at a predetermined angle on a common optical axis with the optical axis of The optical axis is adjusted by rotating and moving the mirror according to the detection position of the light detected by the optical position detector.

また、前記第1の光源と前記ミラーとの間に前記ミラー
とは90@異なる方向に回転、移動するミラーを設け、
またミラーから反射された前記第1の光と第2の光軸と
の共通軸上に複数対のハーフミラ−およびこれら対ごと
のハーフミラ−に対応して光位置検出器を設け、各対ご
とのハーフミラ−からの反射光の検出位置から第1の光
軸と第2の光軸との三次元的な光軸ずれを調整する。
Further, a mirror that rotates and moves in a direction 90@ different from the mirror is provided between the first light source and the mirror,
Further, a plurality of pairs of half mirrors are provided on the common axis of the first light reflected from the mirror and the second optical axis, and an optical position detector is provided corresponding to each pair of half mirrors, and an optical position detector is provided for each pair of half mirrors. The three-dimensional optical axis misalignment between the first optical axis and the second optical axis is adjusted from the detection position of the reflected light from the half mirror.

(作用) 従って、本発明は以上のような手段を講じたことにより
、第1の光と第2の光軸との共通軸上に複数のハーフミ
ラ−を直列配置し、これらハーフミラ−で第1の光と第
2の光とを反射させて光位置検出器に結像する。しかる
後、この光位置検出器による同一ハーフミラ−からの反
射光の検出位置を同一点に合致する様に前記ミラーを回
転。
(Function) Therefore, by taking the above measures, the present invention arranges a plurality of half mirrors in series on the common axis of the first light and the second optical axis, and uses these half mirrors to The light and the second light are reflected and formed into an image on an optical position detector. Thereafter, the mirror is rotated so that the optical position detector detects the reflected light from the same half mirror at the same point.

移動すれば、二次元的な光軸ずれを除去できる。By moving it, two-dimensional optical axis deviation can be removed.

さらに、前記二次元調整用ミラーとは90″異なる方向
に回転、移動する三次元:A整用ミラーを設け、前記二
次元調整用ミラーによる回転、移動により二次元調整を
行った後、引続き、三次元調整用ミラーを回転、移動さ
せることにより、三次元方向の光軸ずれを除去できる。
Furthermore, a three-dimensional:A adjustment mirror that rotates and moves in a direction 90″ different from the two-dimensional adjustment mirror is provided, and after two-dimensional adjustment is performed by rotation and movement by the two-dimensional adjustment mirror, successively, By rotating and moving the three-dimensional adjustment mirror, optical axis deviation in the three-dimensional direction can be removed.

(実施例) 以下、本発明装置の実施例について第1図ないし第3図
を参照して説明する。第1図は二次元的な光軸調整装置
の一実施例を示す構成図であり、第2図および第3rI
!Jは光軸ずれの調整方法を説明する図である。第1図
において11は第1のレーザ発振器であって、このレー
ザ発振器11からのレーザ光の光軸上にミラー12が固
定配置されている。このミラー12は第1のレーザ発振
器11からのレーザ光を入射角度と等しい反射角度をも
って反射し、その反射光をミラー13に入射する。
(Embodiments) Hereinafter, embodiments of the apparatus of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a configuration diagram showing an embodiment of a two-dimensional optical axis adjustment device, and FIG.
! J is a diagram illustrating a method of adjusting optical axis deviation. In FIG. 1, reference numeral 11 denotes a first laser oscillator, and a mirror 12 is fixedly arranged on the optical axis of the laser beam from this laser oscillator 11. This mirror 12 reflects the laser beam from the first laser oscillator 11 at a reflection angle equal to the incident angle, and makes the reflected light incident on the mirror 13 .

このミラー13は前記第1のミラー12からのレーザ光
の光軸を所望とする方向へ反射するために回転および移
動可能に設けられている。14は第2のレーザ発振器で
あって、例えば第1のレーザ発振器11と平行に設置さ
れミラー13からの反射光を増幅して出力する機能をも
っている。また、ミラー13からの反射光15と第2の
レーザ発振器14のレーザ光16の共通軸方向に位置を
異ならせて直列にハーフミラ−17,18が配置されて
いる。この2つのハーフミラ−17,18はミラー13
によって反射された第1のレーザ発振器11からのレー
ザ光15と第2のレーザ発振器14からのレーザ光16
をそれぞれほぼ90″の方向に反射させて光位置検出器
19に導入する。
This mirror 13 is rotatably and movably provided to reflect the optical axis of the laser beam from the first mirror 12 in a desired direction. A second laser oscillator 14 is installed, for example, in parallel with the first laser oscillator 11 and has a function of amplifying the reflected light from the mirror 13 and outputting the amplified light. Further, half mirrors 17 and 18 are arranged in series at different positions in the direction of the common axis of the reflected light 15 from the mirror 13 and the laser light 16 of the second laser oscillator 14. These two half mirrors 17 and 18 are the mirror 13
Laser light 15 from the first laser oscillator 11 and laser light 16 from the second laser oscillator 14 reflected by
are reflected in the direction of approximately 90'' and introduced into the optical position detector 19.

この光位置検出器19は第1のレーザ発振器11のレー
ザ光15と第2の発振器14のレーザ光16との光軸ず
れに相当する広がりを有する位置で検出した後電気信号
に変換して出力する構成である。
This optical position detector 19 detects at a position having a spread corresponding to the optical axis misalignment between the laser beam 15 of the first laser oscillator 11 and the laser beam 16 of the second oscillator 14, and then converts it into an electric signal and outputs it. The configuration is as follows.

次に、二次元的な光軸ずれの調整のうち角度ずれの調整
について第2図を用いて説明する。第2図に示すように
第1のレーザ発振器11のレーザ光15はミラー12.
13でそれぞれ反射されて第2のレーザ発振器14を通
過後、ハーフミラ−17,18のd点および0点に入射
される。このハーフミラ−17,18ではほぼ90°の
方向に反射されて光位置検出器19のd′点とa′点の
位置で受光する。
Next, among the two-dimensional optical axis misalignment adjustments, angular misalignment adjustment will be explained using FIG. 2. As shown in FIG. 2, the laser beam 15 from the first laser oscillator 11 is transmitted to the mirror 12.
13 and pass through the second laser oscillator 14, the beams are incident on the d and 0 points of the half mirrors 17 and 18, respectively. The half mirrors 17 and 18 reflect the light in a direction of approximately 90°, and the light is received by the optical position detector 19 at points d' and a'.

一方、第2のレーザ発振器14からのレーザ光16は同
様にハーフミラ−17,18のb点およびa点に入射し
た後、その入射方向から90°の方向に反射し光位置検
出器19上のb′点およびa′点で受光する。
On the other hand, the laser beam 16 from the second laser oscillator 14 similarly enters points b and a of the half mirrors 17 and 18, and then is reflected in a direction 90° from the direction of incidence, and is reflected onto the optical position detector 19. Light is received at point b' and point a'.

従って、これら2つのレーザ光15.16の光軸に角度
ずれがある場合、 a /  C/ ≠b’ d’ なる関係式が成立する。そこで、以上のような関係にお
いてミラー13を図示(イ)方向に回転すれば、第1の
発振器11からのレーザ光15はミラー13の反射点を
基準に回転するので、第2のレーザ発振器14からのレ
ーザ光16の方向へ接近させることができる。その結果
、光位置検出器19における受光位置としては、 a’  c’  −b’  d’ なる関係に設定できる。すなわち、ミラー13の回転に
より角度ずれをなくして第1のレーザ発振器11の光軸
と第2のレーザ発振器14の光軸とを平行に設定できる
Therefore, when there is an angular deviation between the optical axes of these two laser beams 15 and 16, the relational expression a/C/≠b'd' holds true. Therefore, if the mirror 13 is rotated in the direction (A) shown in the figure in the above relationship, the laser beam 15 from the first oscillator 11 will rotate with the reflection point of the mirror 13 as a reference, so that the second laser oscillator 14 It is possible to approach the direction of the laser beam 16 from. As a result, the light receiving position in the optical position detector 19 can be set to the relationship a'c' - b'd'. That is, by rotating the mirror 13, the optical axis of the first laser oscillator 11 and the optical axis of the second laser oscillator 14 can be set parallel to each other by eliminating angular deviation.

この角度ずれの調整後、第3図に示す調整要領により平
行ずれの調整を行う。この角度ずれの調整段階では a′ c′−b′ d′≠0 なる関係となっている。そこで、今度はミラー13を図
示(ロ)方向に移動させると、レーザ光15は徐々に第
2のレーザ発振器14のレーザ光16に接近し逐には完
全に一致する。その結果。
After adjusting this angular shift, the parallel shift is adjusted according to the adjustment procedure shown in FIG. At this angular shift adjustment stage, the relationship is a'c'-b'd'≠0. Therefore, when the mirror 13 is moved in the direction (b) shown in the figure, the laser beam 15 gradually approaches the laser beam 16 of the second laser oscillator 14 and completely coincides with the laser beam 16. the result.

a’  c’ −b’ d’ −0 なる関係とすることができ、平行ずれを除去できる。a' c' - b' d' -0 This relationship can be established as follows, and parallel misalignment can be eliminated.

従って、本装置においては、二次元的な光軸ずれを角度
ずれと平行ずれに分けて光位置検出器19で検出した後
、最初にミラー13を回転させて角度ずれを調整した後
、引き続き、ミラー13を移動させて平行ずれを調整す
れば、2つのレーザ発振器11.14からのレーザ光1
5.16の光軸を平面上で完全に一致させることができ
る。
Therefore, in this device, after the two-dimensional optical axis deviation is divided into angular deviation and parallel deviation and detected by the optical position detector 19, the mirror 13 is first rotated to adjust the angular deviation, and then, By moving the mirror 13 and adjusting the parallel deviation, the laser beams 1 from the two laser oscillators 11 and 14
5.16 optical axes can be perfectly aligned on a plane.

次に、本発明の他の実施例について第4図ないし第6図
を参照して説明する。この実施例は、上記二次元的な光
軸調整を踏まえて三次元的な光軸ずれを調整する光軸調
整装置を示すもので、第4図は全体の構成図、第5図は
光位置検出器の受光位置を示す図、第6図は調整説明図
である。すなわち、上記実施例では紙面と平行な方向の
光軸ずれを調整したが、本実施例の装置では紙面と垂直
な方向の光軸ずれを調整するものであり、それに応じて
次のような光学部品が配置される。先ず、前記ミラー1
2からの反射光を受けて紙面と垂直方向に所定角度で反
射させるミラー21と、このミラー21からの反射光を
受けて前記ミラー13へ入射する回転、移動可能なミラ
ー22が設けられている。また、ミラー13からの反射
光15と第2のレーザ発振器14からのレーザ光16と
の共通光軸上に直列に2対のハーフミラ−(23゜24
)、(17,18)に対応して光位置検出器19.25
が設けられている。
Next, other embodiments of the present invention will be described with reference to FIGS. 4 to 6. This embodiment shows an optical axis adjustment device that adjusts three-dimensional optical axis deviation based on the above-mentioned two-dimensional optical axis adjustment. FIG. 6, which is a diagram showing the light receiving position of the detector, is an adjustment explanatory diagram. That is, in the above embodiment, the optical axis deviation in the direction parallel to the paper surface was adjusted, but in the device of this example, the optical axis deviation in the direction perpendicular to the paper surface is adjusted, and the following optical adjustment is performed accordingly. The parts are placed. First, the mirror 1
A mirror 21 that receives the reflected light from the mirror 2 and reflects it at a predetermined angle in a direction perpendicular to the paper surface, and a rotatable and movable mirror 22 that receives the reflected light from the mirror 21 and enters the mirror 13 are provided. . Furthermore, two pairs of half mirrors (23° 24°
), (17, 18), the optical position detector 19.25
is provided.

しかして、この三次元光軸調整は、先ずミラー13を回
転、移動させて前述したように二次元的な光軸ずれの調
整を行った後、引続き、第5図(a)、(b)に示すよ
うにミラー22を図示(ハ)方向に回転させて紙面に垂
直方向の角度ずれを修正し、さらにミラー22を図示(
ニ)方向に移動させて紙面に垂直方向の平行ずれを修正
する。これにより3次元での光軸を修正して2つの光軸
を完全に一致させることができる。なお、第6図の各点
は、第4図のずれを有する状態をそのまま表わしたもの
である。
Therefore, in this three-dimensional optical axis adjustment, first, the mirror 13 is rotated and moved to adjust the two-dimensional optical axis misalignment as described above, and then the following steps are performed as shown in FIGS. 5(a) and (b). As shown in FIG.
d) to correct the parallel misalignment in the direction perpendicular to the paper surface. This allows the three-dimensional optical axis to be corrected and the two optical axes to be perfectly aligned. It should be noted that each point in FIG. 6 directly represents the state with the deviation in FIG. 4.

ところで、実際の装置において上記操作を行った場合、
加工精度やアライメントの誤差等のために、後段の調整
が前段の調整結果に影響を与えることも考えられる。こ
の場合には再度初期状態から同じ調整を繰返せば、順次
その影響を縮少化でき、最終時には光軸を一致させるこ
とができる。
By the way, if you perform the above operation on an actual device,
Due to processing accuracy, alignment errors, etc., it is conceivable that the adjustment at the later stage will affect the adjustment result at the earlier stage. In this case, by repeating the same adjustment again from the initial state, the influence can be gradually reduced, and the optical axes can finally be brought into alignment.

i方、光位置検出器19.25の受光位置との関係では
、 a’ c’ −b’ d’ amo、a’ c’簡bり
 d’ 一〇 となる様に自動的に調整すれば、例えば熱や振動による
機器の歪みやアライメントの経時変化部品の交換などの
保守による位置ずれ等に対しても常に光軸を一致させる
ことができる。
On the other hand, in relation to the light receiving position of the optical position detector 19.25, if it is automatically adjusted so that a'c' - b'd' amo, a'c' simple d' 10. For example, the optical axes can always be made to coincide even in the case of distortion of the equipment due to heat or vibration or positional deviation due to maintenance such as replacement of alignment parts that change over time.

従って、以上のような実施例の構成によれば、第1の光
の光路上に回転、移動可能なミラーを配置し、かつ、こ
のミラーからの反射光15と第2のレーザ発振器14か
らのレーザ光16との共通光軸上にハーフミラ−17,
18を配置し、がっ、ハーフミラ−17,18がらの反
射光出力側に光位置検出器19を設け、この光位置検出
器19でハーフミラ−17,18からの反射光の位置を
検出しながら前記ミラー13を回転、移動調整を行うよ
うにしたので、構成簡単であり、労力および時間を大幅
に削減でき、調整の即応性および精度の向上に大きく貢
献でき、がっ、特別な熟練を必要とすることなく調整で
きる。また、二次元的な光軸ずれを角度ずれと平行ずれ
に分けて独立に検出でき、かつ、各ずれに応じて個別に
ミラー13を回転させ、あるいは移動させればよく光軸
調整が極めて容易である。また、角度ずれを調整するた
めのミラー13の回転は必ずしも光の入射点を中心とし
て行う必要が無いために装置の構成が容易である。また
、平行ずれの調整は、ミラー13を平行に移動させれば
よく、前後、左右等に移動方向を厳密に設定する必要が
ない。さらに、光位置検出器19から光ずれを直接検出
する方法であるので、各要素部品の取付けやミラー13
の回転移動の誤差の影響を直接受けることなく光軸の調
整を行うことができる。さらに、常時、光位置検出器1
9の検出位置を検出し、それらの位置関係が上述したよ
うに所定の関係になるようににフィードバックしてミラ
ー13を回転、移動調整することにより、温度、振動等
による装置の歪みゃアライメントの経時変化などに対し
て常に迅速に光軸を一致させることができる。
Therefore, according to the configuration of the embodiment as described above, a rotatable and movable mirror is arranged on the optical path of the first light, and the reflected light 15 from this mirror and the second laser oscillator 14 are A half mirror 17 is placed on the common optical axis with the laser beam 16.
An optical position detector 19 is provided on the output side of the reflected light from the half mirrors 17 and 18, and while detecting the position of the reflected light from the half mirrors 17 and 18 with this optical position detector 19, Since the mirror 13 is adjusted by rotation and movement, the configuration is simple, labor and time can be greatly reduced, and it can greatly contribute to improving the responsiveness and accuracy of adjustment, but does not require special skill. It can be adjusted without having to In addition, two-dimensional optical axis misalignment can be detected independently into angular misalignment and parallel misalignment, and optical axis adjustment is extremely easy by simply rotating or moving the mirror 13 individually according to each misalignment. It is. Further, since the rotation of the mirror 13 for adjusting the angular shift does not necessarily need to be performed around the incident point of light, the configuration of the apparatus is easy. In addition, the parallel shift can be adjusted by simply moving the mirror 13 in parallel, and there is no need to strictly set the moving direction such as front and rear, left and right. Furthermore, since this method directly detects the optical shift from the optical position detector 19, it is possible to attach
The optical axis can be adjusted without being directly affected by errors in rotational movement. Furthermore, the optical position detector 1 is always
By detecting the detection position of 9 and adjusting the rotation and movement of the mirror 13 by feeding back the positional relationship so that the positional relationship becomes the predetermined relationship as described above, distortion of the device due to temperature, vibration, etc. can be avoided. Optical axes can always be quickly aligned despite changes over time.

また、第4図に示す他の実施例においては、光軸調整要
素を直角方向に2組組合わせて、直交する2方向のずれ
を各々独立して所定の順序で調整することにより、第1
図の装置で得られる上記種々の効果の他に三次元的な光
軸ずれを容品に調整できる。
Further, in another embodiment shown in FIG. 4, two sets of optical axis adjustment elements are combined in the orthogonal direction, and the deviations in the two orthogonal directions are adjusted independently in a predetermined order, so that the first
In addition to the various effects mentioned above that can be obtained with the apparatus shown in the figure, three-dimensional optical axis deviation can be adjusted in a satisfactory manner.

なお、本発明装置は上記実施例に限定されるものではな
い。すなわち、上記実施例は1つのミラー13(22)
を回転、移動するようにしたが、例えば第7図のように
回転用ミラー13a(22a)と移動用ミラ 13b 
(22b) に分けて、個別に操作して角度ずれおよび
平行ずれを調整してもよい。また、角度ずれおよび平行
ずれを調整する手段として、第8図に示すように2個の
ミラー13a、13bを用いると共にこれらミラー13
a、13bに回転機能をもたせ、先ず、1個のミラー1
3aを回転させて角度ずれの調整を行った後、他の1個
のミラー13bを同一方向。
Note that the device of the present invention is not limited to the above embodiments. That is, in the above embodiment, one mirror 13 (22)
For example, as shown in FIG. 7, the rotating mirror 13a (22a) and the moving mirror 13b are rotated and moved.
(22b) The angle deviation and the parallel deviation may be adjusted by separately operating the two parts. Further, as a means for adjusting angular deviation and parallel deviation, two mirrors 13a and 13b are used as shown in FIG.
First, one mirror 1 is provided with a rotation function in a and 13b.
After adjusting the angle shift by rotating mirror 3a, move the other mirror 13b in the same direction.

かつ、同一回転角度だけ回転させて平行ずれを調整する
構成であってもよい。
In addition, a configuration may be adopted in which the parallel shift is adjusted by rotating the same rotation angle.

また、第1のレーザ発振器11と第2のレーザ発振器1
4を平行に配置したので固定ミラー12゜21が必要に
なったが、例えば第1のレーザ発振器11と第2のレー
ザ発振器14とを直角に配置すれば、かかる固定ミラー
12.21は不要とすることができる。その他、本発明
はその要旨を逸脱しない範囲で種々変形して実施できる
In addition, the first laser oscillator 11 and the second laser oscillator 1
4 are arranged in parallel, a fixed mirror 12.21 is required, but if, for example, the first laser oscillator 11 and the second laser oscillator 14 are arranged at right angles, such fixed mirror 12.21 is unnecessary. can do. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果] 以上詳記したように本発明によれば、第1の光の経路上
に回転、移動可能なミラーを設け、このミラーからの反
射光および第2の光の光軸との共通光軸上に直列にハー
フミラ−を配列し、これらハーフミラ−からの反射光の
結像位置に応じて前記ミラーを回転、移動するようにし
たので、人手を介さずに光軸調整を高精度、かつ、迅速
に行え、しかも再現性よく光軸調整を行うことができる
。これによって、例えば直列多段列伍したレーザ発振器
等に適用して効率よ(光増幅して安定な出力光を得る光
軸調整装置を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, a rotatable and movable mirror is provided on the path of the first light, and the light reflected from this mirror and the optical axis of the second light are connected. Half mirrors are arranged in series on a common optical axis, and the mirrors are rotated and moved according to the imaging position of the reflected light from these half mirrors, allowing highly accurate optical axis adjustment without human intervention. Moreover, the optical axis adjustment can be performed quickly and with good reproducibility. As a result, it is possible to provide an optical axis adjustment device that can be applied to, for example, a laser oscillator arranged in multiple stages in series to efficiently amplify light and obtain stable output light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明に係わる光軸調整装置の一
実施例を説明するために示したもので、第1図は一実施
例としての構成図、第2図および第3図は二次元的な光
軸ずれの調整方法を原理的に説明する図、第4図ないし
第6図は本発明装置の他の実施例を説明するために示し
たもので、第4図は同実施例の構成図、第5図は調整方
法を説明する図、第6図は光位置検出器の受光位置を示
す図、第7図および第8図は本発明の他の実施例を説明
するミラー配置構成図である。 11・・・第1のレーザ発振器、12・・・固定ミラー
、13.22・・・回転、移動可能なミラー、14・・
・第2のレーザ発振器、17.18.23.24・・・
ハーフミラ−119,25・・・光位置検出器。 出願人代理人 弁理士 鈴江武彦 第1図 第4図 (a)       (b) 第5図 第6図 第7図 第8図
1 to 3 are shown to explain an embodiment of the optical axis adjusting device according to the present invention. FIG. 1 is a configuration diagram of one embodiment, and FIGS. 2 and 3 are Figures 4 to 6, which explain the method of adjusting two-dimensional optical axis deviation in principle, are shown to explain other embodiments of the device of the present invention, and Figure 4 shows the same embodiment. A configuration diagram of an example, FIG. 5 is a diagram explaining the adjustment method, FIG. 6 is a diagram showing the light receiving position of the optical position detector, and FIGS. 7 and 8 are mirrors explaining other embodiments of the present invention. FIG. DESCRIPTION OF SYMBOLS 11... First laser oscillator, 12... Fixed mirror, 13.22... Rotatable, movable mirror, 14...
・Second laser oscillator, 17.18.23.24...
Half mirror 119, 25... optical position detector. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 4 (a) (b) Figure 5 Figure 6 Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)第1の光の光軸と第2の光の光軸との二次元的な
光軸ずれを調整する光軸調整装置において、第1の光の
光路上に設けられた少なくとも1個の回転、移動可能な
ミラーと、このミラーで反射された第1の光と前記第2
の光軸との共通光軸上に所定の角度で直列に配置された
複数のハーフミラーと、これらハーフミラーからの反射
光を受けて各々の光の位置を検出する光位置検出器とを
備え、この光位置検出器で検出された光の検出位置に応
じて前記ミラーを回転、移動させて光軸調整を行うこと
を特徴とする光軸調整装置。
(1) In an optical axis adjustment device that adjusts two-dimensional optical axis misalignment between the optical axis of the first light and the optical axis of the second light, at least one optical axis adjustment device is provided on the optical path of the first light. a rotatable and movable mirror; a first light reflected by the mirror; and a second light reflected by the mirror.
It is equipped with a plurality of half mirrors arranged in series at a predetermined angle on a common optical axis with the optical axis of An optical axis adjusting device, characterized in that the optical axis is adjusted by rotating and moving the mirror according to the detection position of the light detected by the optical position detector.
(2)第1の光の光軸と第2の光の光軸との三次元的な
光軸ずれを調整する光軸調整装置において、第1の光の
光路上に設けられた互いに90°異なる方向で回転、移
動可能な第1および第2のミラーと、この第2のミラー
で反射された第1の光と前記第2の光軸との共通光軸上
に所定の角度で直列に配置された複数対のハーフミラー
と、これら対ごとのハーフミラーからの反射光を受けて
各々の光の位置を検出する複数の光位置検出器とを備え
、これら各光位置検出器で検出された光の検出位置に応
じて前記第1および第2のミラーを回転、移動させて光
軸調整を行うことを特徴とする光軸調整装置。
(2) In an optical axis adjustment device that adjusts the three-dimensional optical axis misalignment between the optical axis of the first light and the optical axis of the second light, the optical axis of the first light and the optical axis of the second light are provided at 90 degrees to each other. first and second mirrors that are rotatable and movable in different directions; the first light reflected by the second mirror and the second optical axis are arranged in series at a predetermined angle on a common optical axis; It is equipped with a plurality of pairs of half mirrors arranged and a plurality of optical position detectors that receive the reflected light from each pair of half mirrors and detect the position of each light. An optical axis adjusting device characterized in that the optical axis is adjusted by rotating and moving the first and second mirrors according to the detection position of the light.
JP7883688A 1988-03-31 1988-03-31 Optical axis adjusting device Pending JPH01251010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7883688A JPH01251010A (en) 1988-03-31 1988-03-31 Optical axis adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7883688A JPH01251010A (en) 1988-03-31 1988-03-31 Optical axis adjusting device

Publications (1)

Publication Number Publication Date
JPH01251010A true JPH01251010A (en) 1989-10-06

Family

ID=13672914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7883688A Pending JPH01251010A (en) 1988-03-31 1988-03-31 Optical axis adjusting device

Country Status (1)

Country Link
JP (1) JPH01251010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107573A (en) * 2009-11-20 2011-06-02 Nec Corp System, device and method for adjusting optical axis, and program
CN102747214A (en) * 2012-06-29 2012-10-24 中国科学院力学研究所 Multi optical path combined shock peening system
CN103069326A (en) * 2010-07-16 2013-04-24 德尔菲技术公司 Adjustable head-up display device
WO2021020394A1 (en) * 2019-07-29 2021-02-04 株式会社小糸製作所 Beam adjusting method and beam adjusting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107573A (en) * 2009-11-20 2011-06-02 Nec Corp System, device and method for adjusting optical axis, and program
CN103069326A (en) * 2010-07-16 2013-04-24 德尔菲技术公司 Adjustable head-up display device
JP2013535700A (en) * 2010-07-16 2013-09-12 デルファイ・テクノロジーズ・インコーポレーテッド Adjustable head-up display device
CN102747214A (en) * 2012-06-29 2012-10-24 中国科学院力学研究所 Multi optical path combined shock peening system
WO2021020394A1 (en) * 2019-07-29 2021-02-04 株式会社小糸製作所 Beam adjusting method and beam adjusting device

Similar Documents

Publication Publication Date Title
JP3478856B2 (en) Laser equipment
TW550867B (en) Laser beam delivery system with trepanning module
JPH0698083A (en) Component assembly apparatus of optical color scanner
TW200300372A (en) Laser machining apparatus
JP5201311B2 (en) Laser processing method and apparatus
CN109332879B (en) Michelson interference-based online galvanometer positioning precision correction processing system and method
JP2874280B2 (en) Peripheral exposure apparatus and peripheral exposure method
TW201144003A (en) A method for imaging workpiece surfaces at high robot transfer speeds with correction of motion-induced distortion
US20040104208A1 (en) Laser machining apparatus
JPS62125646A (en) Light beam aligner
CN212470240U (en) Light beam pointing stability monitoring and feedback device
CN114488434B (en) Optical fiber automatic coupling system and method
JPH01251010A (en) Optical axis adjusting device
CN108351250B (en) Automated delay line alignment
JPH05228672A (en) Automatic alignment adjuster
JPS58224088A (en) Laser processing device
JPH01278987A (en) Adjusting device for optical axis
JP2001147399A (en) Laser beam machining device and adjusting method therefor
CN112033647A (en) Multi-aperture system pupil detection and correction method
JP2760622B2 (en) Laser processing equipment
CN111521844B (en) Interferometer zero-range difference online debugging mechanism for VISAR system
JP3076747B2 (en) High power laser transmission method and device
TW202411000A (en) Laser processing apparatus including laser sensor system and methods of measurement of beam characteristics
JPH0713058A (en) Method for adjusting optical axis of objective lens
JPH01183816A (en) Focusing system of alignment mark in aligner