JPH01249953A - Heater of stirling engine - Google Patents

Heater of stirling engine

Info

Publication number
JPH01249953A
JPH01249953A JP7655988A JP7655988A JPH01249953A JP H01249953 A JPH01249953 A JP H01249953A JP 7655988 A JP7655988 A JP 7655988A JP 7655988 A JP7655988 A JP 7655988A JP H01249953 A JPH01249953 A JP H01249953A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
working fluid
heater
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7655988A
Other languages
Japanese (ja)
Inventor
Shigemi Nagatomo
長友 繁美
Sei Hisaoka
久岡 聖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7655988A priority Critical patent/JPH01249953A/en
Publication of JPH01249953A publication Critical patent/JPH01249953A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the thermal efficiency by allowing the outer pipe and inner pipe of a heat transfer pipe to partially contact. CONSTITUTION:A plurality of projecting stripes 27 are formed along the flowing direction of the fluid, on the outer periphery of the inner pipe 22 of a heat transfer pipe 20 which constitutes a heater 5, and the top edge of each projecting stripe 27 is allowed to contact the inner peripheral surface of an outer pipe 21. The heat transmitted to the outer pipe 21 from a combustion chamber 14 as heating source is not only transmitted to the fluid between the outer pipe 21 and the inner pipe 22 but transmitted to the inner pipe 22 through a contact part and transmitted to the fluid inside the inner pipe 22. Therefore, also the inner pipe acts as heat transfer body, and the thermal efficiency is improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明はスターリングエンジンに係り、特に作動流体
を加熱する加熱器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a Stirling engine, and more particularly to a heater for heating a working fluid.

(従来の技術) 一般にスターリングエンジンは膨張シリンダ、圧縮シリ
ンダ、加熱器(高温側熱交換器)、再生器、及び冷却器
(低温側熱交換器)により作動流体の閉流路が構成され
ている。この閉流路のうちエンジンの出力に直接関与す
るスペースは膨張シリンダと圧縮シリンダの行程容積で
あり、他のスペースは無効容積となる。無効容積が小さ
い程エンジンの性能は優れたものとなる。この無効容積
を小さくするためには、作動流体の流路断面積を小さく
する必要がある。また、加熱器での加熱温度が高い程エ
ンジンの効率が向上するため、加熱器を構成する伝熱管
の伝熱面積をできる限り大きくする必要がある。
(Prior art) In general, a Stirling engine has a closed flow path for working fluid consisting of an expansion cylinder, a compression cylinder, a heater (high temperature side heat exchanger), a regenerator, and a cooler (low temperature side heat exchanger). . The space in this closed flow path that is directly related to the output of the engine is the stroke volume of the expansion cylinder and compression cylinder, and the other spaces are ineffective volumes. The smaller the dead volume, the better the engine performance. In order to reduce this ineffective volume, it is necessary to reduce the flow path cross-sectional area of the working fluid. Furthermore, since the efficiency of the engine improves as the heating temperature in the heater increases, it is necessary to make the heat transfer area of the heat exchanger tubes constituting the heater as large as possible.

無効容積を小さくしながら伝熱面積の増大を図るため、
内径1〜4s程度の多数の細管によって伝熱管を構成し
た加熱器が知られている。しかしながら、このような構
造では、多数の細管を膨張シリンダ上部に多数曲管形式
で接続するため、管の曲がりや溶接個所が多く、作動流
体の漏れに対する信頼性が低下するばかりでなく、溶接
作業が極めて煩雑になるとともに、工作がきわめて複雑
かつ困難になる。また、作動ガスの流動損失が大きくな
ってしまう。
In order to increase the heat transfer area while reducing the dead volume,
2. Description of the Related Art A heater is known in which a heat transfer tube is constituted by a large number of thin tubes each having an inner diameter of about 1 to 4 seconds. However, in this structure, many thin tubes are connected to the upper part of the expansion cylinder in the form of multiple curved tubes, so there are many tube bends and welding points, which not only reduces reliability against leakage of working fluid, but also reduces the welding work. It becomes extremely complicated, and the work becomes extremely complicated and difficult. Moreover, the flow loss of the working gas becomes large.

このような問題を解決するために二重管構造(バヨネッ
ト形)の伝熱管を膨張シリンダの上部に燃焼室に面して
並べることにより、工作を簡単にし、かつ作動ガスの流
動抵抗を小さくした加熱器が提案されている(特開昭5
8−2556)。
To solve this problem, we have made the construction easier and reduced the flow resistance of the working gas by arranging double-tube structure (bayonet-shaped) heat transfer tubes at the top of the expansion cylinder facing the combustion chamber. A heating device has been proposed (Japanese Patent Application Laid-open No. 5
8-2556).

しかし、この構成では伝熱面積を十分に大きくするには
、伝熱管を大径にするかまたは伝熱管の本数を増やす必
要が生じる。このため、エンジンのコンパクト化のため
に限られたスペース内においては、伝熱面積を増大させ
ることには限界があり、エンジンの性能向上に大きな制
約条件となっていた。
However, with this configuration, in order to sufficiently increase the heat transfer area, it is necessary to increase the diameter of the heat exchanger tubes or increase the number of heat exchanger tubes. For this reason, there is a limit to increasing the heat transfer area within the space limited to make the engine more compact, and this has been a major constraint on improving engine performance.

(発明が解決しようとする課題) このように従来の二重管構造の伝熱管を用いた加熱器で
は、伝熱面積を大きくしようとすると伝熱管の径を大き
くしたり、伝熱管の本数を増やす必要があり、限られた
スペースで伝熱面積の増大を図ることが難しいという問
題があった。
(Problems to be Solved by the Invention) In this way, in a heater using conventional double-tube structure heat transfer tubes, in order to increase the heat transfer area, it is necessary to increase the diameter of the heat transfer tubes or increase the number of heat transfer tubes. There was a problem in that it was difficult to increase the heat transfer area in a limited space.

この発明は、スターリングエンジン内の限られたスペー
スで作動流体側の伝熱面積を増大させて効率向上を図る
ことができる二重管構造の伝熱管を用いた加熱器を提供
することを目的とする。
An object of the present invention is to provide a heater using a heat transfer tube with a double tube structure, which can increase the heat transfer area on the working fluid side in a limited space inside a Stirling engine and improve efficiency. do.

[発明の構成] (課題を解決するための手段) この発明は上記目的を達成するため、一端が閉塞され他
端が開口された外管と、この外管内に設けられ、両端が
開口された内管とからなる二重管構造の伝熱管に作動流
体を通して燃焼1内の燃焼ガスの熱との間で熱交換を行
なうことにより、作動流体を加熱するスターリングエン
ジンの加熱器において、外管と内管とを部分的に接触さ
せたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention includes an outer tube with one end closed and the other end open, and a tube provided inside the outer tube with both ends open. In a Stirling engine heater, the working fluid is heated by passing the working fluid through a double-tube structure heat transfer tube consisting of an inner tube and exchanging heat with the heat of the combustion gas in the combustion 1. It is characterized by being in partial contact with the inner tube.

また、外管と内管との接触部は、好ましくは作動流体の
流れ方向に沿った突条が形成される。
Further, the contact portion between the outer tube and the inner tube preferably has a protrusion extending along the flow direction of the working fluid.

また、この発明では全伝熱管の外管と内管との間の作動
流体流路の断面積の合計を膨張ピストンの断面積の3〜
6%の範囲に設定する。
In addition, in this invention, the total cross-sectional area of the working fluid flow path between the outer tube and the inner tube of all heat transfer tubes is set to 3 to 3 of the cross-sectional area of the expansion piston.
Set to a range of 6%.

(作 用) この発明の加熱器においては、加熱源である燃焼室より
伝熱管の外管へ伝わった熱は、外管と内管との間の作動
流体へ伝達されるのみでなく、外管と内管との接触部を
通して外管から内管にも伝達され、内管に伝わった熱は
さらに内管の内側を流れる作動流体に伝達される。
(Function) In the heater of the present invention, the heat transferred from the combustion chamber, which is the heating source, to the outer tube of the heat transfer tube is not only transferred to the working fluid between the outer tube and the inner tube, but also is transferred to the outer tube. Heat is also transferred from the outer tube to the inner tube through the contact portion between the tube and the inner tube, and the heat transferred to the inner tube is further transferred to the working fluid flowing inside the inner tube.

すなわち、外管と内管とを部分的に接触させることによ
り、従来は伝熱に寄与していなかった内情も伝熱体とし
て働くようになり、伝熱管の作動流体側の伝熱面積が大
幅に増大する。
In other words, by bringing the outer tube into partial contact with the inner tube, the internal components that previously did not contribute to heat transfer now work as a heat transfer body, and the heat transfer area on the working fluid side of the heat transfer tube is greatly increased. increases to

この場合、外管と内管との接触部が作動流体の流れ方向
に沿った突条であれば、この接触部が作動流体の流れの
妨げとなることが少なくなり、作動流体の流動損失が小
さく抑えられる。
In this case, if the contact part between the outer pipe and the inner pipe is a protrusion along the flow direction of the working fluid, this contact part will be less likely to obstruct the flow of the working fluid, and the flow loss of the working fluid will be reduced. Can be kept small.

また、外管と内管との間の作動流体流路の断面積の合計
を膨張ピストンの断面積の3〜6%の範囲に選ぶと、作
動流体の流動損失の増加がさらに抑制されるとともに、
無効容積も小さ(抑えられるため、伝熱面積の増大と相
まってエンジンの熱効率がより向上する。
Furthermore, if the total cross-sectional area of the working fluid flow path between the outer pipe and the inner pipe is selected to be in the range of 3 to 6% of the cross-sectional area of the expansion piston, the increase in flow loss of the working fluid can be further suppressed. ,
Since the dead volume is also small (reduced), the thermal efficiency of the engine is further improved by increasing the heat transfer area.

(実施例)     ゛ 以下、図面を参照して、この発明の一実施例を詳細に説
明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係るスターリングエンジ
ンの縦断面図を示す。このスターリングは、大きく分け
て膨張シリンダ1及び膨張ピストン2と、圧縮シリンダ
3及び圧縮ビスタン4と加熱器(高温側熱交換器)5と
、再生器6と、冷却器(低温側熱交換器)7とからなり
、これらが接続されて作動流体の閉流銘(作動空間)が
形成されている。この間流路内を流動する作動流体とし
ては、非凝縮性のヘリウムや水素等が使用される。
FIG. 1 shows a longitudinal sectional view of a Stirling engine according to an embodiment of the present invention. This Stirling is roughly divided into an expansion cylinder 1, an expansion piston 2, a compression cylinder 3, a compression cylinder 4, a heater (high temperature side heat exchanger) 5, a regenerator 6, and a cooler (low temperature side heat exchanger). 7, which are connected to form a closed flow space (working space) for the working fluid. During this time, non-condensable helium, hydrogen, or the like is used as the working fluid flowing in the flow path.

なお、膨張ピストン2はコンロッド8を介してクランク
至11内のクランク軸10に連結されている。また、圧
縮ピストン4はコンロッド9を介してクランク軸10に
連結されている。
Note that the expansion piston 2 is connected to a crankshaft 10 in a crank shaft 11 via a connecting rod 8. Further, the compression piston 4 is connected to a crankshaft 10 via a connecting rod 9.

加熱器5は、断熱材13で囲まれた燃焼室14に面して
複数個設けられている。燃焼室14の頂部には、ガスノ
ズル15及びスワラ−16が設けられている。燃焼室1
4の底部側は、空気予熱器17を介して排気筒19に連
通している。空気予熱器17は燃焼室14から排出され
る燃焼排ガスの熱によって、吸気筒18から吸入される
燃焼用空気を予熱するもので、この予熱された空気がス
ワラ−16を介して燃焼室14に旋回供給される。
A plurality of heaters 5 are provided facing a combustion chamber 14 surrounded by a heat insulating material 13. A gas nozzle 15 and a swirler 16 are provided at the top of the combustion chamber 14. Combustion chamber 1
The bottom side of 4 communicates with an exhaust pipe 19 via an air preheater 17. The air preheater 17 preheats the combustion air taken in from the intake pipe 18 using the heat of the combustion exhaust gas discharged from the combustion chamber 14, and this preheated air flows into the combustion chamber 14 via the swirler 16. Swirl fed.

加熱器5は伝熱管20を主体として構成されている。こ
の伝熱管20は内部通路に作動流体を流動させ、燃焼室
14内の燃焼ガスとの熱交換により作動流体を加熱する
もので、第2図及び第3図のように構成されている。す
なわち、伝熱管20は外管21と、内管22とからなり
、外管21は一端21aが閉塞状態に形成され、外周面
に複数の伝熱フィン23が設けられている。内管22は
両端22a 、22bが開口され、第3図に示すように
その外径r1が外管21の内径r2に対して若干小さく
形成されている。この内管22が外管21内に挿入され
、両者間に作動流体の第1流路24が形成されている。
The heater 5 is mainly composed of a heat exchanger tube 20. The heat transfer tube 20 allows the working fluid to flow through an internal passage and heats the working fluid by heat exchange with the combustion gas in the combustion chamber 14, and is constructed as shown in FIGS. 2 and 3. That is, the heat transfer tube 20 consists of an outer tube 21 and an inner tube 22. The outer tube 21 has one end 21a closed and a plurality of heat transfer fins 23 provided on the outer circumferential surface. The inner tube 22 is open at both ends 22a and 22b, and its outer diameter r1 is slightly smaller than the inner diameter r2 of the outer tube 21, as shown in FIG. This inner tube 22 is inserted into the outer tube 21, and a first flow path 24 for the working fluid is formed between the two.

また、この挿入状態で、内管22の一端開口22aと外
管21の一端21aとの間に、第1流路24及び内管2
2の内側の第2流路25に連通する空間部26が形成さ
れ、さらに内管22の他端開口22bが外管21の他端
開口21bから突出している。
In addition, in this inserted state, the first flow path 24 and the inner tube 2
A space 26 communicating with the second flow path 25 inside the inner tube 2 is formed, and the other end opening 22b of the inner tube 22 protrudes from the other end opening 21b of the outer tube 21.

そして、内管22の外周には流体の流れ方向に沿って突
条27が周方向に複数本(図では6本)形成され、各突
条27の先端が外管21の内周面に接触している。
A plurality of protrusions 27 (six in the figure) are formed circumferentially on the outer periphery of the inner tube 22 along the fluid flow direction, and the tip of each protrusion 27 contacts the inner circumferential surface of the outer tube 21. are doing.

このように1本の伝熱管20内に、外管21と内管22
により略倍の長さの流路が形成され、かつ突条27によ
って外管21と内管22が接触し、外管21から内管2
2への伝熱作用が得られるため、従来の二重管構造の伝
熱管に比べ、作動流体側の伝熱面積がほぼ2倍となって
いる。
In this way, an outer tube 21 and an inner tube 22 are placed in one heat transfer tube 20.
A flow path with approximately twice the length is formed by this, and the outer tube 21 and the inner tube 22 are in contact with each other by the protrusion 27, and the outer tube 21 is connected to the inner tube 2.
2, the heat transfer area on the working fluid side is approximately twice as large as that of a conventional double-tube structure heat transfer tube.

なお、第4図に示すように内管22の内周面に作動流体
の流れ方向に沿った多数の溝を形成し、第2流路25で
の作動ガスへの伝熱面積をさらに増大させることも有効
である。
Note that, as shown in FIG. 4, a large number of grooves are formed on the inner peripheral surface of the inner tube 22 along the flow direction of the working fluid to further increase the heat transfer area to the working gas in the second flow path 25. It is also effective.

こうして構成された各伝熱管20の内部管22の他端開
口22bは膨張シリンダ1に接続され、外管21の他端
開口21bは膨張シリンダ1に溶接等で接続されている
。そして、第2流路25は再生器6に連通している。
The other end opening 22b of the inner tube 22 of each heat transfer tube 20 configured in this manner is connected to the expansion cylinder 1, and the other end opening 21b of the outer tube 21 is connected to the expansion cylinder 1 by welding or the like. The second flow path 25 communicates with the regenerator 6.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

燃焼室14内での高温の燃焼ガスを熱源として加熱器5
の伝熱管20が加熱される。このとき、伝熱フィン23
の作用により、外管21が効率よく加熱される。外管2
1が加熱されると、突条27を介して内管22も加熱さ
れる。従って、外管21の他に、内管22の表面も作動
流体への伝熱面として効果的に作用する。これにより、
伝熱管20内を第1流路24〜空間部26〜第2流路2
5と流動する作動流体が加熱される。このとき、伝熱管
20と同一長さの従来の伝熱管と比較して、第1流路2
4と第2流路25とで略倍の長さの流路が形成され、か
つこの2つの流路24,25の両方が伝熱作用を持つの
で、伝熱面積は倍増され1、動流体の加熱温度を効果、
的に高めることができる。
The heater 5 uses the high temperature combustion gas in the combustion chamber 14 as a heat source.
heat exchanger tube 20 is heated. At this time, the heat transfer fins 23
Due to this action, the outer tube 21 is efficiently heated. Outer tube 2
1 is heated, the inner tube 22 is also heated via the protrusion 27. Therefore, in addition to the outer tube 21, the surface of the inner tube 22 also effectively acts as a heat transfer surface to the working fluid. This results in
The inside of the heat exchanger tube 20 is connected from the first flow path 24 to the space 26 to the second flow path 2.
5 and the flowing working fluid is heated. At this time, compared to a conventional heat exchanger tube having the same length as the heat exchanger tube 20, the first flow path 2
4 and the second flow path 25 form a flow path with approximately twice the length, and both of these two flow paths 24 and 25 have a heat transfer function, so the heat transfer area is doubled and the moving fluid Effect of heating temperature,
can be improved.

こうして加熱された作動流体は内管22の他端開口22
bから膨張シリンダ1内へ送り込まれて膨張する。これ
により、膨張ピストン2が押下げられ、コンロッド8を
介してクランク室11内のクランク軸10が回転される
The working fluid thus heated is transferred to the other end opening 22 of the inner tube 22.
b and is fed into the expansion cylinder 1 and expanded. As a result, the expansion piston 2 is pushed down, and the crankshaft 10 in the crank chamber 11 is rotated via the connecting rod 8.

そして、膨張ピストン2が圧縮工程に移ると、膨張シリ
ンダ1内の作動流体は作動流体通路28を介して外管2
1の他端開口21bから第1流路24→空間部26→第
2流路25の順に通過し、内管22の他端開口22bか
ら再生器6に移送される。再生器6へ移送された作動流
体はその保有熱が再生器6に蓄熱され、冷却器7に至る
。この冷却器7では、作動流体と冷却水との間で熱交換
が行なわれることにより、作動流体が冷却される。
Then, when the expansion piston 2 moves to the compression stroke, the working fluid in the expansion cylinder 1 passes through the working fluid passage 28 to the outer tube 2.
1 passes through the other end opening 21b of the inner tube 22 in the order of the first flow path 24 → space 26 → second flow path 25, and is transferred to the regenerator 6 from the other end opening 22b of the inner tube 22. The heat retained in the working fluid transferred to the regenerator 6 is stored in the regenerator 6, and the working fluid reaches the cooler 7. In this cooler 7, the working fluid is cooled by heat exchange between the working fluid and the cooling water.

こうして冷却器7で冷却された作動流体は圧力が低下さ
れ、クランク軸10の回転によって圧縮工程にある圧縮
シリンダ3内の圧縮ピストン4を圧縮方向へ付勢する。
The pressure of the working fluid cooled by the cooler 7 is reduced, and the rotation of the crankshaft 10 urges the compression piston 4 in the compression cylinder 3, which is in the compression process, in the compression direction.

この圧縮ピストン4の圧縮により、圧縮シリンダ3内の
作動流体は再び冷却器7を通過して再生器6に移送され
る。再生器6では作動流体が先に蓄熱された熱を吸熱し
、再び加熱器5の伝熱管20へ流れ込む。そして、上記
の作用が繰返され、クランク軸10の継続した回転が得
られる。
Due to this compression of the compression piston 4, the working fluid in the compression cylinder 3 is transferred to the regenerator 6 through the cooler 7 again. In the regenerator 6, the working fluid absorbs the previously stored heat and flows into the heat transfer tube 20 of the heater 5 again. Then, the above-mentioned action is repeated, and continuous rotation of the crankshaft 10 is obtained.

なお、伝熱管20は第1流路24及び第2流路25の断
面積をそれぞれAt 、AOとすると次の数式で示すよ
うに構成される。
Note that the heat exchanger tube 20 is configured as shown in the following formula, where the cross-sectional areas of the first flow path 24 and the second flow path 25 are At and AO, respectively.

0.03 < N −A i /Ap < 0.060
.03 <N−Ao /Ap < 0.0にこで、N:
伝熱管の本数 Ap:膨張ピストンの断面積(膨張シリンダ内断面積) すなわち、全伝熱管20の第1及び第2通路24.25
の断面積のそれぞれの合計x−A+及びN−Aoを膨張
ピストン1の断面積Aりの3〜6%の範囲に選定する。
0.03<N-Ai/Ap<0.060
.. 03 <N-Ao/Ap < 0.0 Nicode, N:
Number of heat exchanger tubes Ap: Cross-sectional area of expansion piston (inner cross-sectional area of expansion cylinder) In other words, first and second passages 24.25 of all heat exchanger tubes 20
The respective sums x-A+ and N-Ao of the cross-sectional areas are selected in the range of 3 to 6% of the cross-sectional area A of the expansion piston 1.

このようにすると、第5図に示すようにスターリングエ
ンジンの熱効率を30%以上に向上させることができる
。これはN−At 、N−AOがAI)の3%に満たな
いと作動流体の流動損失が増大して図示効率(作動流体
の熱的効率)が低下してしまい、また6%を越えると作
動空間の無効容積が増加して出力が低下するためであり
、これら両方がエンジンとしての熱効率に影響を及ぼす
。N−A1 /AI)、N−A。
In this way, as shown in FIG. 5, the thermal efficiency of the Stirling engine can be improved to 30% or more. If N-At, N-AO is less than 3% of AI), the flow loss of the working fluid increases and the indicated efficiency (thermal efficiency of the working fluid) decreases, and if it exceeds 6%, This is because the dead volume of the working space increases and the output decreases, both of which affect the thermal efficiency of the engine. N-A1/AI), N-A.

/At)を上記の範囲に選ぶと、流動損失の増大及び出
力低下がバランスよく抑制され、高い効率が得られる。
/At) within the above range, increases in flow loss and decreases in output are suppressed in a well-balanced manner, resulting in high efficiency.

なお、実験的にはN−A1/Apのみを上記の範囲に選
び、N−Ao /Apを上記の範囲から若干外れた値に
しても同様の結果が得られた。
Note that similar results were experimentally obtained even when only N-A1/Ap was selected within the above range and N-Ao/Ap was set to a value slightly outside the above range.

[発明の効果] 本発明によればスターリングエンジンの加熱器を二重管
構造とした上で、その外管と内管を部分的に接触させた
ことにより、従来の二重管構造の伝熱管に比べ、概略2
倍近い伝熱面積が得られるため、伝熱管の本数を少なく
、外径及び長さも小さくでき、高効率で小形のスターリ
ングエンジンが実現できる。
[Effects of the Invention] According to the present invention, the heater of the Stirling engine has a double tube structure, and the outer tube and the inner tube are brought into partial contact with each other. Compared to approximately 2
Since the heat transfer area can be nearly doubled, the number of heat transfer tubes can be reduced, and the outer diameter and length can also be reduced, making it possible to realize a highly efficient and compact Stirling engine.

また、外管と内管との接続部を作動流体の流れ方向に沿
った突条とすることにより、この接触部による作動流体
の流動損失増加が最小限に抑えられる。
Further, by forming the connecting portion between the outer tube and the inner tube as a protrusion along the flow direction of the working fluid, an increase in flow loss of the working fluid due to this contact portion can be minimized.

さらに、全伝熱管の外管・内管間の作動流体流路の断面
積の合計を膨張ピストン断面積の3〜6%の範囲にすれ
ば、伝熱管内の流動損失がより小さくなり、無効容積も
少なくなるので、さらに高効率のスターリングエンジン
を提供することができる。
Furthermore, if the total cross-sectional area of the working fluid flow path between the outer and inner tubes of all heat transfer tubes is set within the range of 3 to 6% of the cross-sectional area of the expansion piston, the flow loss in the heat transfer tubes will be smaller, making it ineffective. Since the volume is also reduced, it is possible to provide a Stirling engine with even higher efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るスターリングエンジン
の縦断面図、第2図は第1図における加熱器及びその近
傍の拡大断面図、第3図及び第4図は第2因における伝
熱管の横断面図、第5図はエンジンの総合熱効率と全伝
熱管の作動流体流路断面積の合計・膨張ピストン断面積
比との関係を示す図である。 1−・・・膨張シリンダ、2・・・膨張ピストン、3・
・・圧縮シリンダ、4・・・圧縮ピストン、5・・・加
熱器(高温側熱交換器)、6・・・再生器、7・・・冷
却器(低温側熱交換器)、8.9・・・コネクティング
ロッド、10・・・クランク軸、11・・・クランク室
、12・・・膨張シリンダヘッド、13・・・断熱材、
14・・・燃焼室、15・・・ガスノズル、16・・・
スワラ−117・・・空気予熱器、18・・・吸気筒、
19・・・排気筒、20・・・伝熱管、21・・・外管
、22・・・内管、23・・・伝熱フィン、24・・・
第1流路、25・・・第2流路、26・・・空間部、2
7・・・突条(接触部)、28・・・作動流体通路。 出願人代理人 弁理士 鈴 江 武 彦第2図 第3図   第4図 第5図
FIG. 1 is a longitudinal sectional view of a Stirling engine according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the heater and its vicinity in FIG. 1, and FIGS. FIG. 5, a cross-sectional view of the heat tube, is a diagram showing the relationship between the overall thermal efficiency of the engine and the ratio of the total cross-sectional area of the working fluid flow paths of all the heat transfer tubes to the cross-sectional area of the expansion piston. 1-...expansion cylinder, 2...expansion piston, 3-...
... Compression cylinder, 4... Compression piston, 5... Heater (high temperature side heat exchanger), 6... Regenerator, 7... Cooler (low temperature side heat exchanger), 8.9 ... Connecting rod, 10... Crankshaft, 11... Crank chamber, 12... Expansion cylinder head, 13... Heat insulating material,
14... Combustion chamber, 15... Gas nozzle, 16...
Swirler-117... Air preheater, 18... Intake cylinder,
19... Exhaust tube, 20... Heat transfer tube, 21... Outer tube, 22... Inner tube, 23... Heat transfer fin, 24...
First channel, 25... Second channel, 26... Space, 2
7... Projection (contact part), 28... Working fluid passage. Applicant's representative Patent attorney Takehiko Suzue Figure 2 Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)一端が閉塞され他端が開口された外管と、この外
管内に設けられ、両端が開口された内管とからなる伝熱
管により構成され、内部を通過する作動流体を燃焼室内
のガスとの熱交換により加熱するスターリングエンジン
の加熱器において、前記外管と内管とを部分的に接触さ
せたことを特徴とするスターリングエンジンの加熱器。
(1) Consists of a heat transfer tube consisting of an outer tube with one end closed and the other open, and an inner tube installed inside the outer tube with both ends open. A Stirling engine heater that heats by heat exchange with gas, characterized in that the outer tube and the inner tube are partially in contact with each other.
(2)外管と内管との接触部を作動流体の流れ方向に沿
った突条としたことを特徴とする請求項1記載のスーリ
ングエンジンの加熱器。
(2) The heater for a Souling engine according to claim 1, wherein the contact portion between the outer tube and the inner tube is a protrusion along the flow direction of the working fluid.
(3)全伝熱管の外管と内管との間の作動流体流路の断
面積の合計を膨張ピストンの断面積の3〜6%の範囲に
設定したことを特徴とする請求項1または2記載のスタ
ーリングエンジンの加熱器。
(3) The total cross-sectional area of the working fluid flow path between the outer tube and the inner tube of all the heat transfer tubes is set in a range of 3 to 6% of the cross-sectional area of the expansion piston. 2. The Stirling engine heater described in 2.
JP7655988A 1988-03-31 1988-03-31 Heater of stirling engine Pending JPH01249953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7655988A JPH01249953A (en) 1988-03-31 1988-03-31 Heater of stirling engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7655988A JPH01249953A (en) 1988-03-31 1988-03-31 Heater of stirling engine

Publications (1)

Publication Number Publication Date
JPH01249953A true JPH01249953A (en) 1989-10-05

Family

ID=13608605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7655988A Pending JPH01249953A (en) 1988-03-31 1988-03-31 Heater of stirling engine

Country Status (1)

Country Link
JP (1) JPH01249953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752646A2 (en) * 2005-08-09 2007-02-14 Pratt & Whitney Rocketdyne, Inc. Thermal cycle engine with augmented thermal energy input area
JP2012149798A (en) * 2011-01-18 2012-08-09 Tokyo Gas Co Ltd Heat exchanger with combustor for heating fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104349A (en) * 1981-12-14 1983-06-21 Sanyo Electric Co Ltd External-combustion type heat exchanger
JPS58158499A (en) * 1982-03-15 1983-09-20 Naoji Isshiki Heat exchanger
JPS629184A (en) * 1985-07-04 1987-01-17 Toshiba Corp Heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104349A (en) * 1981-12-14 1983-06-21 Sanyo Electric Co Ltd External-combustion type heat exchanger
JPS58158499A (en) * 1982-03-15 1983-09-20 Naoji Isshiki Heat exchanger
JPS629184A (en) * 1985-07-04 1987-01-17 Toshiba Corp Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752646A2 (en) * 2005-08-09 2007-02-14 Pratt & Whitney Rocketdyne, Inc. Thermal cycle engine with augmented thermal energy input area
EP1752646A3 (en) * 2005-08-09 2009-12-16 Pratt & Whitney Rocketdyne, Inc. Thermal cycle engine with augmented thermal energy input area
JP2012149798A (en) * 2011-01-18 2012-08-09 Tokyo Gas Co Ltd Heat exchanger with combustor for heating fluid

Similar Documents

Publication Publication Date Title
US6857260B2 (en) Thermal improvements for an external combustion engine
US6715285B2 (en) Stirling engine with high pressure fluid heat exchanger
US3965976A (en) Heater tube arrangements
US3991457A (en) Heater tube arrangements
JPH01249953A (en) Heater of stirling engine
JPS61502005A (en) Stirling engine with air working fluid
JPS6122132B2 (en)
JPS629184A (en) Heat exchanger
EP0174504B1 (en) Stirling engine and stirling engine heater
JPS6146450A (en) Heat exchanger
JPS6146894A (en) Heat exchanger
JPH01249954A (en) Stirling engine
JPH01244151A (en) High temperature heat exchanger for stirling engine
JPS58192951A (en) Heater of hot-gas engine
KR920005330Y1 (en) Heater pin in steering engine
JPS6048625B2 (en) Stirling engine high temperature heat exchanger
JPH11223400A (en) Heat exchanger for heat engine
JPH0552661U (en) Stirling engine heating device
JP2022126185A (en) Heat exchanger
JPH0726592B2 (en) High temperature side heat exchanger of hot gas engine
JPS6079145A (en) Stirling engine
JPH11223399A (en) Heat exchanger for heat engine
KR970009805B1 (en) Heating apparatus of stirling engine
JPS5958139A (en) Stirling engine
JPS58117336A (en) Heater pipe for stirling engine