JPH01249932A - Fuel injection controller - Google Patents

Fuel injection controller

Info

Publication number
JPH01249932A
JPH01249932A JP63079147A JP7914788A JPH01249932A JP H01249932 A JPH01249932 A JP H01249932A JP 63079147 A JP63079147 A JP 63079147A JP 7914788 A JP7914788 A JP 7914788A JP H01249932 A JPH01249932 A JP H01249932A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust
exhaust gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63079147A
Other languages
Japanese (ja)
Other versions
JP2621032B2 (en
Inventor
Takayuki Sugiura
杉浦 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP63079147A priority Critical patent/JP2621032B2/en
Publication of JPH01249932A publication Critical patent/JPH01249932A/en
Application granted granted Critical
Publication of JP2621032B2 publication Critical patent/JP2621032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To maintain the superior operation state of an internal combustion engine by correcting the variation quantity of the air-fuel ratio which is calculated from the variation quantity of the intake pipe pressure due to the recirculation of the exhaust and setting the obtained value as aimed air-fuel ratio. CONSTITUTION:During the time when an exhaust recirculation device 40 operates to allow exhaust to recirculate into a manifold intake passage 16, a control means 80 turns OFF a control pressure selector valve 62 of EGR modulator 60 for a prescribed time when the NOx does not vary, in other words stops the recirculation of exhaust and detects the variation quantity of the intake pipe negative pressure. The EGR rate is calculated in accordance with the variation quantity of the intake pipe negative pressure, and the variation quantity of the air-fuel ratio due to the recirculation of the exhaust is calculated according to the EGR rate. Then, the fuel injection quantity is controlled so that the variation quantity of the air-fuel ratio is corrected to set as an aimed air-fuel ratio (air-fuel ratio in the case when exhaust is not allowed to recirculate). Therefore, even in the case when the exhaust is allowed to recirculate into the manifold intake passage 16, the aimed air-fuel ratio can be maintained, and the superior operation state of an internal combustion engine 2 can be maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料噴射制御装置に係り、特に排気再循環装
置の作動時においても目標空燃比を維持し得る燃料噴射
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection control device, and more particularly to a fuel injection device that can maintain a target air-fuel ratio even when an exhaust gas recirculation device is in operation.

〔従来の技術〕[Conventional technology]

内燃機関において、排気有害成分や燃料消費率等の問題
の対応策として電子制御式の燃料噴射制御装置を備えた
ものがある。この燃料噴射制御装置は、負荷、機関回転
数、冷却水温度、吸入空気量等の機関運転状態の変化を
電気的信号として入力し、内燃機関の運転状態に応じて
燃料噴射弁を作動制御し、燃料の噴射制御を行うもので
ある。
Some internal combustion engines are equipped with electronically controlled fuel injection control devices as a countermeasure to problems such as harmful exhaust components and fuel consumption rates. This fuel injection control device inputs changes in engine operating conditions such as load, engine speed, cooling water temperature, intake air amount, etc. as electrical signals, and controls the operation of the fuel injection valves according to the operating conditions of the internal combustion engine. , which controls fuel injection.

また、内燃機関には、燃料噴射制御装置と共に、排気再
循環装置(EGR装置)を備えているものがある。この
排気再循環装置は、吸気系に排気の還流@ (EGR量
)を調整するEGR調整弁を有し、吸気系に排気の一部
を還流することにより吸気を希釈し、火炎の伝播速度及
び燃焼の最高温度を低下させて排気中のNOxを低減さ
せるものである。
Further, some internal combustion engines are equipped with an exhaust gas recirculation device (EGR device) as well as a fuel injection control device. This exhaust gas recirculation device has an EGR adjustment valve in the intake system that adjusts the recirculation of exhaust gas @ (EGR amount), dilutes the intake air by recirculating a part of the exhaust gas into the intake system, and increases the flame propagation speed and This reduces the maximum combustion temperature and reduces NOx in the exhaust gas.

このような排気再循環装置としては、例えば特開昭54
〜124119号公報に開示されている。
As such an exhaust gas recirculation device, for example, JP-A-54
-124119.

この公報に記載のものは、制御回路からの偏差信号に同
期して作動される流量制御弁をEGR還流通路に設け、
最大限の量の排気を再循環しつつサージング(トルク変
動)を防止するものである。
The device described in this publication includes a flow control valve operated in synchronization with a deviation signal from a control circuit in the EGR recirculation passage,
This prevents surging (torque fluctuations) while recirculating the maximum amount of exhaust gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、排気再循環装置を備えた内燃機関においては
、排気を吸気通路内に還流させることにより、吸気通路
内の吸気管圧力である吸気管負圧が影響を受け、設定空
燃比が目標空燃比、つまり排気を還流させない時の空燃
比から変化(ズレ)することがあった。
By the way, in an internal combustion engine equipped with an exhaust gas recirculation device, by recirculating the exhaust gas into the intake passage, the intake pipe negative pressure, which is the intake pipe pressure in the intake passage, is affected, and the set air-fuel ratio changes from the target air-fuel ratio. In other words, the air-fuel ratio may change (deviate) from the one when the exhaust gas is not recirculated.

この不都合を解消するために、排気再循環装置にはEG
R調整弁の圧力室に連通ずる作動用圧力通路途中に制御
用圧力切換弁を設け、この制御用圧力切換弁のオン・オ
フを感知し、この制御用圧力切換弁のオン時にのみ排気
が還流しているとみなして一定の空燃比補正係数を制御
回路から出力させ、これにより設定空燃比の変化を補正
していた。
In order to eliminate this inconvenience, the exhaust gas recirculation system
A control pressure switching valve is installed in the operating pressure path that communicates with the pressure chamber of the R adjustment valve, and the ON/OFF state of this control pressure switching valve is sensed, and the exhaust gas is recirculated only when this control pressure switching valve is turned on. A constant air-fuel ratio correction coefficient is output from the control circuit, thereby correcting the change in the set air-fuel ratio.

しかし、このような空燃比の補正制御においても、第6
図に示す如く、吸気通路に排気が還流されると、吸入空
気lGaが一定であるにも拘らず、吸気管負圧PBが影
響を受けて変化、つまり吸気管負圧が低下するので、吸
気管負圧PBを−の制御因子として取入れている燃料噴
射制御装置は、実際、吸入空気量が変化していないのに
吸入空気量が増量したとみなし、これにより燃料噴射量
Gfも変化、つまり燃料量が増大してしまい、結果的に
、空燃比が影響を受けて徒にリンチ側に移行し、設定空
燃比が目標空燃比から変化(ズレ)し、何ら不都合が解
消されていなかった。即ち、第7図に示す如く、機関回
転数Neが一定値の際に、排気の還流による吸気管負圧
の変化により、空燃比の変化量(ΔA/F)が比例して
大きくなり、燃焼性が低下するという不都合を招いた。
However, even in such air-fuel ratio correction control, the sixth
As shown in the figure, when the exhaust gas is recirculated to the intake passage, the intake pipe negative pressure PB is affected and changes even though the intake air lGa is constant, that is, the intake pipe negative pressure decreases, so the intake pipe negative pressure decreases. The fuel injection control device that incorporates the pipe negative pressure PB as a negative control factor considers that the intake air amount has increased even though the intake air amount has not actually changed, and as a result, the fuel injection amount Gf also changes, i.e. The amount of fuel increases, and as a result, the air-fuel ratio is affected and unnecessarily shifts to the lynch side, causing the set air-fuel ratio to change (deviate) from the target air-fuel ratio, and the problem remains unresolved. That is, as shown in Fig. 7, when the engine speed Ne is a constant value, the change in the air-fuel ratio (ΔA/F) increases proportionally due to the change in the intake pipe negative pressure due to the recirculation of exhaust gas, and the combustion This led to the inconvenience of a decline in sexuality.

また、詰まり等の要因によってEGR率が経時変化した
場合や、E G R8JM整弁によるEGR率のバラツ
キを吸収することができず、結果として、目標空燃 −
比に維持することができなかった。
In addition, it is not possible to absorb changes in the EGR rate over time due to factors such as clogging, or variations in the EGR rate due to EGR8JM valve adjustment, and as a result, the target air fuel -
could not maintain the ratio.

〔発明の目的〕[Purpose of the invention]

そこでこの発明の目的は、上述の不都合を除去すべく、
排気の還流による吸気管圧力の変化量を予測し、吸気管
圧力の影響による空燃比の変化量を予測し、空燃比の変
化分を補正して目標空燃比とすることにより、内燃機関
の運転状態を良好に担保し得る燃料噴射制御装置を実現
するにある。
Therefore, the purpose of this invention is to eliminate the above-mentioned disadvantages.
By predicting the amount of change in intake pipe pressure due to exhaust gas recirculation, predicting the amount of change in air-fuel ratio due to the influence of intake pipe pressure, and correcting the change in air-fuel ratio to reach the target air-fuel ratio, the internal combustion engine can be operated. The object of the present invention is to realize a fuel injection control device that can ensure good conditions.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するためにこの発明は、内燃機関運転状
態に応じて燃料噴射弁を作動制御し燃料の噴射制御をす
る燃料噴射制御装置において、排気の一部を吸気系に還
流させる排気再循環装置の作動時にこの排気再循環装置
による排気の還流を所定時間停止して吸気管圧力の変化
量を検出し、この吸気管圧力の変化量に応じて前記排気
再循環装置によるEGR率を算出するとともにこのEG
R率に応じて排気の還流による空燃比の変化量を算出し
、この空燃比の変化量を補正して目標空燃比にすべく燃
料噴射量を制御する制御手段を設けたことを特徴とする
To achieve this object, the present invention provides an exhaust recirculation system that recirculates part of the exhaust gas to the intake system in a fuel injection control device that controls the operation of a fuel injection valve and controls fuel injection according to the operating state of an internal combustion engine. When the device is in operation, the recirculation of exhaust gas by the exhaust gas recirculation device is stopped for a predetermined period of time, the amount of change in intake pipe pressure is detected, and the EGR rate by the exhaust gas recirculation device is calculated according to the amount of change in intake pipe pressure. Along with this EG
The present invention is characterized by comprising a control means for calculating the amount of change in the air-fuel ratio due to the recirculation of exhaust gas according to the R rate, and controlling the amount of fuel injection to correct the amount of change in the air-fuel ratio to reach the target air-fuel ratio. .

〔作用〕[Effect]

この発明の構成によれば、制御手段は、先ず排気再循環
装置の作動時に排気の還流を所定時間停止して吸気管圧
力の変化量を算出し、この吸気管圧力の変化量に応じて
EGR率を算出し、このEGR率に応じ排気の還流によ
る空燃比の変化量を算出し、そしてこの空燃比の変化量
を補正して目標空燃比とする。これにより、排気再循環
装置の作動時においても目標空燃比に維持させ、内燃機
関の運転状態を良好に担保することができる。
According to the configuration of the present invention, the control means first stops the recirculation of exhaust gas for a predetermined period of time when the exhaust gas recirculation device is activated, calculates the amount of change in the intake pipe pressure, and controls the EGR according to the amount of change in the intake pipe pressure. The amount of change in the air-fuel ratio due to recirculation of exhaust gas is calculated in accordance with this EGR rate, and the amount of change in the air-fuel ratio is corrected to become the target air-fuel ratio. Thereby, even when the exhaust gas recirculation device is activated, the target air-fuel ratio can be maintained, and the operating state of the internal combustion engine can be maintained in good condition.

〔実施例〕〔Example〕

以下図面に基づいてこの発明の実施例を詳細且つ具体的
に説明する。
Embodiments of the present invention will be described in detail and specifically below based on the drawings.

第1〜5図は、この発明の実施例を示すものである。図
において、2は内燃機関、4はエアクリーナ、6はスロ
ットルボディ、8はボディ吸気通゛路、10は燃料噴射
弁、12は絞り弁、14は吸気マニホルド、16はマニ
ホルド吸気通路、18は吸気ポート、20は燃焼室、2
2は排気マニホルド、24はマニホルド排気通路、26
は排気管、28は管排気通路、30は触媒コンバータで
ある。
1 to 5 show embodiments of this invention. In the figure, 2 is an internal combustion engine, 4 is an air cleaner, 6 is a throttle body, 8 is a body intake passage, 10 is a fuel injection valve, 12 is a throttle valve, 14 is an intake manifold, 16 is a manifold intake passage, and 18 is an intake passage. Port, 20 is combustion chamber, 2
2 is an exhaust manifold, 24 is a manifold exhaust passage, 26
28 is a pipe exhaust passage, and 30 is a catalytic converter.

燃料噴射制御装置32を構成する前記燃料噴射弁10は
、絞り弁12上流側のボディ吸気通路8内に配設されて
いる。燃料噴射弁10には、燃料タンク34内の燃料が
送給される。即ち、燃料タンク34内の燃料は、燃料ポ
ンプ36により燃料供給通路38を経て、燃料フィルタ
40で濾過されて燃料噴射弁10に送給される。
The fuel injection valve 10 constituting the fuel injection control device 32 is disposed within the body intake passage 8 upstream of the throttle valve 12. The fuel in the fuel tank 34 is supplied to the fuel injection valve 10 . That is, the fuel in the fuel tank 34 is passed through the fuel supply passage 38 by the fuel pump 36, filtered by the fuel filter 40, and fed to the fuel injection valve 10.

前記燃料供給通路38は、燃料噴射弁10に作用する燃
料圧力を一定に調整する燃料圧力レギュレータ42が介
設されている。この燃料圧力レギュレータ42は、絞り
弁12下流側のマニホルド吸気通路16に開口する燃料
圧力用通路44からの吸気管圧力によって作動する。
The fuel supply passage 38 is provided with a fuel pressure regulator 42 that adjusts the fuel pressure acting on the fuel injection valve 10 to a constant level. This fuel pressure regulator 42 is operated by intake pipe pressure from a fuel pressure passage 44 that opens into the manifold intake passage 16 downstream of the throttle valve 12.

前記マニホルド排気通路24には、排気再循環装置(E
GR装置)46を構成するEGR還流通路48の一端で
ある排気取入口50が開口している。このEGR還流通
路4日の他端である排気還流口52は、絞り弁12下流
側のマニホルド吸気通路16に開口している。このEG
R還流通路48途中には、E G Rfil整弁54が
介設されている。このEGR調整弁54の圧力室56に
は、該EGR弁54の作動用圧力通路58が連絡してい
る。
The manifold exhaust passage 24 includes an exhaust gas recirculation device (E
An exhaust gas intake port 50, which is one end of an EGR recirculation passage 48 constituting the GR device) 46, is open. The exhaust gas recirculation port 52, which is the other end of the EGR recirculation passage 4, opens into the manifold intake passage 16 on the downstream side of the throttle valve 12. This EG
An EGR fil regulating valve 54 is interposed in the middle of the R recirculation passage 48 . A pressure passage 58 for operating the EGR valve 54 communicates with the pressure chamber 56 of the EGR regulating valve 54 .

この作動用圧力通路58は、EGR弁54の圧力室56
と絞り弁10の上流側のボディ吸気通路8とを連通ずる
ものである。また、作動用圧力通路58途中には、EG
R弁54側から順次にEGR用モジュレータ60と制御
用圧力切換弁62(VSV)とが介設されている。前記
EGR用モジュレータ60は、EGR還流通路48から
の排気圧が排圧用圧力通路64を経て内部のダイヤフラ
ム室66に作用することによってE G R調整弁54
の圧力室56に作用する圧力を制御するものである=前
記制御用圧力切換弁62は、後述する制御手段80によ
って作動し、作動用圧力通路58を開閉動作するもので
ある。
This operating pressure passage 58 is connected to the pressure chamber 56 of the EGR valve 54.
and the body intake passage 8 on the upstream side of the throttle valve 10 are communicated with each other. Further, in the middle of the operating pressure passage 58, an EG
An EGR modulator 60 and a control pressure switching valve 62 (VSV) are provided sequentially from the R valve 54 side. The EGR modulator 60 is configured such that the exhaust pressure from the EGR recirculation passage 48 acts on the internal diaphragm chamber 66 through the exhaust pressure passage 64, thereby controlling the EGR regulating valve 54.
The control pressure switching valve 62 is operated by a control means 80, which will be described later, to open and close the operating pressure passage 58.

前記マニホルド吸気通路16内の吸気管圧力である吸気
管負圧を検出すべく検出用圧力通路68を経て圧力セン
サ70が設けられているとともに、前記エアクリーナ4
には、吸気温度を検出すべく吸気温センサ72が取付け
られている。また、前記吸気マニホルド14には、該吸
気マニホルド14に形成した冷却水通路74内の冷却水
温度を検出する水温センサ76が取付けられている。更
に、排気マニホルド22には、排気中の酸素濃度を検出
する02センサ78が取付けられている。
A pressure sensor 70 is provided through a detection pressure passage 68 to detect intake pipe negative pressure, which is intake pipe pressure in the manifold intake passage 16, and a pressure sensor 70 is provided in the air cleaner 4.
An intake air temperature sensor 72 is attached to detect the intake air temperature. Further, a water temperature sensor 76 is attached to the intake manifold 14 to detect the temperature of cooling water in a cooling water passage 74 formed in the intake manifold 14. Further, an 02 sensor 78 is attached to the exhaust manifold 22 to detect the oxygen concentration in the exhaust gas.

前記燃料噴射弁10、燃料ポンプ36、圧力センサ70
、吸気温センサ72、水温センサ76.02センサ78
等は、制御手段(EVC)80に連絡している。
The fuel injection valve 10, the fuel pump 36, and the pressure sensor 70
, intake temperature sensor 72, water temperature sensor 76.02 sensor 78
etc. are in communication with the control means (EVC) 80.

この制御手段80は、排気再循環装置46が゛作動して
排気をマニホルド吸気通路16に還流させている際に前
記制御用圧力切換弁62、あるいはEGR用モジュレー
タ60をNOxが変化しない所定時間だけオフ、つまり
排気の還流を停止して吸気管負圧の変化量を検出し、こ
の吸気管負圧の変化量に応じてEGR率を算出するとと
もにこのEGR率に応じて排気の還流による空燃比の変
化量を算出し、この空燃比の変化量を補正して目標空燃
比(排気が還流していないときの空燃比)にすべく、燃
料噴射量を制御するものである。
This control means 80 controls the control pressure switching valve 62 or the EGR modulator 60 for a predetermined period of time during which NOx does not change when the exhaust gas recirculation device 46 operates to recirculate exhaust gas to the manifold intake passage 16. Off, that is, exhaust gas recirculation is stopped, the amount of change in intake pipe negative pressure is detected, the EGR rate is calculated according to this amount of change in intake pipe negative pressure, and the air-fuel ratio due to exhaust gas recirculation is calculated according to this EGR rate. The amount of change in the air-fuel ratio is calculated, and the amount of fuel injection is controlled in order to correct the amount of change in the air-fuel ratio to reach the target air-fuel ratio (the air-fuel ratio when the exhaust gas is not recirculating).

前記EGR率は、 で決定される。The EGR rate is determined by

また、前記制御部80には、絞り弁10の開度を検出す
るスロットルスイッチ82、点火信号や機関回転数等を
検出するイグニションコイル84、電圧状態を検出すべ
くバッテリ86、絞り弁12下流側のマニホルド吸気通
路16に一端が開口するとともにエアクリーナ4に他端
が開口するバイパス通路88途中に介設した第1負圧切
換弁90と、短絡通路92途中で第1負圧切換弁90と
並列に設けられた第2負圧切換弁94等が連絡している
。なお、符号96はスタータ、98はディストリビュー
タ、100はキャニスタ、102は蒸発燃料通路、10
4はブローバイガス通路、そして106はPC■バルブ
である。
The control unit 80 also includes a throttle switch 82 for detecting the opening of the throttle valve 10, an ignition coil 84 for detecting the ignition signal, engine speed, etc., a battery 86 for detecting the voltage state, and a battery 86 downstream of the throttle valve 12. A first negative pressure switching valve 90 is interposed in the middle of the bypass passage 88, which has one end open to the manifold intake passage 16 and the other end opens to the air cleaner 4, and is parallel to the first negative pressure switching valve 90 in the middle of the short circuit passage 92. A second negative pressure switching valve 94 and the like provided in the two are connected to each other. In addition, 96 is a starter, 98 is a distributor, 100 is a canister, 102 is an evaporative fuel passage, 10
4 is a blow-by gas passage, and 106 is a PC ■ valve.

次に、この実施例の作用を第3図のフローチャートに基
づいて説明する。
Next, the operation of this embodiment will be explained based on the flowchart of FIG.

制御手段80においてプログラムがスタート(ステップ
102)すると、先ず排気再循環装置46が作動してい
るか否かを判断する(ステップ104)。排気再循環装
置46が作動していなくステップ104においてNOの
場合には、END・ (ステップ114)に移行させる
When the program starts in the control means 80 (step 102), it is first determined whether the exhaust gas recirculation device 46 is operating (step 104). If the exhaust gas recirculation device 46 is not operating and the answer in step 104 is NO, the process moves to END (step 114).

一方、排気再循環装置46が作動しステップ104にお
いてYESの場合には、すなわち、第5図におけるEG
R領域領域線Y、A、B、Cによって包囲される領域)
においては、制御用圧力切換弁62をNOxが変化しな
い所定時間オン・オフ作動制御することによって排気還
流口52からの排気の還流による吸気管負圧の変化量Δ
PBを制御手段80により検出させ、ステップ106に
おいてEGRが安定か否かを判断する。EGRが安定せ
ずこのステップ106においてNoの場合には、ステッ
プ10Bにおいて前回の負圧変化量ΔPBの補正係数に
より燃料噴射量(時間)を補正する。
On the other hand, if the exhaust gas recirculation device 46 is activated and YES in step 104, that is, the EG in FIG.
R area (area surrounded by area lines Y, A, B, C)
In this case, the amount of change Δ in the intake pipe negative pressure due to the recirculation of exhaust gas from the exhaust recirculation port 52 is controlled by controlling the control pressure switching valve 62 to turn on and off for a predetermined period during which NOx does not change.
PB is detected by the control means 80, and it is determined in step 106 whether EGR is stable. If the EGR is not stable and the answer is No in step 106, the fuel injection amount (time) is corrected in step 10B using the correction coefficient of the previous negative pressure change amount ΔPB.

また、EGRが安定しステップ106においてYESの
場合には、排気の還流による吸気管負圧の変化量へPB
−t−検出する(ステップ110)。
In addition, if EGR is stable and YES in step 106, PB is changed to the amount of change in intake pipe negative pressure due to exhaust gas recirculation.
-t-detect (step 110).

即ち、第5図において、EGRが安定して行われている
領域β(2点鎖線で示す領域)で吸気管負圧の変動を検
出する。
That is, in FIG. 5, fluctuations in the intake pipe negative pressure are detected in the region β (region indicated by the two-dot chain line) where EGR is stably performed.

次いで、ステップ112において吸気管負圧の変化量Δ
PBの補正係数に基づきEGR率を算出し、このEGR
率により空燃比の変化量を算出し、燃料噴射量(時間)
を補正して目標空燃比にする。
Next, in step 112, the amount of change Δ in the intake pipe negative pressure is
The EGR rate is calculated based on the correction coefficient of PB, and this EGR
Calculate the amount of change in the air-fuel ratio based on the rate, and calculate the amount of fuel injection (time)
is corrected to reach the target air-fuel ratio.

このとき、例えば、別表に示す如く、負圧の変化量(変
化分)ΔPBが大きくなるに従って、補正係数をマイナ
ス側に大きくし、燃料噴射量(時間)を減少すれば、従
来の如き空燃比が徒にリッチ側に移行するのを防止しつ
つ、目標空燃比にすることが可能となる。
At this time, for example, as shown in the attached table, as the amount of change (change amount) ΔPB in negative pressure increases, the correction coefficient can be increased to the negative side and the fuel injection amount (time) can be decreased to maintain the air-fuel ratio as before. This makes it possible to achieve the target air-fuel ratio while preventing the air-fuel ratio from shifting unnecessarily to the rich side.

上述の場合において、排気再循環装置46をオフする時
間、つまり制御用圧力切換弁62をオフとする時間と排
気のNOxとの関係とは、第4図に示すようになり、排
気再循環装置46のオフ時間は、NOxの増加しない箇
所で、しかも吸気管負圧の変化量を感知できる領域に決
定する必要がある。
In the above case, the relationship between the time when the exhaust gas recirculation device 46 is turned off, that is, the time when the control pressure switching valve 62 is turned off, and the NOx of the exhaust gas is as shown in FIG. The off time of 46 needs to be determined in a region where NOx does not increase and in which the amount of change in intake pipe negative pressure can be detected.

この結果、排気をマニホルド吸気通路16内に還流させ
ている場合においても、目標空燃比に維持させることが
でき、内燃機関2の運転状態を良好に担保することがで
きる。
As a result, even when the exhaust gas is recirculated into the manifold intake passage 16, the target air-fuel ratio can be maintained, and the operating condition of the internal combustion engine 2 can be ensured in a favorable manner.

また、EGR率の経時変化(例えば詰まり等)にも対応
し得て、実用的である。
Furthermore, it is practical because it can cope with changes over time in the EGR rate (for example, due to clogging, etc.).

更に、制御手段(ECU)80のソフト上で空燃比制御
を行うことができるので、廉価とすることができる。
Furthermore, since air-fuel ratio control can be performed on the software of the control unit (ECU) 80, the cost can be reduced.

別   表 なお、上述の実施例においては、吸気管負圧の変化量の
検出を、制御用切換弁12のオン・オフ作動制御によっ
て行ったが、第2図の2点鎖線で示す如く、EGR用モ
ジュレータ60を作動制御によって行うことも可能であ
る。
In the above embodiment, the amount of change in the intake pipe negative pressure was detected by controlling the on/off operation of the control switching valve 12, but as shown by the two-dot chain line in FIG. It is also possible to control the operation of the modulator 60.

〔発明の効果〕〔Effect of the invention〕

以上詳細な説明から明らかなようにこの発明によれば、
排気の還流による吸気管圧力の変化量を算出し、吸気管
圧力の影響による空燃比の変化量を算出し、空燃比の変
化量を補正して目標空燃比とすることにより、常に内燃
機関の運転状態を良好に担保し得る。
As is clear from the above detailed description, according to the present invention,
By calculating the amount of change in intake pipe pressure due to exhaust gas recirculation, calculating the amount of change in air-fuel ratio due to the influence of intake pipe pressure, and correcting the amount of change in air-fuel ratio to reach the target air-fuel ratio, the internal combustion engine is always maintained. Good driving conditions can be ensured.

また、この発明の構成によれば、詰まり等の要因による
EGR率の経時変化にも対応し得て、実用上有利である
Further, according to the configuration of the present invention, it is possible to cope with changes in the EGR rate over time due to factors such as clogging, which is advantageous in practice.

更に、制御手段(E CU)のソフト上で空燃比を制御
することができ、廉価とし得る。
Furthermore, the air-fuel ratio can be controlled on the software of the control unit (ECU), and the cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図はこの発明の実施例を示し、第1図は燃料噴
射制御装置の概略図、第2図はこの実施例における装置
のブロック図、第3図はこの実施例の作用を説明するフ
ローチャート、第4図は制御用圧力切換弁を一瞬OFF
する時間と排気のNOxとの関係を示す図、第5図は機
関回転数と吸気管負圧との関係を示す図である。 第6図は従来における排気還流時の各種の特性変化を示
す図である。 第7図は従来における吸気管負圧変化と空燃比変化(ズ
レ)との関係を示す図である。 図において、2は内燃機関、10は燃料噴射弁、12は
絞り弁、16はマニホルド吸気通路、32は燃料噴射装
置、46は排気再循環装置、48はEGR還流通路、5
2は排気還流口、54はEGR調整弁、58は作動用圧
力通路、60はEGR用モジュレータ、62は制御用圧
力切換弁、70は圧力センサ、78は02センサ、そし
て80は制御手段である。 特許出願人   鈴木自動車工業株式会社代理人 弁理
士 西 郷 義 美 第2図 第3図 第4図 え−瞬OFFする1呼間 第5図  ″ (rpm) 第6図 EGR率c%ノ 第7図 ΔpB
1 to 5 show an embodiment of the present invention, FIG. 1 is a schematic diagram of a fuel injection control device, FIG. 2 is a block diagram of the device in this embodiment, and FIG. 3 explains the operation of this embodiment. The flowchart shown in Figure 4 is for turning off the control pressure switching valve momentarily.
FIG. 5 is a diagram showing the relationship between engine speed and intake pipe negative pressure. FIG. 6 is a diagram showing various characteristic changes during exhaust gas recirculation in the conventional engine. FIG. 7 is a diagram showing the relationship between the intake pipe negative pressure change and the air-fuel ratio change (deviation) in the prior art. In the figure, 2 is an internal combustion engine, 10 is a fuel injection valve, 12 is a throttle valve, 16 is a manifold intake passage, 32 is a fuel injection device, 46 is an exhaust gas recirculation device, 48 is an EGR recirculation passage, 5
2 is an exhaust gas recirculation port, 54 is an EGR adjustment valve, 58 is an operating pressure passage, 60 is an EGR modulator, 62 is a control pressure switching valve, 70 is a pressure sensor, 78 is an 02 sensor, and 80 is a control means. . Patent Applicant Suzuki Motor Co., Ltd. Agent Yoshimi Saigo Figure ΔpB

Claims (1)

【特許請求の範囲】[Claims] 1、内燃機関運転状態に応じて燃料噴射弁を作動制御し
燃料の噴射制御をする燃料噴射制御装置において、排気
の一部を吸気系に還流させる排気再循環装置の作動時に
この排気再循環装置による排気の還流を所定時間停止し
て吸気管圧力の変化量を検出し、この吸気管圧力の変化
量に応じて前記排気再循環装置によるEGR率を算出す
るとともにこのEGR率に応じて排気の還流による空燃
比の変化量を算出し、この空燃比の変化量を補正して目
標空燃比にすべく燃料噴射量を制御する制御手段を設け
たことを特徴とする燃料噴射制御装置。
1. In a fuel injection control device that controls the operation of fuel injection valves and controls fuel injection according to the operating state of the internal combustion engine, this exhaust recirculation device is used when the exhaust gas recirculation device that recirculates part of the exhaust gas to the intake system is activated. The recirculation of exhaust gas is stopped for a predetermined period of time, the amount of change in intake pipe pressure is detected, and the EGR rate of the exhaust gas recirculation device is calculated according to the amount of change in intake pipe pressure. A fuel injection control device comprising a control means for calculating an amount of change in air-fuel ratio due to recirculation, correcting the amount of change in air-fuel ratio, and controlling fuel injection amount so as to reach a target air-fuel ratio.
JP63079147A 1988-03-31 1988-03-31 Fuel injection control device Expired - Lifetime JP2621032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079147A JP2621032B2 (en) 1988-03-31 1988-03-31 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079147A JP2621032B2 (en) 1988-03-31 1988-03-31 Fuel injection control device

Publications (2)

Publication Number Publication Date
JPH01249932A true JPH01249932A (en) 1989-10-05
JP2621032B2 JP2621032B2 (en) 1997-06-18

Family

ID=13681846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079147A Expired - Lifetime JP2621032B2 (en) 1988-03-31 1988-03-31 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP2621032B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153550A (en) * 2010-01-26 2011-08-11 Toyota Motor Corp Control device of internal combustion engine
JP2011169196A (en) * 2010-02-17 2011-09-01 Toyota Motor Corp Device for control of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153550A (en) * 2010-01-26 2011-08-11 Toyota Motor Corp Control device of internal combustion engine
JP2011169196A (en) * 2010-02-17 2011-09-01 Toyota Motor Corp Device for control of internal combustion engine

Also Published As

Publication number Publication date
JP2621032B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US20170030260A1 (en) Control device of an engine
JP3194670B2 (en) Electronic control unit for internal combustion engine
JPH09250413A (en) Periodic operation method of flow control valve
JPH01249932A (en) Fuel injection controller
US4586481A (en) Secondary air supply for internal combustion engine
JP2010265751A (en) Engine air fuel ratio control device
JPS6296776A (en) Fuel feeder for itnernal combustion engine
JPH01240741A (en) Fuel supply amount control method for internal combustion engine
JPS6357841A (en) Air-fuel ratio controller for engine
JP2694272B2 (en) Air-fuel ratio control device for internal combustion engine
US4617891A (en) Secondary air supply for internal combustion engine
JPH07208253A (en) Device for detecting throttle opening
JPH0227167Y2 (en)
JPH04166633A (en) Air-fuel ratio control method for internal combustion engine
JP2621033B2 (en) Idle speed control method for internal combustion engine
JP2816437B2 (en) Internal combustion engine fuel control device
JPH0533707A (en) Air-fuel ratio control device for internal combustion engine
JP2721035B2 (en) Failure diagnosis method for exhaust gas recirculation control device
JPH0337344A (en) Electronical fuel injection controller for internal combustion engine
JP2022059349A (en) Controller of internal combustion engine
JP2023090017A (en) Internal combustion engine control device
JPH05240087A (en) Air-fuel ratio controller of internal combustion engine
JPH0771294A (en) Air-fuel ratio control device for internal combustion engine
JPH04276150A (en) Air-fuel ratio controller for engine
JPH04303176A (en) Ignition timing controller