JPH01249187A - Method for purifying waste containing gallium and arsenic - Google Patents

Method for purifying waste containing gallium and arsenic

Info

Publication number
JPH01249187A
JPH01249187A JP7685788A JP7685788A JPH01249187A JP H01249187 A JPH01249187 A JP H01249187A JP 7685788 A JP7685788 A JP 7685788A JP 7685788 A JP7685788 A JP 7685788A JP H01249187 A JPH01249187 A JP H01249187A
Authority
JP
Japan
Prior art keywords
liq
arsenic
solid
wastewater
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7685788A
Other languages
Japanese (ja)
Other versions
JPH0461712B2 (en
Inventor
Yukio Okuyama
奥山 幸男
Masa Iwai
岩井 雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP7685788A priority Critical patent/JPH01249187A/en
Publication of JPH01249187A publication Critical patent/JPH01249187A/en
Publication of JPH0461712B2 publication Critical patent/JPH0461712B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amts. of As and Ga in waste water to traces by simple operation by subjecting the waste water adjusted to 3-5pH to solid-liq. separation, adding a ferric salt to the separated liq., adjusting the liq. to 6-8pH and carrying out solid-liq. separation. CONSTITUTION:Waste water contg. Ga and As is adjusted to 3-5pH and subjected to solid-liq. separation. By this operation, about >=70% of the As is removed because dissolved metals such as Ga in the waste water are converted into hydroxides and these hydroxides act as a flocculant to coprecipitate As. The ferric salt is added to the separated liq. and this liq. is well stirred and adjusted to 6-8pH by adding an alkali agent such as NaOH. The ferric salt forms ferric hydroxide and this hydroxide acts as the flocculant to coprecipitate As. By separating the formed precipitate, the concn. of As can be reduced to a regulated value or below.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造工場等から排出される研磨廃水等
、ガリウム及び砒素を含む廃水の浄化処理方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for purifying wastewater containing gallium and arsenic, such as polishing wastewater discharged from semiconductor manufacturing factories and the like.

〔従来の技術〕[Conventional technology]

半導体製造工場等からは、ガリウム及び砒素を含む廃水
が排出される。このうち、特に砒素については、有害物
質としてその排出が厳しく規制されている。また、排出
先が農業用水の場合には、他の塩類も除去しなければな
らないため、廃水を系外に排出させないクローズドシス
テムを採ることが多くなってきている。
Semiconductor manufacturing factories and the like discharge wastewater containing gallium and arsenic. Among these, arsenic in particular is a hazardous substance whose emission is strictly regulated. Furthermore, when the wastewater is used for agricultural purposes, other salts must also be removed, so closed systems are increasingly being used to prevent wastewater from being discharged outside the system.

従来、この種の廃水を処理するには、廃水に塩化第二鉄
を添加し、その後、pHを中性付近に調整して水酸化鉄
を生成させ、砒素を共沈により除去した後、処理水を必
要に応じて塩類や有機汚染物を除去するため蒸発処理す
る方法が採用されている。
Conventionally, to treat this type of wastewater, ferric chloride is added to the wastewater, the pH is then adjusted to near neutrality to produce iron hydroxide, arsenic is removed by coprecipitation, and then treatment is performed. Evaporative treatment of water is employed to remove salts and organic contaminants as necessary.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記の方法では、処理水中の砒素を環境
基準の0.05■/!以下にするのに、原水の砒素濃度
によって若干具なるが、Fe1度が廃水中に含まれる砒
素濃度に対して10倍以上となるように塩化第二鉄を添
加する必要がある。そのため、金属スラッジが多量に発
生する欠点があり、この種の廃水の処理における課題で
あった。
However, with the above method, the arsenic in the treated water is reduced to 0.05 μ/l, which is the environmental standard! In order to achieve the following, it is necessary to add ferric chloride so that the Fe 1 degree is 10 times or more the arsenic concentration contained in the wastewater, although this depends somewhat on the arsenic concentration of the raw water. Therefore, there is a drawback that a large amount of metal sludge is generated, which has been a problem in the treatment of this type of wastewater.

本発明は、前記従来技術の欠点を解消し、簡単な操作で
砒素を効率よく除去できるとともに、第二鉄塩の添加量
を節約し、発生スラッジ量を低減できる廃水の浄化処理
方法を提供することを課題とする。
The present invention eliminates the drawbacks of the prior art and provides a wastewater purification method that can efficiently remove arsenic with simple operations, save the amount of ferric salt added, and reduce the amount of sludge generated. That is the issue.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、廃水を第二鉄塩で処理する前に、pH3〜5
に調整することによって廃水中のガリウムを水酸化ガリ
ウムとし、砒素を共沈させ、これを除去することによっ
て前記の課題を解決したものである。
The present invention provides that the wastewater has a pH of 3 to 5 before being treated with ferric salts.
The above problem was solved by adjusting the gallium in the wastewater to gallium hydroxide, co-precipitating arsenic, and removing this.

すなわち、本発明による、ガリウム及び砒素を含む廃水
の浄化処理方法は、ガリウム及び砒素を含む廃水をpH
3〜5に調整し、次いで、固液分離後、処理水に第二鉄
塩を添加し、アルカリ剤を添加してpH6〜8に調整し
、固液分離することを特徴とする。
That is, in the method for purifying wastewater containing gallium and arsenic according to the present invention, the wastewater containing gallium and arsenic is
3 to 5, and then, after solid-liquid separation, a ferric salt is added to the treated water, an alkali agent is added to adjust the pH to 6-8, and solid-liquid separation is performed.

本発明方法により、ガリウム及び砒素を含む廃水をpH
3〜5に調整した後、固液分離することにより砒素は約
70%以上除去される。これは、pH3〜5に調整する
ことにより廃水中に溶存していたガリウム等の金属が水
酸化物となり、これが凝集剤として作用し、砒素を共沈
させるためと考えられる。
By the method of the present invention, wastewater containing gallium and arsenic can be adjusted to pH
After adjusting to 3 to 5, about 70% or more of arsenic is removed by solid-liquid separation. This is thought to be because metals such as gallium dissolved in the wastewater become hydroxides by adjusting the pH to 3 to 5, which act as a flocculant and co-precipitate arsenic.

本発明方法においては、この固液分離後の廃水に第二鉄
塩を添加する。ここで使用しうる第二鉄塩としては、塩
化第二鉄、硫酸第二鉄等が挙げられる。第二鉄塩は、F
e/Asの比が2〜6、好ましくは4〜5となるように
添加すればよい。
In the method of the present invention, a ferric salt is added to the wastewater after solid-liquid separation. Examples of ferric salts that can be used here include ferric chloride and ferric sulfate. Ferric salt is F
It may be added so that the e/As ratio is 2 to 6, preferably 4 to 5.

このように第二鉄塩を添加した後、充分に撹拌し、次い
で、アルカリ剤、例えば水酸化ナトリウム、水酸化カリ
ウム等を添加してpH6〜8に調整する。これにより、
先に添加した第二鉄塩が水酸化第二鉄を形成し、これが
凝集剤として作用し、砒素を共沈させる。この際生成す
る沈殿を固液分離することにより得られる処理水の砒素
濃度は、極めて低く、容易に規制値以下にすることがで
きる。
After adding the ferric salt in this way, the mixture is thoroughly stirred, and then an alkaline agent such as sodium hydroxide, potassium hydroxide, etc. is added to adjust the pH to 6 to 8. This results in
The ferric salt added earlier forms ferric hydroxide, which acts as a flocculant and coprecipitates the arsenic. The arsenic concentration of the treated water obtained by solid-liquid separation of the precipitate produced at this time is extremely low and can be easily reduced to below the regulatory value.

固液分離に当たって、凝集効果をさらに向上させるため
、必要に応じて常用の高分子凝集剤を添加してもよい。
In order to further improve the flocculating effect during solid-liquid separation, a commonly used polymer flocculant may be added as necessary.

〔実施例〕〔Example〕

次に、実施例により本発明を説明するが、本発明はこれ
に限定されるものではない。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto.

実施例I Gap度147mg/f、As濃度175mg//!を
含むpH8,60の廃水を試料とした。この試料に硫酸
を添加してpH3に調整した後、5分間撹拌した。30
分静置後、得られた上澄水に塩化第二鉄を第1表に示す
ようにFe添加量を変化させて加え、かきまぜ装置で1
0 Orpmで5分間撹拌した。
Example I Gap degree 147 mg/f, As concentration 175 mg//! The sample was wastewater with a pH of 8.60. Sulfuric acid was added to this sample to adjust the pH to 3, followed by stirring for 5 minutes. 30
After standing still for 1 minute, ferric chloride was added to the supernatant water with varying amounts of Fe as shown in Table 1, and a stirrer was used to add ferric chloride to the supernatant water.
Stirred for 5 minutes at 0 Orpm.

次に、水酸化ナトリウムを添加してpH7に調整した後
、1100rpで5分間、40rpm+で10分間撹拌
し、30分静置後、得られた上澄水のAs濃度を測定し
、結果を第1表に示す。
Next, after adding sodium hydroxide and adjusting the pH to 7, the mixture was stirred at 1100 rpm for 5 minutes and at 40 rpm+ for 10 minutes, and after standing still for 30 minutes, the As concentration of the obtained supernatant water was measured, and the results were recorded in the first Shown in the table.

比較例1 廃水を始めにpH3に調整しない以外は、実施例1と同
じ操作を行い、得られた上澄水のAs?a度を測定し、
結果を第1表に示す。
Comparative Example 1 The same operation as in Example 1 was performed except that the wastewater was not initially adjusted to pH 3, and the resulting supernatant water was As? Measure a degree,
The results are shown in Table 1.

第1表 上記の表から明らかなとおり、本発明によればpH3に
調整後、固液分離することにより既に砒素の約70%が
除去され、Feの添加量を約1/2に低減してAs濃度
を0.03■/2以下にすることができた。
Table 1 As is clear from the above table, according to the present invention, approximately 70% of arsenic has already been removed by solid-liquid separation after adjustment to pH 3, and the amount of Fe added has been reduced to approximately 1/2. It was possible to reduce the As concentration to 0.03/2 or less.

実施例2 Ga :a度485 mg/ L As濃度434■/
1を含む廃水を硫酸によりpH3に調整した後、5分間
撹拌し、30分静置した。得られた上澄水中の砒素濃度
は128■/lとなっていた。
Example 2 Ga: A degree 485 mg/L As concentration 434■/
After adjusting the pH of the wastewater containing 1 to 3 with sulfuric acid, it was stirred for 5 minutes and left to stand for 30 minutes. The arsenic concentration in the supernatant water obtained was 128 μ/l.

この上澄水にFe添加量を変化させて加え、実施例1と
同様に操作し、得られた上澄水のAs濃度を測定し、結
果を第1図に示す。
Varying amounts of Fe were added to this supernatant water, and the same procedure as in Example 1 was carried out, and the As concentration of the obtained supernatant water was measured. The results are shown in FIG.

比較例2 廃水を始めにpH3に調整しない以外は、実施例2と同
じ操作を行い、得られた上澄水のAs濃度を測定し、結
果を第2図に示す。
Comparative Example 2 The same operation as in Example 2 was performed except that the wastewater was not initially adjusted to pH 3, and the As concentration of the resulting supernatant water was measured. The results are shown in FIG. 2.

実施例3 Ga濃度200mg/f、As濃度200mg/fを含
む廃水を試料とした。この試料をpH4に調整した後、
5分間撹拌した。30分静置後、得られた上澄水に塩化
第二鉄をFe/As比1及び2になるように変化させて
加え、実施例1と同様に操作し、得られた上澄水のAs
 濃度を測定し、結果を第2表に示す。
Example 3 Wastewater containing a Ga concentration of 200 mg/f and an As concentration of 200 mg/f was used as a sample. After adjusting this sample to pH 4,
Stir for 5 minutes. After standing still for 30 minutes, ferric chloride was added to the obtained supernatant water at varying Fe/As ratios of 1 and 2, and the same procedure as in Example 1 was carried out to increase the As content of the obtained supernatant water.
The concentration was measured and the results are shown in Table 2.

比較例3 廃水を始めにpH3に調整しない以外は、実施例3と同
じ操作を行い、得られた上澄水のAs濃度を測定し、結
果を第2表に示す。
Comparative Example 3 The same operation as in Example 3 was performed except that the wastewater was not initially adjusted to pH 3, and the As concentration of the resulting supernatant water was measured. The results are shown in Table 2.

第2表 第2表から明らかなとおり、pH4に調節後に固液分離
すると、水酸化ガリウムが生成し、その共沈作用により
大部分の砒素が除去され、その後、第二鉄塩で処理する
ことにより、砒素を極めて微量まで除去することができ
る。
Table 2 As is clear from Table 2, when solid-liquid separation is performed after adjusting the pH to 4, gallium hydroxide is produced, and most of the arsenic is removed by its coprecipitation action, and then treated with ferric salt. By this method, arsenic can be removed to extremely small amounts.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、第二鉄塩の添加量を著しく低減し
て、簡単な操作で砒素を極めて微量まで除去することが
でき、発生スラッジ量を著しく低減することができる。
According to the method of the present invention, the amount of ferric salt added can be significantly reduced, arsenic can be removed to an extremely small amount with simple operations, and the amount of generated sludge can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例2における第二鉄塩の添加量(F e
 / A s比)と処理水のAs濃度の関係を示すグラ
フ、第2図は比較例2における第二鉄塩の添加量(Fe
/As比)と処理水のAs濃度の関係を示すグラフであ
る。
Figure 1 shows the amount of ferric salt added in Example 2 (F e
Figure 2 is a graph showing the relationship between the As concentration in the treated water and the As concentration in the treated water.
2 is a graph showing the relationship between the As concentration in the treated water and the As concentration in the treated water.

Claims (1)

【特許請求の範囲】[Claims] 1、ガリウム及び砒素を含む廃水をpH3〜5に調整し
、次いで、固液分離後、処理水に第二鉄塩を添加し、ア
ルカリ剤を添加してpH6〜8に調整し、固液分離する
ことを特徴とするガリウム及び砒素を含む廃水の浄化処
理方法。
1. Adjust wastewater containing gallium and arsenic to pH 3 to 5, then solid-liquid separation, add ferric salt to the treated water, add an alkali agent to adjust pH to 6-8, and solid-liquid separation. A method for purifying wastewater containing gallium and arsenic.
JP7685788A 1988-03-30 1988-03-30 Method for purifying waste containing gallium and arsenic Granted JPH01249187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7685788A JPH01249187A (en) 1988-03-30 1988-03-30 Method for purifying waste containing gallium and arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7685788A JPH01249187A (en) 1988-03-30 1988-03-30 Method for purifying waste containing gallium and arsenic

Publications (2)

Publication Number Publication Date
JPH01249187A true JPH01249187A (en) 1989-10-04
JPH0461712B2 JPH0461712B2 (en) 1992-10-01

Family

ID=13617322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7685788A Granted JPH01249187A (en) 1988-03-30 1988-03-30 Method for purifying waste containing gallium and arsenic

Country Status (1)

Country Link
JP (1) JPH01249187A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172395A (en) * 2000-12-05 2002-06-18 Nec Environment Eng Ltd Method for iron hydroxide flocculation and sedimentation treatment of thick inorganic component- containing wastewater
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
JP2003001269A (en) * 2001-06-19 2003-01-07 Kurita Water Ind Ltd Equipment for treatment of waste water containing gallium
JP2003001275A (en) * 2001-06-19 2003-01-07 Kurita Water Ind Ltd Equipment for treatment of waste water containing gallium-arsenic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172395A (en) * 2000-12-05 2002-06-18 Nec Environment Eng Ltd Method for iron hydroxide flocculation and sedimentation treatment of thick inorganic component- containing wastewater
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
US7294268B2 (en) 2001-04-27 2007-11-13 Sharp Kabushiki Kaisha Metal containing waste water treatment method and metal containing waste water treatment equipment
JP2003001269A (en) * 2001-06-19 2003-01-07 Kurita Water Ind Ltd Equipment for treatment of waste water containing gallium
JP2003001275A (en) * 2001-06-19 2003-01-07 Kurita Water Ind Ltd Equipment for treatment of waste water containing gallium-arsenic

Also Published As

Publication number Publication date
JPH0461712B2 (en) 1992-10-01

Similar Documents

Publication Publication Date Title
US5266210A (en) Process for removing heavy metals from water
JPH01249187A (en) Method for purifying waste containing gallium and arsenic
JP3998345B2 (en) Treatment method for molybdenum-containing wastewater
JP3325689B2 (en) Treatment method for metal-containing wastewater
JP3049851B2 (en) Treatment method for wastewater containing selenium
JP3334786B2 (en) Treatment method for wastewater containing insoluble and soluble lead, chromium and zinc
JP2001179266A (en) Method for treating selenium-containing water
JP2548096B2 (en) Method of treating wastewater containing cadmium
JP4629851B2 (en) Wastewater treatment method
JPH03186393A (en) Treatment of waste water containing fluorine
JP2006130498A (en) Method for treating fluorine-containing drainage
JPH0880490A (en) Treatment of antimony-containing waste water
JP2852692B2 (en) Method of removing iron from plating solution containing zinc
JPH11267662A (en) Method of removing fluorine in waste water of flue gas desulfurization
JPH1157747A (en) Treatment of fluorine-containing waste water
JPS63190695A (en) Treatment of fluorine-containing waste water
JPS6055197B2 (en) Wastewater treatment method
JPS6227875B2 (en)
JPH0128629B2 (en)
JPH08132066A (en) Treatment of metal-containing waste water
JPH057879A (en) Treatment of waste water containing heavy metal
JP2004000883A (en) Method for treating solution containing selenium
JPH08323368A (en) Treatment of lead-containing waste water
JPH1076275A (en) Wastewater treatment agent
JPS61291095A (en) Treatment of water containing antimony

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees